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Uncertainty limits for quantum metrology obtained from the statistics of weak measurements
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Quantum metrology uses small changes in the output probabilities of a quantum measurement to estimate
the magnitude of a weak interaction with the system. The sensitivity of this procedure depends on the relation
between the input state, the measurement results, and the generator observable describing the effect of the weak
interaction on the system. This is similar to the situation in weak measurements, where the weak value of an
observable exhibits a symmetric dependence on initial and final conditions. In this paper, it is shown that the
phase sensitivity of a quantum measurement is in fact given by the variance of the imaginary parts of the weak
values of the generator over the different measurement outcomes. It is then possible to include the limitations of
a specific quantum measurement in the uncertainty bound for phase estimates by subtracting the variance of the
real parts of the weak values from the initial generator uncertainty. This uncertainty relation can be interpreted as
the time-symmetric formulation of the uncertainty limit of quantum metrology, where the real parts of the weak
values represent the information about the generator observable in the final measurement result.
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I. INTRODUCTION

Quantum metrology is the application of quantum mea-
surements to the problem of determining a classical parameter
that describes the magnitude of a well-defined action on the
quantum system. Since this problem avoids many of the am-
biguities associated with quantum measurements and instead
presents a clear practical objective, the field is attracting a lot of
attention, especially from quantum optics where experimental
applications to lithography and precision measurements such
as gravitational wave detection are within the reach of present
technologies [1–11]. Nevertheless all practical applications
of quantum systems also reflect the underlying statistical
structure that distinguishes quantum physics from classical
physics. In quantum metrology, this relation is most clearly
expressed by the uncertainty limit of phase estimation that
identifies the maximal phase sensitivity of a quantum state
with the uncertainty of the generator of the unitary operation
representing the phase shift [12–14]. Such a relation between
uncertainty and precision would be unthinkable in classical
physics, where optimal precision is naturally obtained when
all uncertainties vanish.

At first sight, the uncertainty principle appears to represent
the perfect black box, seemingly frustrating any attempt to
uncover details of the underlying physics. However, a unique
way of beating the uncertainty principle was discovered in
1988 by Aharonov, Albert, and Vaidman [15]: Statistical
information about a system can even be obtained if the
measurement interaction is so weak that the backaction on
the system can be neglected. The average value of the weak
measurement then reveals a time-symmetric dependence on
initial and final conditions, indicating that a more complete
description of quantum statistics is possible [16–18]. However,
the weak values obtained by postselecting a final measurement
outcome can lie far outside the range of possible eigenvalues
[15]. As a result, the interpretation of weak values caused
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some controversy [19,20]. Still, the practical validity of the
experimental prediction was never in question, and there have
been numerous experimental demonstrations of the effect
[21–25]. In particular, it has been shown that weak values
exceeding the maximal eigenvalue of the observable can be
used to amplify the effect of an interaction involving this
observable, thus making it easier to measure small effects
[26–28]. This amplification effect by itself already suggests
some relation between weak values and the sensitivity of
parameter estimation. In a recent study, weak measurements
were therefore compared with interferometry, resulting in
the suggestion that the imaginary part of the weak value
may be useful for the enhancement of sensitivity [29].
However, surprisingly little attention has been paid to the more
fundamental relation between parameter estimation and the
weak values of generator observables.

In the following, it is pointed out that the situation studied
in quantum metrology is in fact identical to the measurement
procedure used to define the imaginary part of the weak
value [30]. Therefore, the phase-estimation problem can be
formulated in terms of the complex weak values of the
generator observable obtained for the different outcomes of the
final measurement by which the phase estimate is obtained. In
this formulation, the phase sensitivity of a final measurement
is given by the fluctuation of the imaginary parts of the
weak values. Since the total fluctuation of the complex weak
values cannot exceed the uncertainty of the initial state, it
is easy to see that phase estimation must be limited by
the generator uncertainty. Moreover, any fluctuations of the
real part of the weak values necessarily reduces the phase
sensitivity that can be achieved in the quantum measurement
by the corresponding amount of uncertainty. As will be
discussed in more detail below, the fluctuations of the real
part of the weak values can be interpreted as a reduction
in the initial uncertainty of the generator observable when
the final measurement result is used to estimate the value
of the observable instead of the parameter. It is therefore
possible to formulate a time-symmetric uncertainty limit of
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phase estimation that treats the information gained about the
generator observable in the final measurement on the same
level as the information initially available in the input state.
The maximal phase sensitivity is then equal to the uncertainty
about the generator observable that remains after the final
measurement. The time-symmetric uncertainty limit of phase
estimation thus indicates a fundamental complementarity
between the dynamics represented by the phase parameter
of a unitary evolution and the accessible information about the
generator observable of that unitary.

II. IMAGINARY WEAK VALUES AS LOGARITHMIC
DERIVATIVES OF PHASE-DEPENDENT

PROBABILITIES

In the typical quantum metrology setup, a quantum state
|ψ〉 is modified by a unitary transformation Û = exp(−iφÂ)
defined by the self-adjoint generator Â and an unknown phase
shift φ. The goal is to estimate the phase shift from the
measurement statistics observed in the output using a quantum
measurement. Since the limit of sensitivity is given by the
ability to detect small phase differences, it is usually sufficient
to consider the case of small phase shifts φ around a phase
value defined as φ = 0. The phase sensitivity is then given by
the differential dependence of the measurement probabilities
p(m) on the phase shift φ. In general, phase sensitivities at
other phase values can be obtained by rotating the quantum
state |ψ〉 to the corresponding initial phase and analyzing
the differential effects of small shifts around this phase
value.

In the following, I will consider the phase sensitivity
achieved by a standard von Neumann measurement repre-
sented by projections on an orthogonal basis set {|m〉}. For
a specific measurement, the problem is essentially a classical
one, defined by the dependence of the probabilities p(m) =
|〈m|Û|ψ〉|2 on the parameter φ. As is well known, the optimal
phase-estimation strategy for this classical statistical problem
achieves a phase sensitivity given by the Cramer-Rao bound.
If the phase sensitivity is expressed in terms of the inverse
quadratic error of the phase estimate for a specific quantum
measurement, the Cramer-Rao bound is equal to the Fisher
information of the phase-dependent probabilities, as given by
the right-hand side of the following equality:

1

δφ2
min

=
∑
m

{
∂ ln[p(m)]

∂φ

}2

p(m). (1)

It is possible to interpret this expression of phase sensitivity
as a statistical variance of an m-dependent estimator defined
by the logarithmic derivative of p(m) in φ. We can now use
the quantum-mechanical definition of the probability p(m)
in terms of the initial state |ψ〉, the final state |m〉, and the
generator of the unitary Â to determine the m-dependent value
of this logarithmic derivative. The result reads

∂ ln[p(m)]

∂φ
= 2 Im

(
〈m|Â|ψ〉
〈m|ψ〉

)
. (2)

Due to the time reversal symmetry of unitary transforma-
tions, this quantum-mechanical expression for the logarithmic
derivative of the output probability is antisymmetric with

regard to an exchange of initial state |ψ〉 and final state |m〉.
In this sense, the logarithmic derivatives can be interpreted as
time-symmetric contributions of the trajectory jointly defined
by initial conditions |ψ〉 and final conditions |m〉 to the
phase-estimation procedure.

In fact, the logarithmic derivative of the output probability
is equal to the imaginary part of the weak value of the
generator Â observed for an initial state |ψ〉 and a final state
|m〉 [15,30]. To understand the reason for this fundamental
relation between phase sensitivity and imaginary weak values,
it is useful to take a closer look at the definition of weak
values. Experimentally, the weak values of an operator Â can
be obtained by observing the average shift of a meter system
induced by a weak interaction generated by the Hamiltonian
given by gp̂Â, where g is a coupling constant and p̂ is the
momentum of the meter system. If no final measurement
is performed, the average of the weak measurement results
corresponds to the expectation value of Â in the initial state
|ψ〉. However, it is possible to define the system more precisely
by performing a final measurement projecting the state onto the
basis states {|m〉}. The average result of the weak measurement
conditioned by the final measurement result m is then equal to
the real part of the weak value:

〈Â〉weak(m) = 〈m|Â|ψ〉
〈m|ψ〉 . (3)

Since the meter shift is a real number, the imaginary part of
the weak value does not appear in the average meter position x̂

measured after the weak system-meter interaction. However, it
has been pointed out that the imaginary part of the weak value
can be observed in a measurement of the meter momentum
p̂ [30]. In the formal mathematical description, this “shift” in
momentum looks just like the shift in pointer position caused
by the real weak values. However, a momentum measurement
commutes with the interaction Hamiltonian, indicating that the
measurement can be interpreted as a selection of an unshifted
momentum component from the statistics of the initial meter
state. The momentum eigenvalue p observed in the meter
measurement can then be treated like a classical random
variable that determines the phase of a unitary operation
acting only on the system. For an interaction time of δt ,
the phase of this unitary is φ = g p δt . The imaginary weak
value is then obtained by determining the correlations between
the momentum eigenvalue p and the change in probability
for a specific outcome m. Effectively, the measurement of
imaginary weak values proposed in Ref. [30] is therefore a
direct experimental determination of the logarithmic derivative
of the output probability p(m) using randomly varying phase
shifts.

III. VARIANCE OF COMPLEX WEAK VALUES
AND TIME-SYMMETRIC UNCERTAINTY

Equations (1) and (2) show that the phase sensitivity of a
quantum measurement corresponds to the fluctuations of the
imaginary weak values for different measurement outcomes
m. In general, each measurement outcome m is associated
with its own complex weak value, as given by Eq. (3). In
this sense, a measurement of m is also a measurement of Â,
even if the states |m〉 are not eigenstates of Â. An important
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observation in this context is due to Hosoya and Shikano [31]:
Regardless of the measurement performed, the variance of
the complex weak values of any observable is exactly equal
to the uncertainty of the same observable in the initial pure
state,

∑
m

|〈Â〉weak(m) − 〈Â〉|2p(m) = �A2
in, (4)

where the average of the weak values obtained for different
measurement outcomes m is always equal to the expectation
value 〈Â〉 in the initial state |ψ〉. This means that the
distribution of complex weak values obtained for any final
measurement {|m〉} has the same variance as the distribution
of eigenvalues obtained when |m〉 are eigenstates of Â, even
though the individual weak values do not correspond to the
eigenvalues of Â.

With regard to phase estimation, the variance of the complex
weak values can be separated into a contribution from the real
parts of the weak values and a contribution from the imaginary
part of the weak values. According to Eqs. (1) and (2), the
variance of the imaginary weak values is equal to the phase
sensitivity of the quantum measurement. For pure states, the
phase sensitivity is therefore given by

1

δφ2
= 4�A2

in − 4
∑
m

{Re[〈Â〉weak(m)] − 〈Â〉}2p(m). (5)

This equality indicates that, in the pure state limit, quantum
measurements are optimal for phase estimation when the
real weak values of the generator are all equal to the initial
expectation value [32].

Measurement theory provides an intuitive interpretation of
the real weak values as the best possible estimate of Â based
on the final measurement result m [33–35]. Classical statistics
then suggests that the average uncertainty of the estimate of
Â is given by the difference between the initial uncertainty
and the fluctuations of the estimate. In terms of the quantum
formalism, this final uncertainty can be defined as [33]

�A2
est =

∑
m

〈ψ |{Â − Re[〈Â〉weak(m)]}2 |ψ〉 p(m)

= �A2
in −

∑
m

{Re[〈Â〉weak(m)] − 〈Â〉}2p(m). (6)

Therefore, Eq. (5) defines the sensitivity of phase estimation
for pure states as four times the generator uncertainty �A2

est
for estimates based on the final measurement outcome m.

Significantly, the final uncertainty �A2
est represents the

effects of the final measurement in terms of the information
gain about Â. In particular, a precise measurement of Â

reduces the phase sensitivity to zero, while maximal phase
sensitivity is achieved by a measurement that is completely
insensitive to Â. Ultimately, phase sensitivity requires that
both preparation and measurement are equally insensitive to
the generator observable Â. It is therefore possible to interpret
the uncertainty limit given by �A2

est as the time-symmetric
generalization of the initial state limit given by �A2

in.

IV. TIME-SYMMETRIC UNCERTAINTY RELATION

Equation (5) shows that phase estimation and information
about the generator observable are complementary for all
pure states, such that the phase sensitivity is a deterministic
function of the generator uncertainty in estimates based on
the final measurement outcome. In a realistic situation, both
the phase sensitivity and the information available about the
generator Â will be reduced by experimental noise. Intuitively,
it is therefore clear that decoherence effects should reduce the
sensitivity given by 1/δφ2, while the final uncertainty given
by �A2

est should be increased. For the general case of mixed
states and noisy measurements, the relation between phase
sensitivity and final uncertainty of the generator Â is therefore
given by

1

δφ2
� 4�A2

est, (7)

where the phase sensitivity 1/δφ2 and the final uncertainty
�Aest are both defined in terms of the experimentally accessi-
ble measurement statistics of the initial mixed state ρ̂ and the
positive operator-valued measure (POVM) {�̂m} of the final
measurement. Specifically, both can be expressed in terms of
the complex weak values of the generator Â, given by

〈Â〉weak(m) = Tr(�̂mÂ ρ̂)

Tr(�̂mρ̂)
. (8)

As in the pure state case, the phase sensitivity is equal to four
times the fluctuations of the imaginary weak values,

1

δφ2
= 4

∑
m

Im[〈Â〉weak(m)]2Tr(�̂mρ̂), (9)

and the final uncertainty of Â can be given as

�Aest = Tr(Â2 ρ̂) −
∑
m

Re[〈Â〉weak(m)]2Tr(�̂mρ̂). (10)

For the mathematical proof that the uncertainty relation
(7) holds in general, it is sufficient to show that the average
absolute square of the weak values cannot exceed the average
of Â2 in the initial state. This can be done by formulating
the inequality as a Cauchy-Schwarz inequality for the vectors
�̂

1/2
m Âρ̂1/2 and ρ̂1/2�̂

1/2
m . The average over the squared

complex weak values is then limited by

∑
m

|Tr(�̂mÂ ρ̂)|2
Tr(�̂mρ̂)

�
∑
m

Tr(�̂mÂ ρ̂ Â) = Tr(Â2 ρ̂). (11)

Thus, noise in either the state preparation or the measurement
will prevent the exact achievement of the uncertainty limit
given by Eq. (7).

A particularly interesting aspect of the present analysis
is that it applies to noisy measurements. In a realistic
phase-estimation setup, it is equally challenging to realize
a precise quantum measurement as it is to realize quantum
state preparation. Therefore, the phase sensitivity given by
the Fisher information of a quantum state obtained by
optimizing the measurement is not necessarily achievable in
realistic experiments. Equation (11) shows that the statistical
operators representing measurement outcomes and initial
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states contribute symmetrically to the reduction of phase
sensitivity below the uncertainty limit. The analysis of weak
values for noisy measurements may therefore be helpful in
evaluating general requirements for quantum measurements
in terms of the achievable phase sensitivities, including a
possible optimization of the input states based on the available
measurement precision.

V. COMPLEMENTARITY OF DYNAMICS
AND GENERATOR VALUES

On the fundamental level, the time-symmetric uncertainty
limit of phase estimation differs from the conventional limit
for optimized measurements because it includes the effects
of measurement information about the generator in the final
measurement. The final uncertainty �A2

est therefore defines
an uncertainty about the generator Â that cannot be resolved
by any future measurements. It is in effect the uncertainty of
the whole history of the quantum system, between preparation
and measurement. If the history of the quantum system is
represented by an initial state |ψ〉 and a final measurement
{|m〉}, Eq. (5) shows that the initial uncertainty of Â in |ψ〉 is
completely resolved by the measurement, either as generator
information given by the real weak values of Â or as phase
information given by the imaginary values of Â. Equation (5)
thus indicates a fundamental complementarity between the
information obtained about the dynamics generated by Â

and the information about the real value of Â in a spe-
cific measurement {|m〉}, where the balance between the
two kinds of information is given by the complex weak
values.

Ultimately, the measurement of the initial state is maximally
sensitive to phase shifts generated by operators with real weak
values equal to the initial expectation value, and completely
insensitive to phase shifts generated by operators whose
real weak values reproduce the fluctuations of a projective
measurement of the eigenstates. For a given combination
of initial pure state |ψ〉 and final measurement {|m〉}, each
operator Â can be expanded in terms of the phase-adjusted
final states:

|γ (m)〉 = 〈m|ψ〉
|〈m|ψ〉||m〉. (12)

In this expansion, the complex weak value is given by

〈Â〉weak(m) =
∑
m′

〈γ (m)|Â|γ (m′)〉
∣∣∣∣ 〈m′|ψ〉
〈m|ψ〉

∣∣∣∣ . (13)

Since the phase factors originating from the overlaps between
|ψ〉 and {|m〉} have been incorporated in the basis {|γ (m)〉},
the real part of the weak value originates from the real parts of
the matrix elements of Â, while the imaginary part originates
from the imaginary parts. Since Â is self-adjoint, the real part
is given by the symmetric component of the matrix describing
Â, while the imaginary part is given by the antisymmetric
components. It is therefore possible to separate the operator
components describing dynamical changes in the trajectory
from |ψ〉 to {|m〉} from the components describing physical
properties determined by {|m〉}. In particular, the phase
sensitivity and the phase-estimation procedure are completely
independent of the real symmetric part of the generator Â, and

the final measurement {|m〉} is insensitive to the phase shifts
generated by any of its symmetric operators. Each combination
of input state and measurement thus defines a separation of the
d2-dimensional operator space into d(d − 1)/2 antisymmetric
generators of phase shifts observed in the measurement
and d(d + 1)/2 symmetric observables determines by the
measurement.

VI. CONCLUSIONS

In conclusion, it has been shown that quantum metrology
is fundamentally related to weak values, since the logarithmic
derivative of the measurement probability p(m) that plays a
pivotal role in phase estimation is equal to twice the imaginary
part of the weak values of the generator observable. As a
result, the phase sensitivity of pure states is given by the
fluctuations of the imaginary part of the weak values. Since
the total fluctuations of the weak value are always equal to
the inital generator uncertainty for pure states (and smaller
for mixed states), it is possible to characterize the efficiency
of a quantum measurement in terms of the division of weak
value fluctuations into real and imaginary parts. The result
is an uncertainty limit for phase estimation that includes the
information about the generator observable obtained in the
final measurement.

The time-symmetric uncertainty limit of phase estimation
differs from the conventional limit for the input states by
including the statistical properties of the final quantum mea-
surement. It is therefore not a statement about quantum states,
but a statement about the complete phase-estimation process
from state preparation to measurement. The uncertainty then
refers to a lack of information about the generator observable
in the data classically available after all measurements have
been completed. From the practical side, this may make it
easier to describe the effects of measurement errors in the
final measurement and to evaluate the experimental limitations
of quantum measurements. On the fundamental side, it is
interesting to note that each set of state preparation and
measurement separates the space of operator observables into
a set of generators and a set of observables, such that the
phase estimate is optimal for the generators and impossible
for the observables, while estimates of the observable itself
are optimal for the observables and impossible for the
generators.

Ultimately, the connection between phase sensitivity and
weak values could provide an essential link between the
almost classical features of continuous dynamics and the
less intuitive nonclassical aspects of quantum statistics. The
time-symmetric formulation of the uncertainty bound of
quantum metrology may thus be helpful in linking and unifying
different approaches in quantum information and quantum
physics.
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