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Steganography is the technique of hiding secret information by embedding it in a seemingly “innocent”
message. We present protocols for hiding quantum information by disguising it as noise in a codeword of a
quantum error-correcting code. The sender (Alice) swaps quantum information into the codeword and applies a
random choice of unitary operation, drawing on a secret random key she shares with the receiver (Bob). Using
the key, Bob can retrieve the information, but an eavesdropper (Eve) with the power to monitor the channel, but
without the secret key, cannot distinguish the message from channel noise. We consider two types of protocols:
one in which the hidden quantum information is stored locally in the codeword, and another in which it is
embedded in the space of error syndromes. We analyze how difficult it is for Eve to detect the presence of secret
messages, and estimate rates of steganographic communication and secret key consumption for specific protocols
and examples of error channels. We consider both the case where there is no actual noise in the channel (so that
all errors in the codeword result from the deliberate actions of Alice), and the case where the channel is noisy
and not controlled by Alice and Bob.
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I. INTRODUCTION

Steganography is the science of hiding a message within a
larger innocent-looking plain-text message and communicat-
ing the resulting data over a communications channel or by a
courier so that the steganographic message is readable only by
the intended receiver. The word comes from the Greek words
steganos which means “covered,” and graphia which means
“writing.” The art of information hiding dates back to 440 B.C.
to the Greeks [1]. The term steganography was first used in
1499 by Johannes Trithemius in his Steganographia, which
was one of the first treatises on the use of cryptographic and
steganographic techniques [2].

The modern study of steganography was initiated by
Simmons, and the paradigm can be stated as follows [3]: Alice
and Bob are imprisoned in two different cells that are far apart.
They would like to devise an escape plan, but the only way
they can communicate with each other is through a courier
who is under the command of the warden (Eve, the adversary)
of the penitentiary. The courier leaks all information to the
warden. If the warden suspects that either Alice or Bob are
conspiring to escape from the penitentiary, she will cut off
all communication between them, and move both of them to
a maximum security cell. Prior to their incarceration Alice
and Bob had access to a shared secret key—assumed to be
a sufficiently long string of random bits—which they later
exploit to send secret messages hidden in a cover text. Can
Alice and Bob devise an escape plan without arousing the
suspicion of the warden?

Julio Gea-Banacloche [4] introduced the idea of hiding
secret messages in the form of error syndromes by deliberately
applying correctable errors to a quantum state encoded in the
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three-bit repetition quantum error-correcting code (QECC).
In his paper, however, he did not address the issue of an
innocent-looking message—in the protocol he proposed, the
messages would not resemble a plausible quantum channel.
The latter is one of the major contributions of our work.
Curty et al. propose three different quantum steganographic
protocols [5]. However, none of these protocols address the
issue of communicating an innocent message over a noisy
classical channel or a general quantum channel or give
key-consumption rates. Natori provides a simple treatment of
quantum steganography that is a modification of super-dense
coding [6]. Martin also introduced a notion of quantum
steganographic communication [7]. His protocol is a variation
of Bennett and Brassard’s quantum-key distribution protocol
(QKD), in which he hides a steganographic channel in the
QKD protocol.

There are two major goals in quantum steganography.
Communication: Alice wants to send classical or quantum
information to Bob over a quantum channel. While most of
the protocols above are for sending classical information, we
will show that it is also possible to send quantum information.
Secrecy: a monitoring Eve should be unable to detect the
presence of the secret message. Ideally, a protocol should
maximize the rate of communication as much as possible,
consistent with the secrecy requirement. A third requirement
may or may not be imposed: Security. That is, in some cases
we may require that Eve be unable to read the steganographic
message even if she knows it is present.

In this paper, we present a group of protocols that
achieve the above goals. These protocols have the following
structure. An “innocent” quantum message |φc〉 is encoded in
a quantum error-correcting code (QECC) by Alice. This |φc〉
is the covertext. Alice then performs a second operation on
the encoded covertext, which embeds the steganographic
message in the codeword. This steganographic message is
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FIG. 1. (Color online) There are three different inputs to the
steganographic encoder E : a cover-message |C〉; the secret message
that we would like to hide, which can be quantum |S〉 or classical S;
a shared secret key which may be quantum (ebit) |K〉 or classical K.
Eve can monitor some part of the noisy quantum channel N shown
in the red box. Bob can decode the steganographic message using the
decoder D and the shared secret key |K〉 or K and recover |C〉 and
|S〉 or S with very high probability.

another state |φs〉 and is called the stego text. (We call one bit or
qubit of the stego text a stego bit or stego qubit, respectively.)
The modified codeword is sent over a quantum channel to Bob,
who can (at least with high probability) decode it and extract
the stego text |φs〉. The encoding is done in such a way that,
if an eavesdropper Eve intercepts the codeword, it will look
exactly like the encoded state |φc〉 after it has passed through
a noisy channel. In other words, Eve cannot distinguish the
encoded steganographic message from noise in the channel.
We depict the general quantum steganographic protocol in
Fig. 1.

To prove the efficacy of these protocols, we need to make a
number of assumptions about the knowledge that Alice, Bob,
and Eve have, and about the resources on which they can draw.
These assumptions are:

(1) Alice and Bob know (with reasonable accuracy) the
physical channel, which may or may not have intrinsic noise
(we consider both cases). This is not unreasonable. If we
imagine quantum channels are constructed from, for example,
optical fiber cables, then Alice and Bob can have acquired the
parameters of the cable from the manufacturer’s website.

(2) Eve has beliefs about the physical channel, which may
or may not be accurate. But we assume that Alice and Bob have
some knowledge of Eve’s expectations. This is most plausible
when both Eve and Alice and Bob all draw their knowledge
from the same source, but it could hold in other cases as well
(e.g., the channel is actually noiseless, but Alice and Bob have
systematically fooled Eve into thinking it is noisy).

(3) Alice and Bob share a secret key or shared entanglement.
A secret key is a long binary string drawn from a random
distribution. Shared entanglement can be used to generate
such a key, but can also be used as a quantum resource for
teleportation and other quantum information protocols.

(4) Eve can make measurements of any message that passes
on the channel, although she will not necessarily always do
so. If Eve intercepts a message, she can demand from Alice
and Bob information about the covertext |φc〉, the QECC used,
etc., and make measurements to verify their information.

It is important to appreciate the difference in paradigms
between steganography and standard cryptography. In stan-
dard cryptography, the eavesdropper is assumed to operate

secretly and (perhaps) illegitimately. In steganography, the
eavesdropper can operate openly, and is often in a position
of authority. Eve could prevent secret communication by the
simple expedient of banning all communication. But generally,
she wishes to allow certain kinds of approved communication,
while banning others. Cryptography is a defense against spies;
steganography, against censors and secret police.

The protocols that we present in this paper succeed if Alice
and Bob can communicate a nonzero amount of information,
while satisfying the secrecy requirement. This demands that
if Eve intercepts the message she is unable to ascertain
if it contains secret information with high probability. The
message should appear just like a codeword for |φc〉 that
has undergone some plausible set of errors in the channel. If
we choose, we can further demand that even after knowing
that the message contains secret information Eve will be
unable to read it. This can be achieved by adding additional
encryption. Alice and Bob want to maximize the rate at which
they send steganographic information to each other while
minimizing key usage, subject to the secrecy condition. We
present protocols to achieve these goals in this paper, although
we do not claim that these protocols are necessarily optimal.

We begin by giving a simple steganographic protocol that
shows how quantum information can be hidden in the noise
of a depolarizing channel, using a shared classical secret key
between Alice and Bob. We first consider the case when the
physical channel is noiseless (i.e., all noise is controlled by
Alice), but Eve expects some level of noise; we then extend this
to the case where the channel has intrinsic noise (not controlled
by Alice and Bob). We calculate the amount of secret key
consumed. We then present a quantum steganographic protocol
for a general quantum channel, that hides quantum information
in the space of typical error syndromes.

We present a mathematical criterion for secrecy based on
the diamond norm, and show that, if Alice and Bob have a
sufficiently accurate knowledge of Eve’s expectations, they
can make their communications arbitrarily difficult to detect.
In the case where Eve has perfect knowledge of the channel,
Alice and Bob can send a finite (but arbitrarily large) amount of
hidden information through the channel; if Eve’s knowledge of
the channel is imprecise, Alice and Bob can communicate at a
nonzero asymptotic rate (given an arbitrarily large secret key).
We conclude by discussing open questions about achievable
rates for arbitrary channels.

II. THE QUANTUM DEPOLARIZING CHANNEL

The quantum analog of the classical binary symmetric
channel (BSC) is the depolarizing channel (DC), which is
one of the most widely used quantum channel models:

ρ → Nρ = (1 − p)ρ + p

3
XρX + p

3
YρY + p

3
ZρZ. (1)

That is, each qubit has an equal probability of undergoing an
X, Y , or Z error. Applying this channel repeatedly to a qubit
will map it eventually to the maximally mixed state I/2. We
can rewrite this channel in a different but equivalent form:

N = (1 − 4p/3)I + (4p/3)T . (2)
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FIG. 2. (Color online) Alice hides her information qubit (solid
brown circle) by swapping it in with a qubit of her quantum codeword.
She uses her shared secret key with Bob to determine which qubit to
swap. She uses the shared key again to twirl the information qubit.
She further applies random depolarizing errors to the rest of the qubits
of the codeword (shown in green). She sends the codeword through a
depolarizing channel to Bob who uses the shared secret to correctly
apply the untwirling operation, followed by locating and swapping
out Alice’s original information qubit.

where Iρ = ρ and T ρ = (1/4)(ρ + XρX + YρY + ZρZ).
The operation T is twirling: it takes a qubit in any state ρ to the
maximally mixed state I/2. If we rewrite the channel in this
way, instead of applying X, Y , or Z errors with probability
p/3, we can think of removing the qubit with probability
4p/3 and replacing it with a maximally mixed state. This
picture makes the steganographic protocol more transparent.
We will first assume that the actual physical channel between
Alice and Bob is noiseless. All the noise that Eve sees is due
to deliberate errors that Alice applies to her codewords. We
depict this protocol in Fig. 2.

(1) Alice encodes a covertext of kc qubits into N qubits with
an [[N,kc]] quantum error-correcting code (QECC).

(2) From Eq. (2), the DC would maximally mix Q qubits
with probability pQ where

pQ =
(

N

Q

)
(4p/3)Q(1 − 4p/3)N−Q. (3)

For large N , Alice can send M = (4/3)pN (1 − δ) stego
qubits, where 1 � δ � √

(1 − 4p/3)/(4pN/3). (The chance
of fewer than M errors is negligibly small.)

(3) Using the shared random key (or shared ebits), Alice
chooses a random subset of M qubits out of the N , and swaps
her M stego qubits for those qubits of the codeword. She also
replaces a random number m of qubits outside this subset with
maximally mixed qubits, so that the total Q = M + m matches
the binomial distribution given in Eq. (3) to high accuracy.

(4) Alice “twirls” her M stego qubits using 2M bits of secret
key or 2M shared ebits. To each qubit she applies one of I , X,
Y , or Z chosen at random, so ρ → T ρ. To Eve, who does not
have the key, these qubits appear maximally mixed. (Twirling

can be thought of as the quantum equivalent of a one-time
pad.)

(5) Alice transmits the codeword to Bob. From the secret
key, he knows the correct subset of M qubits and the one-time
pad to decode them.

This protocol transmits (4/3)pN (1 − δ) secret qubits from
Alice to Bob (Fig. 2). The secrecy follows from this argument:
without the key, Eve cannot distinguish a stego qubit from
a maximally mixed qubit; and these maximally qubits are
distributed exactly as would be expected from the depolarizing
channel with error rate p. If the rate p matches Eve’s
expectations, she will detect nothing suspicious even if she
intercepts the codeword and measures its error syndromes.

If the channel contains intrinsic noise, Alice will first have
to encode her ks stego qubits in an [[M,ks]] QECC, swap
those M qubits for a random subset of M qubits in the
codeword, and apply the twirling procedure. This twirling does
not interfere with the error-correcting power of the QECC if
Bob knows the key. The rate of transmission ks/N will depend
on the rate of the QECC used to protect the stego qubits. For
a BSC this would be at best (1 − δ)[1 − h(p)]δp/(1 − 2p).
However, for most quantum channels (including the DC) the
achievable rate is not known. Assuming the physical channel
is also a DC with error rate p and that Alice emulates a
DC with error rate q, the effective channel will appear to
Eve like a DC with error rate p + q(1 − 4p/3) ≡ p + δp.
As long as p + δp is sufficiently close to Eve’s expectation
of the error rate, the communication will remain secret. (We
will make this notion of secrecy precise later in the paper.)
The rate of communication is ks/N ≈ (4/3)cδp/(1 − 4p/3),
where c = ks/M is the achievable rate of the code for the DC
with error rate p.

The secret key is used at two points in these protocols. First,
in step (3) Alice chooses a random subset of M qubits out of
the N -qubit codeword. There are C(N,M) subsets, so roughly
log2 C(N,M) bits are needed to choose one. Next, in step (4),
2M bits of key are used for twirling. This gives us

nk ≈ log2

(
N

M

)
+ 2M (4)

bits of secret key used. Define the key consumption rate K =
nk/N to be the number of bits of key consumed per qubit that
Alice sends through the channel. We use M ≈ 4qN/3 and
q ≈ δp/(1 − 4p/3) to express K in terms of p, δp, and N

(Fig. 3):

K ≈ log2[(4/β)β (1 − βN )β−1], β ≡ 4δp/(3 − 4p). (5)

Alice can consume fewer bits of key if she has a source that
averages to a maximally mixed state—for instance, if Alice
first compresses the state |φs〉 before sending it. This would
allow them to bypass the twirling procedure. However, while
the secrecy criterion may still be met without twirling, the
security criterion would not be: if Eve becomes aware of the
message, she may be able to read it without the key.

III. MORE GENERAL CHANNELS

The protocols given above perform well in emulating a
depolarizing channel. However, there are far more general
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FIG. 3. (Color online) We plot the key consumption rate (KCR)
as a function of the error-rate p of the binary-symmetric channel
(BSC), with δp being extra uncontrollable noise in the BSC.

channels, and the protocols may not work well, or at all, in
other cases. If one has a channel that can be written

ρ → Nρ = (1 − pT + pE)Iρ + pT T ρ + pEEρ, (6)

where E is an arbitrary error operation, one can still use
the above protocols to hide approximately pT N stego bits
or qubits, while generating pEN random errors of type E .
But for some channels, pT may be very small or zero. How
should we proceed? Moreover, hiding stego qubits locally as
maximally mixed qubits sacrifices some potential information.
The location of the error—that is, the choice of the subset
holding the errors—could also be used to convey information,
potentially increasing the rate and reducing the amount of
secret key or shared entanglement required.

A different approach is instead to encode information in the
error syndromes. For simplicity, we consider the case when
N is large. In this case, it suffices to consider only typical
errors. We begin with the case where the physical channel is
noise-free.

For large N, almost all (probability 1 − ε) combinations of
errors on the individual qubits will correspond to one of the set
of typical errors. There are roughly 2sN of these, and their prob-
abilities pe are all bounded within a range 2−N(s+δ) � pe �
2−N(s−δ). The number s is the entropy of the channel on one
qubit; for the BSC, s = h(p) = −p log2 p − (1 − p) log2(1 −
p), and for the DC, s = −(1 − p) log2(1 − p) − p log2(p/3).
We label the typical error operators E0, E1, . . . , E2sN −1, and
their corresponding probabilities are pj . A good choice of
QECC for the cover text will be able to correct all these
errors. We make the simplifying assumption that the QECC
is nondegenerate, so each typical error Ej has a distinct error
syndrome labeled sj .

Ahead of time, Alice and Bob partition the typical errors
into C roughly equiprobable sets Sk , so that

∑
Ej ∈Sk

pj ≈ 1

C
∀ k. (7)

As far as possible, the errors in a given set should be chosen
to have roughly equal probabilities. The maximum of C is
roughly C ≈ 2N(s−δ), and k = 0, . . . , C − 1. We can now
present a new quantum steganographic protocol using error
syndromes to store information.

(1) Alice prepares kc qubits of cover text in a state |ψc〉.
(2) Alice’s secret message is a string of log2 C ≈ N (s − δ)

qubits, in a state

|ψs〉 =
C−1∑
k=0

αk|k〉. (8)

She “twirls” each qubit of this string, using 2N (s − δ) bits of
the secret key or shared ebits, to get a maximally mixed state.
To this, she appends N − kc − (s − δ)N extra ancilla qubits
in the state |0〉 to make up a total register of N − kc qubits.

(3) Using the shared secret key, Alice chooses from each
set Sk a typical error Ejk

with syndrome sjk
. She applies a

unitary operator US to the register of N − kc qubits, that maps
US

(|k〉 ⊗ |0〉⊗N−kc−(s−δ)N
) = |sjk

〉. She appends this register
to the cover qubits in state |ψc〉, then applies the encoding
unitary UE . Averaging over the secret key, the resulting state
will appear to Eve like ρ ≈ ∑2nS−1

j=0 pjEj |�c〉〈�c|E†
j , which is

effectively indistinguishable from the channel being emulated
acting on the encoded cover text.

(4) Alice sends this codeword to Bob. If Eve examines its
syndrome, she will find a typical error for the channel being
emulated.

(5) Bob applies the decoding unitary UD = U
†
E , and then

applies U
†
S (which he knows using the shared secret key).

He discards the cover text and the last N − kc − (s − δ)N
ancilla qubits and undoes the twirling operation on the
remaining qubits, again using the secret key. If Eve has not
measured the qubits, he will have recovered the state encoded
by Alice.

This protocol may easily be used to send classical informa-
tion by using a single basis state rather than a superposition
like Eq. (8). The steganographic transmission rateR is roughly
R ≈ s − δ → s. The rate of transmission s is higher than the
rate 4p/3 of our first protocol. This protocol used 2N (s − δ)
bits of secret key (or ebits) for twirling in step (2), and roughly
Nδ bits of secret key in choosing representative errors Ejk

from each set Sk in step (3). So the key rate is roughly
K ≈ 2s − δ → 2s, which is better than the first protocol in
key usage per stego qubit transmitted. Since almost all the
key usage goes to the twirling operation, for sources that are
maximally mixed on average the rate of key usage can actually
go to zero as N → ∞. However, this encoding is much trickier
in the case where the channel contains intrinsic noise.

In principle this quantum steganographic protocol can be
used when the channel contains noise. The steganographic
qubits are first encoded in a QECC to protect them against
the noise in the channel. In practice, for many channels
this can be difficult—the effects of errors on the space
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of syndromes look quite different from a usual additive
error channel. Also, unlike the depolarizing channel, general
channels when composed together may change their type.
However, by drawing on codes with suitable properties, the
problem of designing steganographic protocols for general
channels may be simplified. We analyze the special case of the
binary symmetric channel in Appendix B, but the solution for
a general channel is a problem for future work.

IV. SECRECY AND SECURITY

What is the standard of security for a stego protocol?
There are two obvious considerations. First, if Eve becomes
suspicious, can she read the message? At the cost of using
one-time pads or twirling, Alice and Bob can prevent this
from happening. This is the question of security.

The more important question is: can Alice and Bob avoid
arousing Eve’s suspicions in the first place? This is the question
of secrecy. To do this, the messages that Alice sends must
emulate as closely as possible the channel that Eve expects.
We can make this condition quantitative. Let EC be the channel
on N qubits that Eve expects, and letES be the effective channel
that Alice and Bob produce with their steganographic protocol.
Then the protocol is secure if ES is ε-close to EC in the diamond
norm ‖ES − EC‖ � ε for some small ε > 0. The diamond
norm is directly related to the probability for Eve to distinguish
EC from ES under ideal circumstances (i.e., when she controls
both inputs and outputs), and so puts an upper bound on her
ability to distinguish them in practice.

For a simple example, the difference between two DCs
applied to N qubits has norm

∥∥N⊗N
r − N⊗N

p

∥∥
 =

N∑
j=0

(
N

j

)
|rj (1 − r)N−j

−pj (1 − p)N−j |, (9)

where p is the error rate of the channel Eve expects and
r = p + δp is the error rate of the steganographic channel
that emulates Eve’s expected channel. If we make δp <

ε
√

p(1 − p)/N then we can make this norm as small as we
like, while communicating O(δpN ) = O(ε

√
N ) secret qubits.

This indicates that even if Eve has exact knowledge of the
channel, Alice and Bob can, in principle, send an arbitrarily
large (but finite) amount of information without arousing
Eve’s suspicion, by choosing a sufficiently small δp and large
N . If Eve’s knowledge of the channel is imperfect, Alice
and Bob can do even better, communicating steganographic
information at a nonzero rate.

If Eve is constantly monitoring the channel over a long
period of time, and if she has exact knowledge of the
channel then she will eventually learn that Alice and Bob are
communicating with each other steganographically. Moreover,
with constant measurement Eve can disrupt the superpositions
of the steganographic qubits and prevent any quantum informa-
tion from ever reaching Bob, effectively flooding the quantum
channel with noise (though classical communication will still
be possible). We calculate the diamond norm for the BSC and
DC cases in Appendix A.

If Alice and Bob share a secret, random key, they can use
the steganographic encodings described in the paper. Shared

entanglement (ebits) can act as a resource in the same way—by
measuring the two halves of a maximally entangled pair of
qubits (|00〉 + |11〉) /

√
2 Alice and Bob can generate a shared

secret bit.
However, the use of ebits does open up an additional

possibility beyond what can be done with a classical key.
Instead of sending quantum information through the channel,
Alice can instead teleport qubits to Bob. Teleportation con-
sumes one ebit and requires the transmission of two classical
bits for each qubit teleported. These classical bits can be
sent through the channel steganographically. Because these
bits are perfectly random, no one-time pad or twirling is
needed. And because they are purely classical information,
they are not disrupted if Eve chooses to measure the error
syndromes, as a general quantum state would be. In this sense,
quantum steganography with shared ebits is more powerful
than quantum steganography with a shared classical key.

V. CONCLUSIONS

The problem of quantum steganography is to send hidden
quantum information through a quantum channel in such a
way that an eavesdropper with the power to monitor the
channel will be unaware that the secret communication has
taken place. Our approach to this problem is to disguise
the information as channel errors on a codeword containing
“innocent” information. We have presented two different
protocols to achieve this goal, given a quantitative measure
of their secrecy, and calculated rates for communication and
secret key usage. The second protocol, in which information is
encoded in the space of error syndromes, is suitable for general
channels, and achieves higher communication rates with lower
use of the secret key. However, for this approach it is unclear
what the best encoding is when the channel contains intrinsic
noise. This is the subject of ongoing research. Quantum
steganography represents a new type of cryptographic protocol
for quantum information, and opens many fascinating new
questions.
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APPENDIX A: DIAMOND NORM

In defining the diamond norm we follow the conventions
from Nielsen and Chuang [8] and John Watrous’s lecture notes
[9]. The diamond norm give a measure of how “close” or
similar two channels can be when they transform an arbitrary
density matrix from one Hilbert space to another. We use
this as a quality measure for the “innocence” of the quantum
message from Alice to Bob: if Eve cannot distinguish a channel
containing the steganographic message from the channel that
she expects, the stego channel satisfies the secrecy criterion.
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Let N be some arbitrary super-operator and let N :
L (V) → L (W), where L (.) is a space of linear operators on
the Hilbert spaces V and W . Then one can define the diamond
norm of N as

‖N‖ ≡ ‖IL(V) ⊗ N‖tr, (A1)

where ‖N‖tr is defined as

‖N‖tr ≡ max{‖N (O)‖tr : O ∈ L(V),‖O‖tr = 1}. (A2)

The maximization in Eq. (A2) is over all density matrices.
When the Hilbert space is infinite dimensional we take the
supremum of the set defined in (S2).

1. Binary symmetric channel

Let 0 < p < 1/2 be the rate at which Alice flips the qubits
of her codeword. Let r ≡ p + δp be the rate at which the
BSC flips qubits, where δp is some additional noise which is
not under the control of either Alice or Bob. We assume that
0 < p < r < 1/2 because, at p = 1/2, the channel has zero
capacity to send information and p > 1/2 means that most
qubits are being flipped, which is unnatural for this channel.
For a single qubit (N = 1), let Np be the BSC that Alice
applies to an arbitrary single-qubit density operator ρ:

Npρ = (1 − p)ρ + pXρX, (A3)

and let Nr be the actual BSC:

Nrρ = (1 − r)ρ + rXρX. (A4)

We can now express the difference of the two channels as

(Nr − Np)ρ = (p − r)ρ + (r − p)XρX. (A5)

We can express the diamond norm of the difference of the
channels Np and Nr as

‖Nr − Np‖ = max
ρ

‖[I ⊗ (Nr − Np)]ρ‖tr (A6)

= (r − p) max
ρ

‖(I ⊗ I )ρ(I ⊗ I ) − (I ⊗ X)ρ(I ⊗ X)‖tr.

(A7)

When we substitute ρ = ψ ⊗ |0〉〈0| (ψ is some arbitrary
density operator) in the above equation we achieve the
maximum.

‖Nr − Np‖ = (r − p)‖ψ ⊗ |0〉〈0| − ψ ⊗ |1〉〈1|‖tr (A8)

� (r − p)‖ψ‖tr‖|0〉〈0|‖tr + ‖ψ‖tr‖|1〉〈1|‖tr

= (r − p)(1 + 1) = 2(r − p)

= 2(p + δp − p) = 2δp.

In Eq. (A8), we use the triangle inequality and we use the
fact that, for any two linear operators A and B, the trace
norm of their tensor product is equal to the product of their
trace norms, (i.e., ‖A ⊗ B‖tr = ‖A‖tr ‖B‖tr). We would like an
expression for the optimal probability to correctly distinguish
two channels.

Popt = 1

2
+ 1

4

∥∥Nr − Np

∥∥
 . (A9)

So for a single qubit use

Popt = 1

2
(1 + δp). (A10)

For the case where we have two qubits, we can write Alice’s
BSC as

(Np ⊗ Np)ρ = (1 − p)2ρ + p(1 − p)X1ρX1

+ p(1 − p)X2ρX2 + p2X1X2ρX1X2,

where X1 ≡ X ⊗ I , X2 ≡ I ⊗ X, and X1X2 ≡ X ⊗ X. We
can similarly calculate N1 ⊗ N1. We can now write the
difference between the two channels as

(Nr ⊗ Nr − Np ⊗ Np)ρ

= (r2 − 2r + 2p − p2)

+ (r − r2 − p + p2)(X1ρX1 + X2ρX2)

+ (r2 − p2)X1X2ρX1X2. (A11)

The diamond norm of the difference between two BSC on two
qubits can be expressed as

‖Nr ⊗ Nr − Np ⊗ Np‖
= max

ρ
‖[I ⊗ (Nr ⊗ Nr − Np ⊗ Np)]ρ‖tr. (A12)

We use a similar construction from the single-qubit case
to maximize the right side of Eq. (A12). Letting ρ = ψ ⊗
|00〉〈00| in Eq. (A12), we get

‖Nr ⊗ Nr − Np ⊗ Np‖
= |(1 − r)2 − (1 − p)2|

+ 2|r(1 − r) − p(1 − p)|
+ |r2 − p2|. (A13)

Given our constraints that 0 < p < r < 1/2, the first term on
the right side of Eq. (A13) is negative while the second and
third terms are positive. This give us

‖Nr ⊗ Nr − Np ⊗ Np‖ = 2(r − p)(2 − r − p)

= 2δp(2 − 2p − 2δp).

So in the double-qubit case Popt is

Popt = 1

2
[1 + δp(2 − 2p − 2r)]. (A14)

If we observe Eq. (A13) carefully we find that the terms
are distributed binomially. For the case where we have N

qubits, we can use ρ = ψ ⊗ |00 · · · 0〉〈00 · · · 0| to maximize
the diamond norm for N uses of BSC to get

∥∥N⊗N
r − N⊗N

p

∥∥
 =

N∑
j=0

(
N

j

)
|rj (1 − r)N−j

−pj (1 − p)N−j |. (A15)

2. Depolarizing Channel

The calculation of the diamond norm of the difference
between N uses of two depolarizing channels (DC) is similar
to the calculation of BSC that we performed in the previous
section. The expression for the channel is

Npρ = (1 − p)ρ + (p/3)(XρX + YρY + ZρZ). (A16)

Eve sees a channel with a somewhat higher rate r = p + δp.
As in the BSC case we assume that 0 < p < r < 1/2. For
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the case N = 2 the difference between the two depolarizing
channels is

(Nr ⊗ Nr − Np ⊗ Np)ρ

= [(1 − r)2 − (1 − p)2]ρ

+ [(1 − r)(r/3) − (1 − p)(p/3)]

× (X1ρX1 + · · · + Z2ρZ2)

+ [(r/3)2 − (p/3)2]

× (X1X2ρX1X2 + · · · + Z1Z2ρZ1Z2).

The density matrix that maximizes the trace norm is ρ = ψ ⊗
|	+〉〈	+|, where |	+〉 = (|00〉 + |11〉) /

√
2, and ψ is some

arbitrary single-qubit density operator.

‖Nr ⊗ Nr − Np ⊗ Np‖
= |(1 − r)2 − (1 − p)2|

+ 6|(1 − r)(r/3) − (1 − p)(p/3)|
× 9|(r/3)2 − (p/3)2|
+ |(1 − r)2 − (1 − p)2|
+ 2|(1 − r)r − (1 − p)p| + |r2 − p2|. (A17)

After evaluating the absolute value terms, we get

‖Nr ⊗ Nr − Np ⊗ Np‖ = 2(r − p)(2 − r − p)

= 2δp(2 − 2p − δp).

So,

Popt = 1

2
+ 1

2
δp(2 − 2p − δp). (A18)

For the general case of N uses of the depolarizing channel, we
may write the diamond norm as

∥∥N⊗N
r − N⊗N

p

∥∥


=
N∑

j=0

(
N

j

)
|rj (1 − r)N−j − pj (1 − p)N−j |, (A19)

which is exactly the same expression as for the BSC.

APPENDIX B: PROPERTIES OF PROTOCOL 2

1. Achievable rate

We will work out the simplest example—the BSC in the
case where the physical channel is noise-free. The errors in the
codewords that Alice sends to Bob are binomially distributed.
Let pN be the mean of this distribution and let the variance
be pNδ, where 0 < δ � 1. Here, N is the length of each of
codeword. Let

pk =
(

N

k

)
pk(1 − p)N−k (B1)

be the errors that Alice applies to her codewords. For each k

from Np(1 − δ) to Np(1 + δ) choose Ck strings of weight k.
Let

C =
Np(1+δ)∑

k=Np(1−δ)

Ck. (B2)

Let these sets of strings be called Sk , and

S = ∪kSk. (B3)

So the total number of strings in the set S is C. Define the
probability q ≡ 1/C. Then we want to satisfy qCk = Ck/C =
pk . Clearly we must have (Ck

k
) � N for all k. This implies that

Ckp
k(1 − p)N−k �

(
N

k

)
pk(1 − p)N−k,

⇒ Ckp
k(1 − p)N−k � Ckq,

⇒ pk(1 − p)N−k � q.

We want C to be as large as possible, which means we want q

to be as small as possible. This constraint then gives us

q = pNp(1−δ)(1 − p)N(1−p+pδ),

⇒ C = 1/q,

⇒ C = p−Np(1−δ)(1 − p)−N(1−p+pδ).

The number of bits that Alice can send is, therefore,

M = log2 C

= N{−p log2 p − (1 − p) log2(1 − p).

+ δ[p log2 p − p log2(1 − p)]}
= N{h(p) − pδ log2[(1 − p)/p]}.

So with this encoding Alice can send almost Nh(p) bits.

2. Diamond norm

Again we consider the simplest case of the BSC. Let N

be sufficiently large so that the total probability of the typical
errors is > 1 − ε, and these typical errors have weight k in the
range Np(1 − δ) � k � Np(1 + δ). We divide up all errors of
weight k into Ck partitions containing

nk ≈
(
N

k

)
Ck

≈
(

1 − p

p

)k−Np(1−δ)

errors each. Within each set the errors are all equally likely to
be chosen. However, because the number of errors is unlikely
to divide exactly evenly into Ck sets, the probabilities qk of an
error of weight k will be slightly different from the probability
pk = pk(1 − p)N−k of the binomial distribution. We can put a
(not-very-tight) bound on this difference:

|qk − pk| <
pk(

1−p

p

)k−Np(1−δ)
− 1

<
1 − p

1 − 2p
p2k(1 − p)N−2k.

(B4)

Plugging this into the expression for the diamond norm, we
get

∥∥N⊗N
p − Nenc

∥∥
 < ε +

Np(1+δ)∑
k=Np(1−δ)+1

(
N

k

)
|pk − qk|

< ε +
(

1 − p

1 − 2p

)(
p

1 − p

)Np(1−δ)

×
(

1 − 2p + 2p2

1 − p

)N

,

which is exponentially small in N .
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3. Error correction with a noisy channel

Since errors can act in a complicated manner on the space
of syndromes, it is not entirely clear what the optimal encoding
is even for a simple channel. Here, we present one encoding
for the BSC that gives an achievable rate in the limit of large
N , but it is quite likely that higher rates are possible.

In the noiseless case, it is possible to use the C(N,M) strings
of weight M as a code—each string represents one possible
weight-M error. If we then apply a BSC with probability p,
on average Np bits would be flipped. If Np � M then one
can keep only a subset of the weight-M strings, separated by
a distance > 2Np.

This encoding quickly becomes inefficient as p gets larger.
Using the shared secret key, Alice can instead choose only
a subset of the N bits to hold the codewords. If this subset
includes N ′ bits, then the errors on the remaining N − N ′
bits are irrelevant and do not need to be corrected. The
limit of this would be similar to encoding 1 in the paper,
where N ′ ≈ 2M .

Let N ′ = qN for some 0 < q � 1. The number of strings of
weight M is C(qN,M), and there will be an average number
of bit flips pqN on the relevant portion of the codeword.
Keep a subset of these codewords separated by distance 2pqN .
Decoding is done by finding the closest codeword to the output
string.

As N,M → ∞ then the number of codewords will go like

C(N,M,p,q) ∼
(
qN

M

)
(

qN

pqN

) .

The number of bits will be log2 C(N,p,q).
Since q is a parameter we can choose freely, we choose it to

maximize the rate R(N,M,p,q) ≡ (1/N ) log2 C(N,M,p,q).
Using the Stirling approximation, differentiating with respect
to q, and setting the result equal to 0, we can solve
for q:

q = M

N

(
2h(p)

2h(p) − 1

)
.

We can then plug this back into the formula for R. If the
physical channel has error rate p and Alice is attempting to
emulate a channel with error rate p + δp, then M = Nδp/

(1 − 2p). This gives us the following expression for the rate:

R(p,δp) = − δp

1 − 2p
log2(2h(p) − 1).

We can compare this to the rate from encoding 1, which for
the BSC is 2δp[1 − h(p)]/(1 − 2p). It is not hard to see that
R(p,δp) above approaches this rate as p → 1/2 (and both
rates go to zero), but as p → 0 this encoding does considerably
better than encoding 1. It is quite likely, however, that there
may be even more efficient encodings.
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