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Realizing controllable depolarization in photonic quantum-information channels
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Controlling the depolarization of light is a long-standing open problem. In recent years, many demonstrations
have used the polarization of single photons to encode quantum information. The depolarization of these photons
is equivalent to the decoherence of the quantum information they encode. We present schemes for building
various depolarizing channels with controlled properties using birefringent crystals. Three such schemes are
demonstrated, and their effects on single photons are shown by quantum process tomography to be in good
agreement with a theoretical model.
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I. INTRODUCTION

Light depolarization is a fundamental optical phenomena. It
was studied as early as the nineteenth century, when measure-
ment and characterization methods of the polarization state of
light were introduced [1]. Methods for complete depolarization
of light, such as the Cornu and Lyot depolarizers, have
been known for many decades [2–4]. The Cornu and wedge
depolarizers require the light beam to be wide, as the loss
of coherence between the two polarizations is achieved via
averaging over the spatial degrees of freedom. In the case
of the Lyot depolarizer, short coherence length is required
and the averaging is over the temporal degrees of freedom.
Nevertheless, there are currently no methods that enable
control of all of the aspects of the depolarization process.

Quantum information is commonly encoded in the polar-
ization of single photons [5]. Depolarization of such photons
acts as quantum noise on the stored information; that is, the
interaction between the information encoding units and the
environment results in decoherence. In order to study quantum
decoherence in general and its effect on quantum information
protocols in particular, it is desirable to create quantum chan-
nels with controlled noise. Such channels will be useful for
testing quantum error correction and quantum key distribution
protocols [6,7]. Controlling the noise properties of a channel
enables the study of the information transfer rate in the
presence of different noise types, with different symmetries.
One can also compare between suggested communication
schemes by testing their performance and their robustness
with respect to channel noise properties. Other uses for these
channels are to test for the existence of decoherence-free
subspaces [8] and for generating partially mixed entangled
states [9].

In recent years, depolarizing channels were studied by
several methods. When a single birefringent crystal was used,
only dephasing channels were demonstrated, as we show later
[8]. Optical scatterers such as emulsions, multimode fibers,
and ground glass give variable depolarization but are also
accompanied by a spread in k space, resulting in considerable
loss when collected for further processing [9–11]. Another
approach is to use polarization scramblers of various kinds
[12,13]. These realizations are equivalent to fast polarization
rotations and averaging measurements over times longer than
the typical rotation periods. Nevertheless, when used with
single photons, each photon by itself is completely polarized.

Controllable depolarizers were demonstrated by using two
wedge depolarizers with variable beam diameter [14] or a
tunable relative angle [15]. These channels are hard to model,
and their anisotropy level is uncontrolled as they couple the
polarization with many spatial degrees of freedom.

In this paper, we present a theoretical and experimental
study of various controllable depolarizing channels. We study
channels that are composed of a sequence of birefringent
crystals and wave plates. The depolarization and its anisotropy
depend on the order and relative angles between the channel
components. The generated channels are mostly anisotropic
and can be tuned continuously between no depolarization and
complete dephasing. These channels were characterized by
the transmission of polarized single photons, generated by
spontaneous parametric down-conversion. Quantum process
tomography (QPT) was used to compare the experimental
results with theory [16,17].

II. THE MODEL

The information in a classical channel can be degraded only
by bit-flip errors. Thus, such a channel is completely described
by a single parameter—the bit-flip error probability. In com-
parison, quantum channels can have a constant unitary rotation
and three types of errors, represented by the Pauli operators: a
bit-flip that swaps the logical |0〉 and |1〉 amplitudes, a phase
flip between the amplitudes, and the combination of the two,
which is a third orthogonal operation. Isotropic decoherence
is the case when the three error probabilities are equal.

A polarization qubit can be described either by a density
matrix operator ρ̂ or equivalently by a point in the Poincaré
sphere. The Cartesian coordinates of this point are the Stokes
parameters S = {S1,S2,S3}, which describe the linear hori-
zontal and vertical (|h〉,|v〉), linear plus and minus 45◦ (|p〉 =
(|h〉 + |v〉)/√2, |m〉 = (−|h〉 + |v〉)/√2), and right and left
circular (|r〉 = (|h〉 + i|v〉)/√2, |l〉 = (i|h〉 + |v〉)/√2) polar-
ization components, respectively. The degree of polarization
(DOP) is defined as D, the length of the Stokes vector [18]:

D =
√

S2
1 + S2

2 + S2
3 ≡

√
1 − 4det(ρ̂). (1)

The perfectly polarized states are described by the surface of
the sphere (D = 1), and its center designates the completely
unpolarized state (D = 0). The inside of the sphere includes all
partially polarized states (0 < D < 1). The physical meaning
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of the DOP is the ratio between the polarized light intensity
and the total light intensity. Therefore, an optical polarization
communication channel that reduces the DOP to η has an
information error rate of 1−η

2 .
Consider an arbitrarily polarized wave packet that is passing

through a birefringent crystal [19]. The temporal walk-off
τ = L�n

c
between two wave packets, each polarized along

one of the symmetry axes of the crystal, depends on the
crystal length L, its refractive index difference �n, and the
speed of light c. We assume that the coherence time of
the wave packets tc is shorter than the walk-off τ . If the
light wave packet is not polarized linearly along one of the
crystal symmetry axes, its two components acquire temporal
distinguishability. Thus, the polarization and temporal degrees
of freedom become entangled. The role of the environment in
general decoherence models is fulfilled here by the temporal
degrees of freedom. As the detectors are insensitive to the
short temporal walk-offs, they cannot distinguish between the
wave packets, effectively tracing out the temporal degrees
of freedom. The result is an effective depolarization since
no coherence can be observed between the two orthogonal
polarizations. The depolarization operation is described in
the Poincaré sphere picture by a projection of the initial
Stokes vector on the direction that represents the crystal
principal axes. For example, a birefringent crystal aligned
along the h-v directions will project any initial state onto
the S1 direction. This kind of operation is referred to as a
dephasing channel [5].

A single-crystal configuration can apply any level of depo-
larization to any initial linear polarization. On the other hand,
for such a configuration there is always another polarization
direction that experiences no depolarization whatsoever. Thus,
we consider a second crystal that is placed after the first one [4].
For historical reasons, let us first assume that the second crystal
is twice as long as the first one. The two crystals are coupling
orthogonal temporal degrees of freedom, as the first crystal
couples t = 0 with τ , while the second couples t = 0 with 2τ

and t = τ with 3τ . Thus, this configuration can be described
as two consecutive projections of the initial polarization state
onto the Stokes directions defined by the crystals’ axes. In the
case where the orientation of the crystals differ by 45◦, the
two projections are perpendicular, resulting in a final state at
the sphere center (D = 0, the completely unpolarized state)
for any initial state. This configuration in known as the Lyot
depolarizer [3,4].

The relevant error rates for practical tests of quantum
information protocols are less than 20%. For example, the
six-basis quantum key distribution protocol with qubits has
a recent upper limit of 14.59% for the error rate [20]. For
this reason, it is desirable to have a depolarizing scheme
that can be tuned to small values of depolarization or even
to zero depolarization. Thus, we investigate a configuration
of two identical crystals. If the second crystal is oriented at
90◦ with respect to the first one, the polarization time delay
created by the first crystal is exactly compensated for by the
second. For any other relative angle, there can be up to three
different temporal modes: t = 0 and τ are coupled by the first
crystal, while the second crystal couples between them and
an additional third delay t = 2τ . Changing the relative angle
between the two crystals affects the occupation of each of the

three modes, which results in a different depolarization. Hence,
by tuning this angle we control the channel depolarization
level.

The final polarization state can be easily calculated for a
given initial polarization and tuning angle, using the density
operator formalism of the decoherence process [16]: We
denote the initial polarization state with the two-dimensional
density matrix ρ̂, and the environmental degrees of freedom
with the density matrix ρ̂env. After an interaction Û between
the polarization degrees of freedom and the environment, the
combined state may be written as Û (ρ̂ ⊗ ρ̂env)Û †. Averaging
over the environmental degrees of freedom, which in our
case are the different temporal modes of the photon itself,
is equivalent to a partial trace of these degrees of freedom.
Hence, the reduced polarization state can be written as

ρ̂f = Trenv{Û (ρ̂ ⊗ ρ̂env)Û †}. (2)

Since the reduced polarization two-dimensional density
matrix is obtained from a partial trace operation, it is useful
to calculate only the diagonal terms that contribute to the final
polarization state. The final state can be explicitly written as
the sum of the |ϕ〉 amplitudes of the polarization states that
occupy every temporal mode t:

ρ̂f =
T∑

t=1

|ϕt 〉〈ϕt | , (3)

where T is the number of all relevant temporal modes. Note
that each |ϕt 〉 is not normalized by itself. As a simple example
for this calculation, we calculate the final polarization state for
any initial pure state after passing through a single crystal. The
initial polarization state is defined as

|ψ〉 =
(

cos
(

θ
2

)
sin

(
θ
2

)
eiφ

)
, (4)

where the upper term corresponds to the |h〉 amplitude and the
lower term corresponds to the |v〉 amplitude. Before applying
every crystal of a scheme, the polarization basis should be
rotated such that |v〉 is aligned along the crystal’s fast axis.
After the transmission through the crystal, the wave packet
that occupies the |v〉 term exceeds the |h〉 wave packet by τ .
Thus, the state can be written as

|ψ〉 =
(

cos
(

θ
2

)
0

)
t=τ

+
(

0

sin
(

θ
2

)
eiφ

)
t=0

, (5)

and the reduced density matrix is therefore

ρ̂f = |ϕτ 〉〈ϕτ | + |ϕ0〉〈ϕ0| =
(

cos2
(

θ
2

)
0

0 sin2
(

θ
2

)
)

. (6)

The effect of wave plates is simple to calculate, as they rotate
each of the temporal modes separately. From the resulting
density matrix it is possible to calculate the DOP using
Eq. (1).

With this method, it is possible to calculate the final
polarization state for every initial arbitrary state that passes
through a sequence of birefringent crystals-the depolarizer.
For a specific depolarizing configuration, we define the channel
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process E as the mapping of any arbitrary ρ̂ to ρ̂f = E(ρ̂). This
mapping can be uniquely described by the elements of the
χ matrix [16]:

E(ρ̂) =
∑
m,n

χmnÊmρ̂Ê†
n, (7)

where Êm are matrices that span the space of ρ̂ and χ is positive
and Hermitian. It can be characterized by a QPT procedure
which is composed of several quantum state tomography
(QST) measurements of a set of a few initial ρ̂ states.

III. EXPERIMENTAL RESULTS

In order to demonstrate the depolarizers’ operation, we
used the setup in Fig. 1. A 780-nm Ti:sapphire pulsed laser
with 76-MHz repetition rate. It was frequency doubled, and
the 390-nm pulses were focused into and collinearly down-
converted in a 1-mm-thick type-I BaB2O4 (BBO) crystal. The
down-converted signal was filtered by a dichroic mirror (DM)
and collimated with a lens (L2). One photon of the pair was
split by a beam splitter (BS) and detected, and the second
photon was directed to the depolarizer. Actual rotation of
the depolarizing crystals resulted with unwanted temporal and
spatial walk-offs. Thus, we effectively rotated the crystals by
rotating additional half-wave plates. The polarization state of
the depolarized photons was characterized by wave plates and
a polarizer (POL). Photons were filtered by 5-nm bandpass
interference filters (IF), corresponding to a coherence time
of tc � 180 fs, and then coupled into single-mode fibers
leading to single photon detectors (DET). We characterized
the depolarization of three initial states |h〉, |p〉, and |r〉, which
are mutually unbiased [7], by QST [17]. The |v〉 state was also
measured as required for QPT.

The first depolarizing scheme that we present is composed
of two 2-mm-long calcite crystals C1 and C2 with two λ/2
wave plates (see Fig. 1). The crystals are fixed perpendicularly,
with one wave plate before and the other after the first crystal.
Rotation of the wave plates in opposite directions by an angle
of θ/2 is equivalent to the rotation of the first crystal by θ .

When θ = 0◦, no depolarization occurs, and when θ = 90◦,
the depolarizer is equivalent to a dephasing channel of a single
crystal.

The transformations of purely polarized states through
the depolarizer for various angles between the two crystals
are presented in Fig. 2. The measured output states for the
three mutually unbiased states of |h〉, |p〉, and |r〉 are shown
in Fig. 2(a), with a comparison to theory. We obtained all
the measured states using a maximal-likelihood QST search
[17] in order to avoid nonphysical final states (e.g., with
D > 1) that can result when the depolarizer is tuned to
almost no depolarization. The measured QPT mappings of
the initial D = 1 sphere are shown for three specific cases
in Figs. 2(b)–2(d). These cases are when the polarization of
only one initial state is completely lost (θ = 45◦), when the
channel is isotropic (θ = 54.7◦), and when two initial states are
depolarized identically (θ = 67.5◦). A comparison between
the measured and the theoretical χ matrices for θ = 54.7◦
is presented in Fig. 3. The channel fidelity was evaluated
by applying the measured process to 700 initial states from
the D = 1 surface of the Poincaré sphere. We calculated the
theoretical output states for the same representative initial
states, and the fidelities between the two output states were
always higher than 97%.

The channel isotropy can be tested by comparing the final
DOP of different input signals. The DOP results for the three
input states of Fig. 2(a) are presented in Fig. 4 with their
theoretical predictions. The three special cases of Figs. 2(b)–
2(d) are clearly reproduced in our measurements. In general,
this depolarizer is anisotropic, except for the special case of
θ = 54.7◦ = tan−1(

√
2). Analytical calculation of the DOP for

this angle shows that the final value of 1/3 is independent of
the initial state, as can be seen in Fig. 4, where all three curves
intersect, and in Fig. 2(c), where the polarization sphere is
mapped to another sphere of radius 1/3.

We studied a second depolarizing scheme that was com-
posed of two perpendicularly fixed identical crystals with a
quarter-wave plate between them (see Fig. 1). The quarter-
wave-plate angle θ is set to be zero when the principal axes of

POL

DET

BSIF

DM

BBO

Detection and

Tomography

Depolarizer

DET

L1L2

IF

CC

λ/2 λ/4 λ/2

C1C2 λ/2λ/2

λ/2 λ/4 λ/4

λ/4

Scheme
I

Scheme
II

Scheme
III

FIG. 1. (Color online) The experimental setup and depolarizing schemes. See full description in text.

022303-3



A. SHAHAM AND H. S. EISENBERG PHYSICAL REVIEW A 83, 022303 (2011)

S
3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

S
3

S
1

S
2

(a)

(c)

(b)

(d)

FIG. 2. (Color online) Experimentally measured final states and
QPT in the Poincaré sphere representation for the first depolariz-
ing scheme. (a) Comparison between measurements for |h〉 (blue
squares), |p〉 (red triangles), and |r〉 (green circles) inputs in the
range 0◦ < θ < 90◦ and the theoretical model. Theoretical curves are
presented as solid lines in the range 0◦ < θ < 180◦. (b–d) Mapping of
the surface of the Poincaré sphere to depolarized wire-mesh ellipsoids
that was obtained by experimental QPT for the crystal angle values of
(b) θ = 45◦, (c) θ = 54.74◦, and (d) θ = 67.5◦. Measured final states
are plotted up to these angle values.

the wave plate and the first depolarizing crystal are parallel.
For any given initial polarization {S1,S2,S3}, the final DOP is

D2 = 1

4

(
19

8
+ 3

2
cos (4θ ) + 1

8
cos (8θ )

)

+ S2
1

4

(
−7

8
+ 1

2
cos (4θ ) + 3

8
cos (8θ )

)
. (8)

All states with the same |S1| value result in the same DOP
for a certain θ . It is possible to find three mutually unbiased
polarization bases that have the same S1 = ± 1√

3
value and thus

experience the same depolarization. We define this situation as
symmetric depolarization. Notice that this is not an isotropic
process. For such bases, the DOP can be tuned between 1
and 1√

6
≈ 0.41 as a function of θ . We generated such states
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FIG. 3. (Color online) Real parts of the χ matrix that represents
the isotropic process when θ = 54.74◦. (a) Measured matrix and
(b) theoretically calculated matrix, both evaluated by a QPT proce-
dure. The measured imaginary components are not presented, as they
were relatively negligible, as expected.

FIG. 4. (Color online) Experimentally measured degree of polar-
ization of the output states as a function of the equivalent first-crystal
rotation angle θ for the first depolarizing scheme. Initial states and
their representations are the same as in Fig. 2. Model predictions
are presented as solid lines. Errors are estimated according to the
accuracy of the polarization optics.

and characterized them after passing them through the second
depolarizing scheme. The generated mutually unbiased states
were Sa = {−√

1/3,0,
√

1/2}, Sb = {−√
1/3,

√
1/2,

√
1/6},

and Sc = {−√
1/3, − √

1/2,
√

1/6}. Their DOP results as a
function of θ are shown in Fig. 5(a), and their Poincaré
representation is shown in Fig. 5(b). A good agreement with
theory is observed.
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FIG. 5. (Color online) (a) Experimentally measured degree of
polarization as a function of the quarter-wave-plate angle θ for the
second and the third depolarizing schemes. For the second scheme, the
three orthogonal initial states with S1 = −√

1/3 after depolarization
are presented by black squares, blue triangles, and red inverted
triangles. For the third scheme, the depolarized states of all three
initial states should be identical. Results for one of these states are
presented by black circles. (b, c) The measured states in the Poincaré
sphere for the respective initial states.
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The third scheme adds the possibility for symmetric de-
polarization down to complete depolarization. The difference
between the second and third schemes is the doubling of the
second crystal’s thickness (see Fig. 1). As before, the final
DOP depends only on the initial S1 value and the wave-plate
angle θ , but now it takes values between 0 and 1√

3
≈ 0.58.

This result is due to an effective additional S1 projection to
the output of the second scheme. At the θ = 45◦ position,
the third scheme is exactly a Lyot depolarizer that completely
depolarizes any initial polarization by consecutive S1 and S3

projections.
Results for an initially polarized state with S1 = − 1√

3
are

shown in Figs. 5(a) and 5(c). As can be seen, when θ = 45◦, the
state is completely depolarized. The state tomography results
[Fig. 5(c)] reveal the difference from the previous scheme as
an extra S1 projection.

IV. DISCUSSION

Although we have demonstrated the effects of the various
depolarizing schemes using single photons, these depolarizers
would also be effective on any classical light with sufficiently
short coherence time. We repeated our measurements with
laser pulses and demonstrated identical results (not presented
here). Thus, these results apply not only to polarization
encoded qubits but also to any classical scenario where
controlled depolarization is required.

In this work, we use crystals that are long enough to
completely separate the two polarization components. It is
possible to deliberately use shorter crystals that will leave
a portion of the two wave packets overlapping. The same

qualitative results will be achieved this way but with smaller
magnitude. It is possible also to use a combination of several
concatenated schemes. This will extend the number of the
temporal degrees of freedom and may result in better control
of the isotropy level of the channel.

In many experiments, it is common to interfere two
amplitudes of a single photon or the amplitude of two indistin-
guishable photons. We note that the effect of our depolarizers
on such experiments has to be considered separately for each
case. For example, the Hong, Ou, and Mandel bunching
experiment [21] will not be altered by introducing the same
depolarizers for both photons. On the other hand, although
rotating one of the depolarizers by 90◦ does not change its
depolarization, the two-photon interference will not be perfect
anymore and will consist of several nonperfect bunching
deeps.

V. CONCLUSIONS

We have demonstrated a scheme for the realization of
various quantum channels for photon polarization qubits with
controllable decoherence. Isotropic and anisotropic depolar-
ization processes are possible. Channels were characterized by
QPT using the maximal-likelihood algorithm. All the results
are in a good agreement with a simple theoretical model.
These depolarizers can be used to evaluate the performance
of quantum error correction and quantum key distribution
protocols. In addition, they can be utilized in any classical
optics setup where controllable depolarization is required. The
authors thank the Israeli Science Foundation for supporting
this work under Grant No. 366/06.
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