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Generating nonclassical correlations without fully aligning measurements
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We investigate the scenario where spatially separated parties perform measurements in randomly chosen bases
on an N -partite Greenberger-Horne-Zeilinger state. We show that without any alignment of the measurements,
the observers will obtain correlations that violate a Bell inequality with a probability that rapidly approaches 1 as
N increases and that this probability is robust against noise. We also prove that restricting these randomly chosen
measurements to a plane perpendicular to a common direction will always generate correlations that violate some
Bell inequality. Specifically, if each observer chooses their two measurements to be locally orthogonal, then the N

observers will violate one of two Bell inequalities by an amount that increases exponentially with N . These results
are also robust against noise and perturbations of each observer’s reference direction from the common direction.
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I. INTRODUCTION

Entangled quantum states can yield correlations between
spatially separated measurements that are inconsistent with
any locally causal theory [1,2]. These nonlocal (or non-
classical) correlations are a resource [3,4] for a range of
information processing tasks such as quantum key distribu-
tion [5–8], teleportation [9,10], certification and expansion of
randomness [11,12] and the reduction [13] of communication
complexity [14].

These nonlocal correlations are correlations of measure-
ment outcomes. As such, they are not solely a consequence of
entanglement but also depend upon the choice of measure-
ments. This point was emphasized by Bell in his seminal work
[1], where he showed that the perfect correlations exhibited by
the spin-singlet state do admit a simple locally causal model
(see also Ref. [15] and references therein).

The demonstration of nonlocal correlations typically
employs carefully chosen measurements whose implemen-
tation requires the spatially separated observers to share
a complete reference frame [16,17]. To circumvent this
requirement, observers who do not initially share a com-
plete reference frame could share a particular state that
is invariant under arbitrary rotations of the local reference
frames [18]; however, the state preparation involved is
relatively complicated. Alternatively, they could use cor-
related quantum systems to establish a shared reference
frame which can then be used to align measurements
[19]; however, this approach is resource-intensive, since it
requires coherently exchanging many entangled quantum
systems.

Recently, it has been shown that such methods are not
required to demonstrate violations of a Bell inequality [20].
In particular, for N spatially separated observers that share
a Greenberger-Horne-Zeilinger (GHZ) state, it was found
that most choices of measurement lead to nonlocal cor-
relations between measurement outcomes [20]. Therefore,
distant observers can randomly choose measurements that
violate some Bell inequality with a probability that approaches
1 as N increases. However, the successful detection of
nonlocal correlations in this scenario requires checking the
measurement statistics against a set of Bell inequalities that
grows exponentially in N .

In this paper, we show that for N observers who share a
GHZ state and are able to perfectly align a single measurement
direction (but do not share a full reference frame), any choice
of measurements satisfying a local constraint will generate
nonlocal correlations. Furthermore, in contrast to the results
of Ref. [20], verifying that these correlations are nonlocal only
involves testing the measurement statistics against two Bell
inequalities, thereby simplifying the verification process.
Moreover, we show that as N increases, the amount by which
the observers violate one of the two Bell inequalities increases
exponentially and, in the worst-case scenario, is a constant
factor below the maximum violation permitted by quantum
mechanics.

We also investigate the robustness of the above-mentioned
results and those presented in Ref. [20] in the presence of
uncorrelated local noise. We will demonstrate that the ability
of observers to obtain correlations that violate some Bell
inequality is robust against depolarizing or dephasing noise
whether or not they share a direction. Finally, we show that
even if the observers cannot perfectly align a measurement
direction and so have randomly perturbed approximations
to the common direction, they can still always obtain
measurement statistics that violate one of two Bell inequalities.

This paper is structured as follows. We begin in Sec. II by
illustrating these results in the simplest case, namely, when
there are two observers who share a Bell state. We then outline
the generalization to N parties and discuss the relevant Bell
inequalities and the methods of sampling random
measurements that are used in this paper. In Sec. III,
we consider the ideal case in which the N parties share a state
without any noise and can also share a reference direction
perfectly. In Sec. IV A, we relax the first assumption and
show that the probability of violating a Bell inequality is
robust against uncorrelated depolarizing or dephasing noise.
In Sec. IV B we also show that the probability of violating a
Bell inequality is robust against random perturbations in the
shared direction. In Sec. V we discuss the implications of
these results and offer some concluding remarks.

II. PRELIMINARIES

In this section, we outline the simplest example, namely,
when two spatially separated parties each perform two

022110-11050-2947/2011/83(2)/022110(14) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.022110


WALLMAN, LIANG, AND BARTLETT PHYSICAL REVIEW A 83, 022110 (2011)

binary-outcome measurements on the Bell state |�+〉. For this
case, we define the probability of violating a Bell inequality
and review the results presented in Ref. [20] for randomly
chosen measurements without any shared reference frame.
We then show that if both observers perform locally orthogonal
random measurements in the xy plane of the Bloch sphere, they
will always obtain correlations that violate a Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality [2,21]. We then outline
the general scenario for N parties and discuss the relevant
Bell inequalities. We conclude this section by explaining the
various samplings of measurement bases employed in this
paper.

A. A two-party example

For the two-party case, a verifier prepares many copies of
the maximally entangled Bell state

|�+〉 = 1√
2

(|0〉|0〉 + |1〉|1〉) , (1)

where |0〉, |1〉 are the computational basis states, and distributes
one qubit to each of two observers. Both observers choose
two measurement bases. For each copy of the Bell state, the
observers each randomly choose and perform one of their
two measurements on their qubit. The observers then send
the verifier a list of the measurement choice (a binary digit
sk) and the corresponding outcome ok

sk
= ±1 for each qubit

k. The verifier uses the lists to determine if the measurement
outcomes are inconsistent with a locally causal theory. The
verifier does this by calculating the probabilities p(o1

s1
= o2

s2
)

(as relative frequencies) that the outcomes satisfy o1
s1

= o2
s2

given a specific choice of s1 and s2. They then determine the
correlation functions

E(s1,s2) = p
(
o1

s1
= o2

s2

) − p
(
o1

s1
= −o2

s2

)
= 2p

(
o1

s1
= o2

s2

) − 1 , (2)

and seek to determine if the correlation functions are consistent
with a locally causal model. For two parties, the correlation
functions are inconsistent with a locally causal theory if they
violate the standard CHSH [2,21] Bell inequality

SCHSH
1 = |E(0,0) + E(0,1) + E(1,0) − E(1,1)| � 2 . (3)

However, the choice of the labels for the measurements (i.e.,
which measurement is labeled by sk = 0) is arbitrary, as is
the labeling of the measurement outcomes ok

sk
. Therefore the

correlation functions are also inconsistent with any locally
causal theory if they violate inequality (3) after any relabeling
of the sk and/or ok

sk
and/or the label k. We will follow the

terminologies of Refs. [22,23] and refer to two inequalities
that can be obtained from one another through such relabeling
as being equivalent.

There are four equivalent inequalities that can be ob-
tained from Eq. (3) by mapping (s1,s2) to (s1,s2),

(s1 ⊕ 1,s2), (s1,s2 ⊕ 1), or (s1 ⊕ 1,s2 ⊕ 1), namely,

SCHSH
1 = |E(0,0) + E(0,1) + E(1,0) − E(1,1)| � 2 ,

SCHSH
2 = |E(0,0) − E(0,1) + E(1,0) + E(1,1)| � 2 ,

(4)
SCHSH

3 = |E(0,0) + E(0,1) − E(1,0) + E(1,1)| � 2 ,

SCHSH
4 = | − E(0,0) + E(0,1) + E(1,0) + E(1,1)| � 2 .

All permutations of the ok
sk

and k map Eq. (3) to one of the four
inequalities in Eq. (4), so the four inequalities in Eq. (4) are
the complete set of Bell inequalities equivalent to the standard
CHSH inequality. This set is referred to as the class of CHSH
Bell inequalities. For two parties, the correlation functions are
consistent with a locally causal theory if and only if they satisfy
all inequalities in the class of CHSH Bell inequalities [24].

To see that quantum mechanics predicts violations of the
CHSH inequalities, first note that for a quantum state ρ and
observables Ok

sk
= �k

sk
· �σ , where �σ = (σx,σy,σz) is the vector

of Pauli matrices and

�k
sk

= (
sin θk

sk
cos φk

sk
, sin θk

sk
sin φk

sk
, cos θk

sk

)
, (5)

the correlation functions are

E(s1,s2) = Tr
[
ρ
(
O1

s1
⊗ O2

s2

)]
. (6)

For the Bell state ρ = |�+〉〈�+| defined in Eq. (1), Eq. (6)
becomes

E(s1,s2) = cos θ1
s1

cos θ2
s2

+ sin θ1
s1

sin θ2
s2

cos
(
φ1

s1
+ φ2

s2

)
. (7)

If, for example, the measurements correspond to the vectors

�1
0 = (1,0,0), �1

1 = (0,1,0) ,
(8)

�2
0 = 1√

2
(1,1,0), �2

1 = 1√
2

(−1,1,0),

then the corresponding correlation functions are

E(0,0) = 1√
2
, E(0,1) = − 1√

2
,

(9)

E(1,0) = − 1√
2
, E(1,1) = − 1√

2
.

Substituting these into Eq. (4), one finds that SCHSH
4 = 2

√
2 >

2, i.e., the CHSH inequality is violated.

1. Bell inequality violations with no aligned directions

From Eqs. (4) and (7), it is clear that the choices of
measurements that generate CHSH-inequality-violating cor-
relations must satisfy some constraints, i.e., the directions
that correspond to the measurements must be aligned in
particular ways. However, if the observers do not share a
reference frame, directions satisfying such constraints can
only be chosen probabilistically. If the measurement directions
�k

sk
are sampled according to the normalized measure d�k

sk
,

then the observers will choose measurements that generate
correlations inconsistent with any locally causal theory with
probability

p =
∫

fCHSH
({

�1
0,�

1
1,�

2
0,�

2
1

})
d�1

0 d�1
1 d�2

0 d�2
1 , (10)

where fCHSH({�1
0,�

1
1,�

2
0,�

2
1}) is a function that returns 1

if the orientations {�1
0,�

1
1,�

2
0,�

2
1} generate correlations that
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violate any of the CHSH Bell inequalities and 0 otherwise.
The probability with which the observers generate correlations
inconsistent with any locally causal theory depends on the way
they choose their measurements, which in turn depends on how
much they can align their reference frames. For example, if
the observers can completely align their measurement bases,
they can simply choose the measurements (8), so p = 1, i.e.,
they always generate correlations inconsistent with any locally
causal theory.

When the observers cannot align their measurements at all
and randomly choose both of their measurements indepen-
dently and isotropically, then the probability that they will
choose measurements that generate correlations violating one
of the CHSH inequalities is ≈ 28.3% [20]. However, if the
observers choose their measurements to be locally orthogonal,
i.e.,

�1
0 · �1

1 = 0, �2
0 · �2

1 = 0 , (11)

then the probability of generating correlations that violate a
CHSH inequality increases to ≈ 41.3% [20].

2. Bell inequality violations with one aligned direction

Consider another possible scenario, in which the observers
can align one direction of their measurements, e.g., the z

direction of the Bloch sphere. Then each observer can choose
two orthogonal measurements in the xy plane, i.e., choose two
angles φ1 and φ2 randomly according to a uniform distribution.
The four corresponding measurements are

�0
0 = (cos φ1, sin φ1,0) ,

�0
1 = (− sin φ1, cos φ1,0) ,

(12)
�1

0 = (cos φ2, sin φ2,0) ,

�1
1 = (− sin φ2, cos φ2,0) .

Substituting these into Eq. (7) and then Eq. (4) gives

SCHSH
1 = 2| cos(φ1 + φ2) − sin(φ1 + φ2)|,

SCHSH
2 = SCHSH

3 = 0,

SCHSH
4 = 2| cos(φ1 + φ2) + sin(φ1 + φ2)| . (13)

Using standard trigonometric identities, we see that the CHSH
inequalities in Eq. (4) are satisfied if and only if

| cos x| � 1√
2

, | sin x| � 1√
2

, (14)

where x = φ1 + φ2 + π
4 . But one of these inequalities is

violated unless x = π
4 , so any choice of measurements

(except for a set of measure zero) will violate one of two
CHSH inequalities, i.e., p = 1. Therefore in order to choose
measurements that generate correlations inconsistent with any
locally causal theory, it is sufficient to perfectly align a single
direction, namely, the z axis, and to check only two Bell
inequalities.

B. The general scenario

We now generalize the two-party case outlined in the
previous section to N parties and determine the extent to
which the probability of generating correlations inconsistent

with locally causal theories depends on the alignment of the
measurements of the N parties. To this end, we consider
the scenario (abstracted from the physical implementation)
wherein a verifier prepares a large number of copies of the
N -partite GHZ state (the GHZ state is chosen because it
is a resource for obtaining maximum violations of some
commonly used Bell inequalities [25,26]),

|�N 〉 = 1√
2

(|�0N 〉 + |�1N 〉), (15)

where |�0N 〉 and |�1N 〉 denote states in which each of the N

qubits are prepared in the states |0〉 and |1〉, respectively. The
verifier distributes 1 qubit from each copy to N observers. As in
the two-party case, each observer chooses two measurement
bases, which corresponds to the kth observer choosing two
directions �k

sk
, parametrized as in Eq. (5), in the Bloch sphere,

where sk ∈ Z2 = {0,1}. Each observer measures their qubits,
randomly choosing sk for each qubit. The observers then send
a list of the measurement labels sk and outcomes ±1 for each
copy back to the verifier, who will use the lists to determine
if the measurement outcomes are inconsistent with a locally
causal theory.

In contrast to the typical scenario where {�k
sk
} are fixed

a priori to some optimal measurement bases that give the
maximal violation of a specific labeling of a Bell inequality,
we now consider a scenario where the measurement bases
(directions) {�k

sk
} are chosen randomly according to some

distribution, but are fixed throughout the experiment. Formally,
if we treat the measurement directions {�k

sk
} as random

variables, we can define the probability pN
I that the verifier

identifies that the correlation functions are incompatible with
the class of Bell inequalities I as

pN
I =

∫
f N
I

({
�k

sk

}) N∏
k=1

∏
sk∈Z2

d�k
sk

, (16)

where d�k
sk

is the normalized measure associated with the
sampling of measurement direction �k

sk
, and f N

I ({�k
sk
}) is a

function that returns 1 if the measurements {�k
sk
} give rise to

correlation functions that violate any of the Bell inequalities
in the class I and 0 otherwise.

Clearly, pN
I depends crucially on both the sampling of

{�k
sk
}, which determines the probability of generating nonlocal

correlations, and the class of Bell inequalities I involved,
which determines the probability of the verifier identifying
nonlocal correlations as Bell-inequality-violating. For any
given sampling of {�k

sk
}, pI is thus upper bounded by

pIall =pNL, where Iall refers to the complete set of Bell
inequalities relevant to the scenario described above. The
feasibility of demonstrating Bell inequality violation with
randomly chosen measurement bases can then be quantified in
terms of pNL, which is the probability of randomly generating
correlations that are incompatible with any locally causal
theory. We now discuss the method of identifying nonlocal
correlations using an appropriate class of Bell inequalities.

C. The Bell inequalities

Bell inequalities are constraints on physically observable
quantities that have to be satisfied by any locally causal
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theory [2]. A relevant class of Bell inequalities for the
scenario that we are considering is the set of 2N Mermin-
Ardehali-Belinskii-Klyshko (MABK) inequalities [27,28]. A
representative of this class is [29]

SN
1 =

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

β(�s)E(�s)

∣∣∣∣∣∣ � 2N , (17)

where �s = (s1, . . . ,sN ) is the vector of the N measurement
labels,

β(�s) =
∑

�a∈{−1,1}⊗N

√
2 cos

⎡
⎣π

4

⎛
⎝N + 1 −

N∑
j=1

aj

⎞
⎠

⎤
⎦ N∏

l=1

a
sl

l ,

(18)

�a = (a1, . . . ,aN ) and the N -partite correlation functions E(�s)
are the expectation values of the product of the measurement
outcomes when the kth observer performs the skth measure-
ment. Within quantum theory, the maximum possible value of
SN

1 is 2
3N−1

2 [25,28].
As we show in Appendix A, this inequality can be rewritten

as

SN
1 =

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

β(s,N )E(�s)

∣∣∣∣∣∣ � 2N , (19)

where s = ∑N
k=1 sk and

β(s,N ) = 2
N+1

2 cos

(
π

4
(1 + N − 2s)

)
. (20)

The equivalence class of MABK inequalities is the set of
inequalities that can be obtained by permutating the measure-
ment choices sk , measurement outcomes ok , and labeling of
the observers k in the coefficients β(�s) of inequality (19).
However, as we prove in Appendix B, all such permutations
can be obtained by permuting the measurement labels (i.e.,
sk → 1 − sk for some set of k ∈ {1,2, . . . ,N}) and so each
of the 2N MABK inequalities can be obtained by one of
the distinct 2N permutations of measurement settings. In
particular, the inequality

SN
2 =

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

β(N − s,N )E(�s)

∣∣∣∣∣∣ � 2N , (21)

which will play an important role in the scenario where a single
direction is shared, can be obtained from inequality (19) via
the mapping sk → 1 − sk for all k = 1,2, . . . ,N .

When N = 2, the MABK inequalities reduce to the Bell-
CHSH inequalities [21] and represent the complete set of
Bell inequalities for this scenario [24]. So for N = 2, the
measurement outcomes are inconsistent with any locally
causal theory if and only if they violate one of the MABK
inequalities. For N > 2, there are also other equivalence
classes of Bell inequalities (see, for example, Refs. [25,30,31]).
An extensive set of such N -partite Bell inequalities that include
the MABK class as a subset is the well-known Werner-Wolf-
Żukowski-Brukner (WWZB) inequalities [25,29]. These 22N

Bell inequalities can be put into the form of the following
single nonlinear Bell inequality:

SWWZB =
∑

�a∈{−1,1}⊗N

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

N∏
k=1

a
sk

k E(�s)

∣∣∣∣∣∣ � 2N . (22)

Defining δN = 1 − N mod 2, the above inequality is both
necessary and sufficient for the set of 2N N -partite GHZ
correlation functions [with measurements defined as in Eq. (5)]

E(�s) = cos

(
N∑

l=1

φl
sl

)
N∏

k=1

sin θk
sk

+ δN

N∏
k=1

cos θk
sk

(23)

to be describable within a locally causal theory. However, not
all measurement statistics are captured by these full correlation
functions. We can also compute the restricted correlation
functions of the GHZ state,

E({sk}k∈K) = δ|K|
∏
k∈K

cos θk
sk

, (24)

K ⊂ {1,2, . . . ,N}, which involve the expectation value of the
product of the measurement outcomes for a subset of the N

parties. As a result, one generally needs to check the mea-
surement statistics against the complete set of Bell inequalities
relevant to the particular experimental scenario to determine
if these correlations are nonlocal. The characterization of the
complete set of Bell inequalities is only known for N = 2 and
3 (see Refs. [24,30,31] for details).

Nevertheless, for small N , the problem of deciding if some
given measurement statistics are compatible with a locally
causal description can be solved numerically using linear pro-
gramming.1 For larger values of N , it may become infeasible
to compute pNL using linear programming. However, we can
make use of the following inclusion relations{

SN
1

} ⊂ {
SN

1 ,SN
2

} ⊂ MABK ⊆ WWZB ⊆ Complete Set

(25)

to lower bound this probability, i.e.,

p{SN
1 } � p{SN

1 ,SN
2 } � pMABK � pWWZB � pNL, (26)

where pMABK, etc., are the probabilities defined in Eq. (16)
with I being the respective classes of Bell inequalities.

D. Sampling of measurement directions

Our sampling of measurement directions depends on the
extent to which the N observers are able to align their
measurements within each physical scenario. For example,
when all observers share a complete reference frame and can
completely align their measurements, for any class of Bell
inequalities I, they can always pick {�k

sk
} in such a way that

1The set of locally causal correlations is a convex set with finitely
many extreme points [32]. To determine if some measurement
statistics correspond to a member of this set, it suffices to check if the
given measurement statistics can be written as a convex combination
of these extreme points. For an alternative, but equivalent, formulation
of this problem as a linear program, see, for example, Refs. [33,34]
and the supplementary materials in Ref. [20].
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f N
I ({�k

sk
}) = 1, assuming there exist such measurements. In

this paper, we assume that the observers either cannot align
their measurements at all or can only align them with respect
to a single direction �n.

The following samplings of measurement directions will be
applied to cater to the different extents in which the observers
can align their measurements:

(1) Random isotropic measurements (RIM). Each party k

chooses both directions �k
sk

for sk = 0,1 independently and
uniformly from the set of all possible directions.

(2) Random orthogonal measurements (ROM). Each local
pair of measurement directions is chosen to be orthogonal but
otherwise uniform, i.e., RIM with the additional constraint

�k
0 · �k

1 = 0 ∀ k. (27)

(3) Planar random orthogonal measurements (PROM). In
addition to Eq. (27), all measurement directions are confined to
a plane defined by some normal vector �n (which corresponds
to the common direction the observers can align), i.e.,

�k
sk

· �n = 0 ∀ k, sk , (28)

for some �n shared by the N parties.
Some of the results presented in Sec. III A for RIM and

ROM have been discussed in Ref. [20] but are included here
in more detail.

III. NOISELESS SCENARIOS

When the N experimenters do not align their measurements,
one may expect that it is unlikely to find Bell-inequality-
violating correlations by performing measurements in ran-
domly chosen bases. Nonetheless, for the N -partite GHZ state,
the probability of choosing measurements that violate a Bell
inequality rapidly approaches 1 as N increases. In Sec. III A
we briefly summarize the results for RIM and ROM presented
in Ref. [20] and analyze the difference between testing the
correlations against the WWZB inequalities and testing the

correlations against the full set of Bell inequalities (obtained
for small N using linear programming).

Without any alignment of measurements, if the experi-
menters do not test the experimental statistics against a class
of Bell inequalities that grows exponentially with N , then
the probability of identifying that the correlations generated
by the randomly chosen measurements are inconsistent with
any locally causal theory decreases with N . However, if the
observers can align the z direction of their measurements, then
we prove that for all N they can always choose measurements
that violate one of two Bell inequalities, namely, SN

1 or SN
2

from Eqs. (19)–(21), by an amount that grows exponentially
with N . We also numerically calculate the probability of
violating four different classes of Bell inequalities and show
that as the aligned direction is rotated away from the z

axis, the observers have to test their experimental statistics
against more Bell inequalities in order to certify that the
correlations generated by the randomly chosen measurements
are inconsistent with any locally causal theory.

A. No aligned directions—RIM and ROM

A natural strategy that the N experimenters can adopt is
to each randomly choose two independent measurement bases
�k

sk
according to a uniform distribution on the surface of a

sphere. As can be seen from Eq. (5), this corresponds to each
observer randomly choosing four angles θk

sk
and φk

sk
for sk ∈

Z2, where φk
sk

are chosen from a uniform distribution on the
interval [0,2π ] and θk

sk
from the interval [0,π ] with p(θ ) =

1
2 sin θ . When the observers restrict their measurements to be
orthogonal to each other (i.e., when they sample according to
ROM), then Eq. (27) fixes one of the angles.

The probabilities of violating four classes of Bell inequali-
ties, namely, {SN

1 }, the 2N MABK inequalities, the 22N

WWZB
inequalities, and the complete set of Bell inequalities for two
binary-outcome measurements at each site, are presented in
Table I. For N = 2 (and only for N = 2), the MABK, WWZB,
and full set of Bell inequalities are all identical to the set of

TABLE I. Probability of finding a Bell inequality violation from the N -partite GHZ state for the scenario where each party is allowed
to perform binary projective measurements in two randomly chosen measurement bases according to either RIM (left) or ROM (right). The
number of parties N is given in the leftmost column. Then, to the right, we have, respectively, the probability of violating SN

1 , the 2N MABK
inequalities, the 22N

WWZB inequalities, and the complete set of Bell inequalities relevant to this scenario. Note that the probability of violation
for each class of Bell inequalities is lower bounded by the corresponding entry to its left, as expected from Eq. (26).

RIM ROM

N p{SN
1 } pMABK pWWZB pNL p{SN

1 } pMABK pWWZB pNL

2 7.080% 28.319% 28.319% 28.319% 10.326% 41.298% 41.298% 41.298%
3 1.328% 10.002% 13.313% 74.690% 2.324% 18.150% 26.604% 96.207%
4 0.972% 13.410% 23.407% 94.238% 1.714% 25.500% 59.034% 99.976%
5 0.644% 15.210% 25.675% 99.593% 1.108% 29.733% 52.798% 100.000%a

6 0.428% 16.879% 31.235% 99.965% 0.734% 34.442% 71.190% 100.000%b

8 0.183% 19.085% 37.509% 0.312% 41.935% 80.420%
10 0.077% 20.443% 42.254% 0.133% 47.968% 86.926%
15 0.009% 22.037% 50.515% 0.017% 59.006% 95.204%

aThere are instances where a randomly generated correlation is local, but our simulation indicates that this happens less than 1 in every
106 times.
bOf the 106 randomly generated probability distributions, we did not find one that admits a locally causal description.
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CHSH inequalities, so the probability of violating each of these
three classes coincides for both RIM and ROM.

For N � 3, these three classes of inequalities obey the
strict inclusion relations given in Eq. (25), and we see that the
probabilities of violating these three different classes follow
the strict inequalities given in Eq. (26). For the MABK and
WWZB inequalities, which contain a number of inequalities
that is exponential in N , the probability of violation pI
generally increases with N , except when N increases from
2 to 3 and a few other cases for ROM. This increasing trend is
even more pronounced for the complete set of Bell inequalities
where pNL is found to be strictly increasing (up to the limit of
our analysis).

The WWZB inequalities are necessary and sufficient
conditions for the full N -partite correlation functions to be
consistent with a locally causal theory. Given that the restricted
correlation functions can be computed from the respective
reduced density matrices of |�N 〉 and are always separable, it
may seem surprising that the WWZB inequalities fail to detect
a significant fraction of the nonclassical correlations generated
from the GHZ states. However, while the reduced density
matrices of |�N 〉 are separable and so can be modeled in a
locally causal theory, there is an additional requirement: the
locally causal models for the different reduced density matrices
must be consistent, in that they must not contradict one another
and must also reproduce the full correlation functions given in
Eq. (23). The results given in Table I show that as N increases,
it becomes increasingly difficult to find a locally causal model
that could simultaneously reproduce Eqs. (23) and (24).

The results from Table I also imply that detecting non-
classical correlations with a probability that increases with
N requires a set of Bell inequalities containing a number of
inequalities that is exponential in N . If we only use one MABK
inequality, e.g., SN

1 , to detect these nonclassical correlations,
then the probability of finding correlations that violate SN

1 via
ROM decreases exponentially as N increases. Clearly, because
each inequality in the same equivalence class can be obtained
by adopting a different classical labeling, the probability of
violating any one of the MABK inequalities is equal to pSN

1
.

Therefore the probability of violating one of a set of M MABK
inequalities is upper bounded by MpSN

1
. As pSN

1
decreases

exponentially with N , M must increase exponentially with N

in order for the probability of violating one of a set of M

inequalities to either remain constant or increase.
As we will demonstrate in the next section, this is not the

case if the N experimenters can align one of their measurement
directions. In particular, we will show that if observers can
align a measurement direction, then there is a set of two
inequalities such that the probability of violating either of
these two inequalities is 1 for all N .

B. Partially aligned measurements—random measurements
in the x y plane

Without any alignment of their measurements, observers
need to check their experimental statistics against an exponen-
tially large class of Bell inequalities to uncover nonclassical
correlations with a probability that increases with the number
of observers. However, there are physical situations in which
it is relatively easy to align a single measurement direction, or
such a direction is naturally defined by the system.

For example, if qubits are encoded in the polarization
of single photons and transmitted over optical fibers, then
the ordinary and extraordinary modes are stable, but optical
birefringence causes a phase shift between the two modes. If
this phase shift is unknown, then the observers share a single
“direction” on the Bloch sphere but have an essentially random
alignment of the other two directions. While experimental
techniques are available to account for this phase shift and
may exist for other situations in which there is a preferred
direction, we show that if the observers are trying to violate
a Bell inequality, then such techniques are unnecessary (the
related question for quantum key distribution in this situation
has also been investigated [35]).

Specifically, we show that if the reference direction �n is the
z axis and the observers agree on a labeling convention for their
measurements, they will always obtain correlation functions
that violate either SN

1 or SN
2 if the measurements are sampled

according to PROM (i.e., if the measurements are orthogonal
and confined to the plane perpendicular to some normal vector
�n shared by the N parties).

For PROM in the xy plane, the observers share the z axis.
If the kth observer’s two measurements are �k

0 and �k
1, then,

because the labels 0 and 1 are arbitrary, they are free to relabel
them as necessary so that {�k

0,�
k
1,z} forms a right-handed

coordinate system for all k (a similar result follows for left-
handed coordinate systems). Under this labeling convention,
randomly choosing �k

0 and �k
1 is equivalent to randomly

choosing a single random angle χk , with θk
sk

= π
2 and

φk
sk

= χk + sk

π

2
. (29)

Theorem III.1. Any choice of orthogonal measurements
in the xy plane on the N -partite GHZ state will generate
correlation functions that satisfy either

SN
1 = 2

N+1
2

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

cos

(
(1 + N − 2s)

π

4

)
E(�s)

∣∣∣∣∣∣ � 2
3N
2 −1 ,

SN
2 = 2

N+1
2

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

cos

(
(1 − N + 2s)

π

4

)
E(�s)

∣∣∣∣∣∣ � 2
3N
2 −1 ,

(30)

provided the observers obey the labeling convention described
above.

Proof. For the N -partite GHZ state and the labeling
convention in Eq. (29), the full correlation function, Eq. (23),
becomes

E(�s) = cos

(
N∑

k=1

φk
sk

)
= cos

(
χ + s

π

2

)
, (31)

where χ = ∑N
k=1 χk and as before, s = ∑N

k=1 sk . Substituting
this into the left-hand side of inequality (19) gives

SN
1 = 2

N+1
2

∣∣∣∣∣∣
∑

�s∈Z⊗N
2

cos

(
(1 + N − 2s)

π

4

)
cos

(
χ + s

π

2

)∣∣∣∣∣∣ .

(32)
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There are (N

s
) ways of choosing �s such that

∑N
k=1 sk = s, so

Eq. (32) can be rewritten as

SN
1 = 2

N+1
2

∣∣∣∣∣
N∑

s=0

(
N

s

)
cos

(
(1 + N − 2s)

π

4

)
cos

(
χ + s

π

2

)∣∣∣∣∣
= 2

3N−1
2

∣∣∣∣ sin

(
χ + (N − 1)

π

4

)∣∣∣∣ . (33)

Similarly, substituting Eq. (31) into the left-hand side of
inequality (21) gives

SN
2 = 2

3N−1
2

∣∣∣∣ sin

(
χ + (N + 1)

π

4

)∣∣∣∣ . (34)

Because

max

{∣∣∣∣ sin
(
x − π

4

) ∣∣∣∣,
∣∣∣∣ sin

(
x + π

4

) ∣∣∣∣
}

� 1√
2

∀ x, (35)

either SN
1 � 2

3N
2 −1 or SN

2 � 2
3N
2 −1. �

From Sec. II C, the inequalities in Theorem III.1 are
Bell inequalities with an upper bound of 2N in any locally
causal theory. Therefore for N = 2 and χ = kπ

2 for k ∈ Z the
observers will violate SN

1 or SN
2 . When N > 2, the observers

will always violate SN
1 or SN

2 by a factor of at least 2
N
2 −1.

Moreover, the upper bound for both SN
1 and SN

2 in quantum
mechanics is 2

3N−1
2 , so the violation of SN

1 or SN
2 is within

a constant factor 1√
2

of the maximum violation possible in
quantum mechanics.

We can also find the probability p(max{SN
1 ,SN

2 } � (1 −
ε)2

3N−1
2 ) of the observers choosing measurements by PROM

in the xy plane such that they will obtain a violation of a
Bell inequality that is within a factor (1 − ε) of the maximum
violation possible in quantum mechanics.

Randomly choosing measurements by PROM in the xy

plane is equivalent to randomly choosing χ in Eqs. (33) and
(34). The probability of choosing χ ∈ [0,2π ] such that

max
{
SN

1 ,SN
2

}
� (1 − ε)2

3N−1
2 (36)

is the same as the probability of choosing x ∈ [0, π
4 ] such that

cos x � 1 − ε, which is simply 4
π

cos−1(1 − ε).
Therefore the probability of the observers choosing mea-

surements by PROM in the xy plane such that they will
obtain a violation of either SN

1 or SN
2 above some threshold

(1 − ε)2
3N−1

2 is

p
(

max
{
SN

1 ,SN
2

}
� (1 − ε)2

3N−1
2

) = 4

π
cos−1(1 − ε) . (37)

C. Partially aligned measurements—random measurements
in other planes

Theorem III.1 applies when the observers measure along
two orthogonal directions in the xy plane, i.e., when the
direction that the observers can align is the z axis (which
corresponds to the computational basis used to define the GHZ
state). When the common direction is at some angle to the basis
in which the GHZ basis is defined, the probability of observers
obtaining correlation functions that violate a Bell inequality

can change significantly. For N � 2, we simulate pI (�n) as a
function of λ and α where

�n = (cos α sin λ, sin α sin λ, cos λ) , (38)

and when I is SN
1 and SN

2 , the 2N MABK inequalities, the 22N

WWZB inequalities, or the complete set of Bell inequalities
for this scenario.

Given a normal vector �n shared by N parties, we want the
probability that �n allows the N parties to violate a given class
of Bell inequalities with probability 1 or with some nonzero
probability. Consequently, we define the ratio of the set of
normal vectors that give violations of the class I of Bell
inequalities with probability pI (�n) = 1 to the set of all normal
vectors (i.e., the set of points on the surface of a unit sphere
with z � 0) by

A1 = 1

2π

∫ π
2

0
dλ

∫ 2π

0
dα sin λg1

I (α,λ) , (39)

where

g1
I (α,λ) =

{
1 if pI (�n) = 1 ,

0 otherwise .
(40)

Similarly, we define the ratio of the set of normal vectors
that give violations of the class I of Bell inequalities with
probability pI (�n) > 0 to the set of all normal vectors by

A0 = 1

2π

∫ π
2

0
dλ

∫ 2π

0
dα sin λg0

I (α,λ) , (41)

where

g0
I (α,λ) =

{
1 if pI (�n) > 0,

0 otherwise.
(42)

A1 gives the fraction of the set of unit normal directions
�n such that z � 0, and observers who share �n can always
obtain correlations that violate a Bell inequality when they
sample measurements using PROM. Likewise, A0 gives the
fraction of the set of normal directions �n such that z � 0,
and observers who share �n can always obtain correlations that
violate a Bell inequality with nonzero probability when they
sample measurements using PROM. The values of A0 and A1

for N = 2, . . . ,6 are given in Table II and the probability of
violating {SN

1 ,SN
2 } and the WWZB inequalities for N = 6 is

plotted in Fig. 1.
The case when N = 2 is exceptional because almost any

rotation of the reference direction [except when α = 0 in
Eq. (38)] reduces the probability of violating a Bell inequality
to below 1. This occurs because there are dense sets of
measurements that produce arbitrarily small violations of SN

1
and SN

2 when �n = (0,0,1), and these measurements do not
produce a violation of SN

1 or SN
2 (or any other Bell inequality)

when the reference direction is rotated an arbitrarily small
amount from the z axis.

However, for N > 2, there are no such sets of measurements
and so, as our results show, the reference direction can be
rotated from the z axis by some “small” angle λ (i.e., λ <∼ 35◦)
in any direction without reducing pI .

Numerically, we found that for any rotated reference vector
�n, considering the full class of MABK inequalities provides
no advantage over just considering SN

1 and SN
2 , except when

N = 2, in which case the MABK inequalities form the
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TABLE II. Fraction of the surface area of a sphere that corresponds to normal vectors for which the probability of violating a class of Bell
inequalities is nonzero (A0) or unity (A1). The four classes of Bell inequalities considered are {SN

1 ,SN
2 }, the 2N MABK inequalities, the 22N

WWZB inequalities, and the complete set of Bell inequalities relevant to this scenario. Note that the value of both A0 and A1 exactly coincides
for {SN

1 ,SN
2 } and the MABK inequalities when N = 2.

A0 A1

N {SN
1 ,SN

2 } MABK WWZB Complete set {SN
1 ,SN

2 } MABK WWZB Complete set

2 0.5411 0.7002 0.7002 0.7002 0.0033 0.0033 0.0033 0.0033
3 0.4129 0.4129 0.4580 0.9553 0.2189 0.2189 0.2406 0.4850
4 0.4729 0.4729 0.9130 0.9996 0.3219 0.3219 0.3721 0.8189
5 0.4832 0.4832 0.5867 0.9998 0.3741 0.3741 0.4059 0.8635
6 a 0.5035 0.5035 0.9155 0.9997 0.4129 0.4129 0.4544 0.9782

aDue to the small sample size for N = 6, we expect the corresponding entries of A0 and A1 to only be, respectively, lower and upper bounds.

complete set of Bell inequalities. Considering the full set of
WWZB inequalities does increase the value of A1, but not very
substantially. However, testing against the full set of WWZB
inequalities can substantially increase the value of A0, i.e., the
area of normal vectors for which pI (�n) > 0, as can be seen
in Table II. Testing against the full set of WWZB inequalities
also reveals a strong dependence on the parity of N , which
occurs due to the δN term in Eq. (23).

For N > 2, the dependence on the azimuthal angle α

is small when testing against SN
1 and SN

2 . In particular,
p{SN

1 ,SN
2 }(�n) = 1 for all α and λ <∼ 35◦. That is, for any

N � 3, the reference direction can be rotated from the
z axis by at least 35◦ in any direction without affecting the
probability of generating correlations that violate one of two
Bell inequalities, namely, SN

1 and SN
2 . As N increases, this

threshold value of the polar angle λ appears to increase slowly.

IV. NOISY SCENARIOS

So far, we have made use of various idealizations. We now
examine what happens when some of these assumptions are
relaxed. In Sec. IV A, we determine how depolarizing and
dephasing noise upon the GHZ state reduce the probability of
violating a Bell inequality when observers do not align any

FIG. 1. (a) Contour plot of the probability of violating SN
1 or

SN
2 for N = 6 when sampling measurements via PROM with a

reference direction as in Eq. (38). (b) Contour plot of the probability
of violating one of the WWZB inequalities for N = 6 when sampling
measurements via PROM with the reference direction as defined in
Eq. (38). In both contour plots, λ = 0◦ in the center and increases
radially to a maximum of 90◦, and pI = 1 for smaller λ and generally
decreases as λ increases along a line of fixed α (i.e., along a radial
line).

measurement directions or only align a single measurement
direction. In Sec. IV B we analyze how the probability of
violating a Bell inequality is affected by random perturbations
in each observer’s alignment of the common direction, i.e.,
when the observers cannot align their measurements perfectly.

A. Decoherence

In order to study the ability of observers to violate a Bell
inequality in the presence of noise, we consider depolarizing
and dephasing noise. For simplicity, we assume that each qubit
is transmitted over equally noisy, uncorrelated channels, so the
noise for all qubits is described by a single parameter ν, where
ν = 0 corresponds to zero noise and ν = 1 corresponds to
maximal noise (i.e., complete depolarizing or dephasing). We
begin by outlining the correlation tensor formalism, which is
a convenient method of examining the effect of uncorrelated
noise. We then give a brief introduction to depolarizing and
dephasing noise before presenting our results from numerical
simulations on the probability of violating a Bell inequality pI
in the presence of noise.

1. Correlation tensor formalism

An arbitrary N -qubit state ρ can be expanded in any basis
of Hermitian operators acting on the Hilbert space H2N =
(C2)⊗N . In particular, the N -fold tensor products of local Pauli
operators

��a = ⊗N
k=1σak

(43)

is one such basis; here �a ∈ Z⊗N
4 is a string of N indices,

σak
∈ {I2,σx,σy,σz}, and I2 is the identity operator acting

on C2.
Together with the orthogonality relation,

Tr[��a��b] = 2Nδ�a,�b , (44)

we can then represent ρ by

ρ = 1

2N

∑
�a∈Z⊗N

4

T�a��a , (45)

where T�a = Tr[ρ��a] is the correlation tensor [36]. The
description in terms of the correlation tensor is thus equivalent
to the description in terms of the density operator. In what
follows, we will follow Ref. [36] and describe the effect of
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noise on a quantum state using the correlation tensor, which
allows us to define the effects of uncorrelated noise on each
qubit. For the GHZ state, we have

T�a = Tr[|�N 〉〈�N |��a] = 1
2 〈�0N |��a|�0N 〉 + 1

2 〈�1N |��a|�1N 〉
+ 1

2 〈�0N |��a|�1N 〉 + 1
2 〈�1N |��a|�0N 〉 . (46)

All of these terms are 0 unless ��a is a tensor product of either
(1) 2k Pauli y and (N − 2k) Pauli x matrices or (2) 2k Pauli z

and N − 2k identity matrices for some k ∈ Z.

2. Depolarizing noise

Depolarizing noise maps local Pauli operators as [37]

I2 → I2 , σx → (1 − ν)σx ,
(47)

σy → (1 − ν)σy , σz → (1 − ν)σz .

Full correlation functions correspond to all observers per-
forming nontrivial projective measurements, while restricted
correlation functions correspond to some subset of observers
performing the measurement I2 (i.e., ignoring the outcomes
from some observers). Therefore the effects of depolarization
on the correlation functions are

E(�s) → (1 − ν)NE(�s) , (48)

and

E({sk}k∈κ ) → (1 − ν)|κ|E({sk}k∈κ ) , (49)

for arbitrary subsets of observers, κ ⊂ {1, . . . ,N}.
Note that the effect on the full correlation functions is

identical to the effect of mixing the GHZ state with the
maximally mixed state I2N according to

|�N 〉 → (1 − µ)|�N 〉〈�N | + µ

2N
I2N , (50)

when (1 − µ) → (1 − ν)N .

3. Dephasing noise

We also consider dephasing noise, which is appropriate
when there is some preferred basis in the system which is
particularly stable. Dephasing noise in the computational basis
suppresses off-diagonal terms for each qubit, i.e., it maps local
Pauli operators as [37]

I2 → I2 , σx → (1 − ν)σx ,
(51)

σy → (1 − ν)σy , σz → σz .

Clearly, from Eqs. (45) and (46) all diagonal terms of
|�N 〉〈�N | are unaffected and, because off-diagonal terms of
the correlation tensor are zero unless the term corresponds to
tensor products of only σx and σy matrices, all off-diagonal
terms are uniformly reduced by a factor of (1 − ν)N . Therefore
dephasing takes the GHZ state to

1

2
(|�0N 〉〈�0N | + |�1N 〉〈�1N |) + (1 − ν)N

2
(|�0N 〉〈�1N | + |�1N 〉〈�0N |) .

(52)

For a dephased GHZ state, the full correlation functions E(�s)
of Eq. (23) are

(1 − ν)N cos

(
N∑

l=1

φl
sl

)
N∏

k=1

sin θk
sk

+ δN

N∏
k=1

cos θk
sk

. (53)

Since the restricted correlation functions, Eq. (24), depend
only on the component of the measurements in the z direction,
they are unchanged under dephasing noise (note that this is a
property specific to the GHZ state).

Much like its separability property, a decohered or dephased
|�N 〉 also gradually loses its ability to violate any Bell
inequality as the level of noise (characterized by ν) increases.
Some bounds on the levels of dephasing and depolarizing noise
at which the |�N 〉 state no longer violates a Bell inequality can
be found in Ref. [36].

4. Measurements in all directions—RIM and ROM

For N = 2, . . . ,6 we have numerically calculated the
probability of violating a Bell inequality, pNL, under the
influence of depolarizing and dephasing noise for RIM
(Fig. 2) and ROM (Fig. 3). For both RIM and ROM, the
probability of violating a Bell inequality for a given level
of ν is always greater for dephasing noise than it is for
depolarizing.

From these plots, we see that for all N , the probability of
demonstrating Bell-inequality-violating correlations via either
RIM or ROM on the GHZ state is robust against depolarizing
and dephasing noise. Furthermore, this robustness increases
with N . For example, with 10% dephasing noise (i.e., ν = 0.1),
the probability of violation is reduced to 37% (RIM) or 52%
(ROM) of the probability in the absence of noise in the case
of the bipartite GHZ state, whereas for the six-partite GHZ
state, the probability of violation is reduced to 96% (RIM)
of the probability in the absence of noise or not affected to
within the accuracy of the simulations (ROM). Furthermore,
sampling measurements according to ROM not only increases
the probability of violating a Bell inequality in the absence of
noise compared to sampling measurements according to RIM,
but also increases the stability with respect to both dephasing
and depolarizing noise.

It is curious that for some range of noise parameters, the
bipartite maximally entangled state actually gives a higher
probability of violation as compared with the tripartite GHZ
state.

5. Partially aligned measurements—PROM in the x y plane

When the observers choose orthogonal measurements in the
xy plane (i.e., θ = π

2 ), they will obtain correlation functions
that violate one of two MABK inequalities by an exponential
amount. As we now show, this exponential violation of a
MABK inequality translates directly into stability with respect
to depolarizing and dephasing noise.

Let us now consider the effect of noise. For measurements
on the xy plane, Eq. (24) implies that all restricted correlation
functions vanish. It then follows from Eqs. (48) and (53) that
the effects of depolarizing and dephasing noise are equivalent
and both smoothly reduce SN

k to (1 − ν)NSN
k . Therefore the
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FIG. 2. (Color online) Probability of violation pNL, sampled using RIM for N = 2, . . . ,6 observers, as a function of the noise parameter ν

for (a) depolarizing noise and (b) dephasing noise.

observers will always violate one of two MABK inequalities
with PROM in the xy plane if

(1 − ν)N2
3N
2 −1 > 2N ⇒ ν < 1 −

N
√

2√
2

. (54)

Moreover, since the maximum MABK violation attainable by

the GHZ state is
√

2
N−1

times the classical upper bound [25],
correlations generated from the noisy GHZ state, Eq. (48), will
never violate any MABK inequality when

ν � 1 −
2N
√

2√
2

. (55)

Therefore, as with the scenario where measurements are
not restricted to a plane, the ability of observers to always
violate either SN

1 or SN
2 is increasingly robust against deco-

herence as the number of observers increases. For N → ∞,
these limits are both 1 − 1√

2
and observers will (depending on

the level of noise ν) either violate SN
1 or SN

2 for any choice of
measurements or never violate SN

1 or SN
2 .

The above analysis gives the critical value of ν at which
the probability of violating SN

1 or SN
2 reaches the extremal

values 1 and 0. For intermediate noise levels, namely, for

ν ∈ [1 − N
√

2√
2
,1 − 2N

√
2√

2
], we can use Eq. (37) to calculate the

probability of violation. From Eqs. (37) and (48), we have

p
(

max
{
SN

1 (ν),SN
2 (ν)

}
> (1 − ν)N (1 − ε)2

3N−1
2

)
= 4

π
cos−1(1 − ε) . (56)

Therefore the observers will obtain statistics that violate SN
1

or SN
2 with probability 4

π
cos−1(1 − ε) if

(1 − ν)N (1 − ε)2
3N−1

2 = 2N

⇒ 1 − ε = 2
1−N

2

(1 − ν)N
. (57)

FIG. 3. (Color online) Probability of violation pNL, sampled using ROM for N = 2, . . . ,6 observers, as a function of the noise parameter
ν for (a) depolarizing noise and (b) dephasing noise.
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FIG. 4. Representation of the normal (�nk) and measurement
directions (�k

s0
and �k

s0
) for several parties.

Substituting Eq. (57) into Eq. (56), we find that with PROM on
the ν-locally-dephased-GHZ state, the observers will violate
SN

1 or SN
2 with probability

p{SN
1 ,SN

2 }(ν) = 4

π
cos−1

(
2

1−N
2

(1 − ν)N

)
(58)

for ν ∈ [1 − N
√

2√
2
,1 − 2N

√
2√

2
].

B. Imperfectly aligned measurement directions

So far, when discussing PROM, we have assumed that
the observers have a perfectly aligned direction. We now
consider the case where each observer may have some local
approximation

�nk = (cos αk sin λk, sin αk sin λk, cos λk) (59)

to the z axis (i.e., the basis in which the GHZ state is defined),
see Fig. 4. We assume that the azimuthal angles αk ∈ [0,2π ]
are distributed uniformly and the λk ∈ [0, π

2 ] are distributed
such that

p
(
λk

sk

) =
(

1 + 2

λ2
std

)[
cos

λk

2

] 4
λ2

std
. (60)

Note that �nk with λk > π
2 are equivalent to �nk with λk > π

2 ,
but will change the handedness of the labelling convention
discussed in Sec. III B for the kth observer, thus changing
which Bell inequality will be violated. For sufficiently small
λ, the distribution is analogous to a Gaussian distribution with
mean 0 and standard deviation λstd on the surface of a sphere
[38].

The kth observer then measures in the plane perpendicular
to �nk , i.e., the kth observer’s two measurements are now(

�k
sk

)
x

= sin φk
sk

cos λk cos αk + cos φk
sk

sin αk,(
�k

sk

)
y

= sin φk
sk

cos λk sin αk − cos φk
sk

cos αk, (61)(
�k

sk

)
z
= − sin φk

sk
sin λk .

Each observer still chooses random orthogonal measurements
and the same labeling as before, i.e.,

φk
sk

= χk + sk

π

2
. (62)

In Fig. 5 we present numerical results for the probability of
violating one of the 2N MABK inequalities as a function of the
standard deviation of the distribution of polar angles λstd for

FIG. 5. (Color online) (a) Probability of violation pMABK when measurements are sampled using orthogonal measurements in the plane
perpendicular to the normals �nk that are distributed according to a pseudo-Gaussian distribution as a function of the standard deviation of the
distribution of polar angles λstd for N = 2, . . . ,6 observers. (b) Increase in the probability of observers finding that their correlation functions
do not correspond to a locally causal model when they check against the the full set of 2N MABK inequalities, rather than just SN

1 and SN
2 .
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N = 2, . . . ,6 observers and the difference that checking the
full set of 2N MABK inequalities rather than just SN

1 and SN
2 .

Even for standard deviations λstd ≈ 90◦, the probability of
violating an MABK inequality is higher than when the
observers do not share a direction, cf. Table I. The effect of
increasing λstd, that is, of decreasing the average accuracy
of the local approximation to the common direction, is to
smoothly decrease the probability of violating a MABK
inequality. We find that checking against more inequalities
makes little difference for λstd <∼ 30◦ (i.e., the probability
increases by less than 0.1%). As the individual approximations
become less accurate, the difference increases approximately
linearly and also increases with N . At first glance, this seems
rather counterintuitive, because for λstd ≈ 90◦, the observers
have essentially no idea what the reference direction is. The
difference arises because the pseudo-Gaussian distribution is
biased to smaller values of λ, which is only defined
modulo 90◦.

V. DISCUSSION AND CONCLUSION

In this paper, we have shown that the degree to which N

observers can align their measurements substantially affects
the probability of them generating Bell-inequality-violating
(BIV) correlations by performing randomly chosen measure-
ments on the N -partite GHZ state. Furthermore, the difficulty
involved in verifying that some correlations are BIV is also
closely related to the extent to which the observers can align
their measurements: the better alignment they have, the fewer
inequalities are needed to verify the nonlocal nature of these
correlations. However, this reduction in difficulty does depend
on how the observers can align their measurements. If, for
example, they align the measurement directions corresponding
to the basis in which the shared GHZ state is defined, then
the observers will always generate BIV correlations and this
can be verified by testing the correlation functions against
just two fixed Bell inequalities. As the aligned direction is
rotated away from the z axis (which corresponds to the basis
in which the GHZ state is defined), the probability of violating
a Bell inequality smoothly decreases. These results may make
it easier to test Bell inequality violations over large distances,
as they reduce the need to align distant measurements.

We have also shown that these results and the results
presented in Ref. [20] are strongly robust against uncorrelated
noise. Moreover, we have shown that even if the observers
can only partially align a measurement direction, i.e., if
each observer has an approximation to the z axis that is
distributed with a standard deviation of up to 35◦, they can
still obtain BIV correlations with probability 1. This suggests
that the idea of demonstrating BIV correlations using randomly
chosen measurement bases is not only an idealization but is
also applicable to real-world scenarios. Our results may also
have implications for reference-frame-independent quantum
key distribution [35] in the presence of noise. Furthermore,
given the close connection between Bell inequality violation
and the security of quantum key distribution protocols, it
will be interesting to investigate if the results presented
here have any implications on real-life implementation of
device-independent quantum key distributions [39].

Our results also provide insight into the structure of the
set of locally causal correlations and its relations with respect
to the set of quantum correlations. To this end, consider the
results presented in Table I. As discussed in Sec. III A, the
probability of violating any one of the MABK inequalities is
equal. If a given set of correlation functions could violate at
most one MABK inequality, then we would have

R := log2
pMABK

pSN
1

= N , (63)

as SN
1 is one of the 2N MABK inequalities. For N = 2, this

holds, and one can indeed show that at most one CHSH
inequality can be violated (see the supplementary material
of Ref. [20]). However, for larger values of N , we see that
Eq. (63) no longer holds: for example, with RIM, we have
R = 2.913 and R = 11.258, respectively, for N = 3 and
N = 15; similar scaling is also observed for ROM. In relation
to this, it will also be interesting to determine if there are
other aspects about the sets of correlations that we can learn
by surveying randomly generated correlations, a problem that
we shall leave for future research.
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APPENDIX A: REFORMULATION OF THE
MABK INEQUALITIES

In this appendix, we show that the coefficients

β(�s) =
∑

�a∈{−1,1}⊗N

√
2 cos

⎡
⎣π

4

⎛
⎝N + 1 −

N∑
j=1

aj

⎞
⎠

⎤
⎦ N∏

l=1

a
sl

l ,

(A1)

in the MABK inequalities depend only on s = ∑N
j=1 sk and

N . In particular, we prove that

β(�s) =: β(s,N ) = 2
N+1

2 cos

(
π

4
(1 + N − 2s)

)
, (A2)

for all �s ∈ Z⊗N
2 and N � 2. The proof is by induction in N .

Proof. For the purpose of the proof, we will use �sN−1 and
�sN to denote the (N − 1)-bit string (s1, . . . ,sN−1) and the N -bit
string (s1, . . . ,sN ); likewise for �aN−1 and �aN . Moreover, let us
define s ′ := ∑N−1

k=1 sk , a := ∑N
k=1 ak , a′ := ∑N−1

k=1 ak , and

γ (�sN ) =
∑

�a∈{−1,1}⊗N

√
2 sin

(
π

4
(N + 1 − a)

) N∏
l=1

a
sl

l . (A3)

For N = 2,3, it can be easily checked by explicit calculation
that Eq. (A2) holds. To prove Eq. (A2) for general N > 2, let
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us first establish some recursion relations. To this end, let us
expand Eq. (A1) in terms of aN = ±1 to get

β(�sN ) =
∑

�aN−1∈{−1,1}⊗N−1

√
2 cos

(
π

4
(N − a′)

) N−1∏
l=1

a
sl

l + (−1)sN

×
∑

�aN−1∈{−1,1}⊗N−1

√
2 cos

(
π

4
(N + 2 − a′)

) N−1∏
l=1

a
sl

l .

(A4)

As cos(x + π
2 ) = − sin(x), we have

β(�sN ) = β(�sN−1) − (−1)sN γ (�sN−1) . (A5)

Using a similar argument, we have

γ (�sN−1,1 − sN ) = γ (�sN−1) + (−1)1−sN β(�sN−1)

= −(−1)sN β(�sN ) , (A6)

or equivalently,

γ (�sN ) = −(−1)1−sN β(�sN−1,1 − sN ) . (A7)

By the induction hypothesis, let us suppose that Eq. (A2) is
true for some N = n0 − 1, where n0 � 3, we will now prove
that it also holds for N = n0. Explicitly, note from Eq. (A5)
that

β(�s n0 ) = β(�s n0−1) − (−1)sn0 γ (�s n0−1)

= β(�s n0−1) − (−1)sn0 +sn0−1β(�s n0−2,1 − sn0−1)

= 2
n0
2 cos

[
π

4
(n0 − 2s ′)

]
− (−1)sn0 +sn0−1 2

n0
2

× cos

[
π

4
(n0 − 2(s ′ + 1 − 2sn0−1))

]

= 2
n0
2

{
cos

[
π

4
(n0 − 2s ′)

]
− (−1)sn0

× cos

[
π

4
(n0 − 2s ′ − 2)

]}

= 2
n0
2

{
cos

[
π

4
(n0 − 2s ′)

]

+ cos

[
π

4

(
n0 − 2s ′ + 2 − 4sn0

)]}

= 2
n0
2 +1 cos

[
π

4
(n0 + 1 − 2s)

]
cos

[
π

4
(2sn0 − 1)

]

= 2
n0+1

2 cos

[
π

4
(n0 + 1 − 2s)

]
,

where the second equality follows from Eq. (A7), the third
equality follows from the induction hypothesis, and the other
equalities follow from simple algebraic calculation using
trigonometric identities. �

APPENDIX B: EQUIVALENT MABK INEQUALITIES

Bell inequalities in the same equivalence class are those
that can be obtained from one another by some permutation
of the labels on the parties k, and/or settings sk = 0 ↔ sk = 1
and/or outcomes “+1” ↔ “−1” in the coefficients defining
the inequality [22,23] (see also Ref. [25]). Testing a given set

of correlation functions against a different but equivalent Bell
inequality amounts to testing the same Bell inequality, but with
a different labeling and/or sign on the correlation functions.

Given that there are N ! permutations on the label k,
2N distinct permutations on the labels sk , and two different
labeling of outcomes for each of the 2N measurement
directions, the number of inequalities that are equivalent to
Eq. (20) is upper bounded by N !23N . However, as we will
show, most of these relabelings give identical inequalities. To
this end, let us start by proving the following lemma.

Lemma B.1. For the MABK inequality in Eq. (19), any
relabeling of the measurement outcomes on a subset of parties
k ∈ N can be simulated by a permutation of the label sk for
the remaining parties.

Proof. First, note that the effect of relabeling the measure-
ment outcomes for the j th measurement setting of the kth party
modifies the correlation functions E(�s) by a phase factor, i.e.,

E(�s) → (−1)1+j−skE(�s). (B1)

From this, we can see that relabeling the outcomes of both sk =
0 and 1 will only introduce a global sign change, which has
no effect because of the absolute value function. Henceforth,
we therefore only consider the case where the outcomes of the
measurement corresponding to sk = 1 are relabeled.

For simplicity, let us also consider the scenario where only
the label for the measurement outcome of the kth party is
changed (the proof for the more general scenario proceeds
analogously). We can absorb the effect of this relabeling into
the β’s by setting

β ′(s,N ) = (−1)skβ(s,N ) . (B2)

We now show that this sign change can be simulated by a
change of the label sk for the remaining N − 1 observers, i.e.,
by setting

s ′
l = δkl sl + (1 − δkl)(1 − sl). (B3)

With this new labeling, we have

s ′ =
N∑

l=1

s ′
l = 2sk − 1 +

N∑
l=1

(1 − sl) = N − 1 − s + 2sk .

(B4)

Substituting this into Eq. (20) gives

β(s ′,N ) = 2
N+1

2 cos

(
π

4
(−N + 3 + 2s − 4sk)

)

= −(−1)sk 2
N+1

2 cos

(
π

4
(−N − 1 + 2s)

)

= −(−1)sk 2
N+1

2 cos

(
π

4
(N + 1 − 2s)

)
= −(−1)skβ(s,N ) , (B5)

which is the same as Eq. (B2), except for an overall
sign which has no effect because of the absolute value
function. �

It is then a small step away to prove the following theorem.
Theorem B.1. There are 2N Bell inequalities that

are equivalent to Eq. (19) under relabelings of the
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measurement outcomes, measurement labels, or permutations
of observers.

Proof. There are 2N independent permutations on the
measurement settings, mapping sk = 0 ↔ sk = 1, which give
different inequalities since all the sk’s are independent. By
Lemma B.1, we know that the permutation of measurement
outcomes do not introduce any new inequality beyond this set
of 2N inequalities.

Next, note that a permutation of observers rearranges the
label k, which corresponds to a permutation of the entries in
the vector �s = (s1, . . . ,sN ). Obviously, this leaves the sum of
the entries in �s unchanged. Because β(s,N ) only depends on
s and N , β is invariant under permutations of the entries in �s,
so permutations of the observers simply rearrange the terms in
Eq. (19). �
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