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Nonlinear Compton scattering of ultrashort intense laser pulses
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The scattering of temporally shaped intense laser pulses off electrons is discussed by means of manifestly
covariant quantum electrodynamics. We employ a framework based on Volkov states with a time-dependent laser
envelope in light-cone coordinates within the Furry picture. An expression for the cross section is constructed
unambiguously in respect of the pulse length. A broad distribution of scattered photons with a rich pattern
of subpeaks like that obtained in Thomson scattering is found. These broad peaks may overlap at sufficiently
high laser intensity, rendering inappropriate the notion of individual harmonics. The limit of monochromatic
plane waves as well as the classical limit of Thomson scattering are discussed. As a main result, a scaling law
is presented connecting the Thomson limit with the general result for arbitrary kinematics. In the overlapping
regions of the spectral density, the classical and quantum calculations give different results, even in the Thomson
limit. Thus, a phase-space region is identified where the differential photon distribution is strongly modified by
quantum effects.
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I. INTRODUCTION

The use of chirped-pulse amplification [1] has led to a
prodigious advance in available laser power. The current
records reach several petawatts, and accompanying interest
in strong-field physics culminates in planned large-scale laser
facilities such as the anticipated “Extreme Light Infrastruc-
ture” (ELI) [2]. The pioneering theoretical studies in strong-
field physics considered both pair creation in a strong field
[3] and the cross-channel process, electron-photon scattering
[4–10], dubbed nonlinear Compton scattering, where the use
of laser beams has already been suggested. Since then there
has been a wealth of theoretical papers and we refer the reader
to the reviews [11–16]. In nonlinear Compton scattering

e(p) + �γL(k) → e′(p′) + γ (k′), (1)

a number � of photons, each with four-momentum k =
ω (1, n), from a high-intensity laser, where ω is the laser
frequency and n is the laser propagation axis, scatter off
an electron (mass m) with four-momentum p = (Ep, p) =
mγ (1,β) (where γ = Ep/m = 1/

√
1 − β2 is the relativistic

Lorentz factor and β = p/Ep denotes the reduced veloc-
ity), producing a single photon with four-momentum k′ =
ω′ (1, n′), emitted with frequency ω′ in the direction n′ =
(cos ϕ sin θ, sin ϕ sin θ, cos θ ). The final-state electron has the
four-momentum p′ = (Ep′ ,p′).

A convenient measure of laser intensity is the dimensionless
laser amplitude a ≡ eE/mω, with E being the root-mean-
square electric field. |e| denotes the elementary charge. The
parameter a is a purely classical quantity, representing the
work performed by the field on the electron in one wavelength.
Thus, a is the classical nonlinearity parameter [17] and it
is related to the ponderomotive potential Up = ma2/2. The
definition of a can be made explicitly Lorentz and gauge
invariant [18]. When a becomes of order unity the quiver
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motion of the electron in the laser beam becomes relativistic
in a classical picture.

The spectrum of nonlinear Compton scattering has been
observed in several experiments colliding laser and electron
beams, such as low-intensity laser photons (a = 0.01) with
low-energy (∼1 keV) electrons from an electron gun [19],
a = 2 photons with plasma electrons from a gas jet [20],
and, more recently, subterawatt photons (a = 0.35) from
a CO2 laser with 60 MeV electrons from a linac at the
BNL Accelerator Test Facility [21]. Using linearly polarized
photons the latter two experiments [20,21] have analyzed
the characteristic azimuthal intensity distributions, confirming
quadrupole and sextupole patterns for the second and third
harmonics, respectively. Recently, the energy spectrum of the
scattered radiation has been measured in an all-optical setup
using laser-accelerated electrons [22].

Probably the best-known experiment is SLAC E-144,
probing strong-field QED using a terawatt Nd:glass laser (a �
0.6) in conjunction with high-energy (46.6 GeV) electrons
[23]. The observation of nonlinear Compton scattering has
been reported [24] as well as the observation of the crossed
process of nonlinear pair creation, due to the interaction of
a Compton scattered high-energy photon with a second laser
beam [25].

The low-energy limit (in terms of laser frequency) of
Compton scattering is Thomson scattering, which is described
completely classically [26,27]. This classical picture is used
as the theoretical framework for many applications of laser
Compton scattering such as x-ray sources [28–30] or diagnos-
tic tools [31]. A convenient parameter to distinguish the two
regimes is the quantity

y� = s� − m2

m2
= 2�k · p

m2
, (2)

where s� = (p + �k)2 expresses the center-of-mass energy
squared for the generation of the �th harmonic in a Lorentz-
invariant manner.1 The � + 1 → 2 process is kinematically

1p and k are four-vectors; thus k · p denotes a scalar product; we
employ units with h̄ = c = 1.
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equivalent to the scattering of one photon with momentum
�k off an electron with momentum p; thus it appears as a
(pseudo) 2 → 2 process. The Thomson regime is recovered
for y� � 1, while for y� > 1 one finds striking differences
from the Thomson scattering. The electron recoil during the
scattering may be quantified by the Lorentz-invariant quantity

t = (p − p′)2 which is in the range 0 � −t � m2 y2
�

1+y�
, i.e., in

the Thomson regime −t/m2 � 1 holds.
A quantity measuring nonlinear quantum effects,

χR = e
√

(Fµνpν)2

m3
= 1

2
ay1, (3)

has been introduced in [4,8]. It measures the work done by the
field over the Compton wavelength m−1 in the rest frame of
the initial electron. Introducing the critical field strength [32]
ES = m2/e = 1.3 × 1018 V/m, this may also be written as
χR = E�/ES , where E� is the rms electric field strength in the
electron’s rest frame. The parameter χR combines nonlinearity
and quantum effects. χR is of the order of unity if both a and y1

are of the order of unity. Thus, the corrections to the classical
description (Thomson scattering) are important if either
(i) an intense high-energy photon pulse, e.g., produced by an
x-ray free-electron laser, interacts with low-energy electrons,
or (ii) a multi-GeV electron beam is brought into collision
with an optical high-intensity laser. The latter scenario is
similar to the SLAC E-144 experiment but with a higher
value of a. For the 50 GeV SLAC beam in conjunction with a
counterpropagating optical laser (ω ∼ 1 eV) one has y� ∼ 1.
These parameters will be used mainly below for numerical
calculations. The FACET project [33] at SLAC envisages
investigations within such kinematics in line with (ii).

Intense lasers use short pulses (few femtosecond, few
laser cycles) requiring a proper treatment of the laser pulse
structure. Rich substructures of the scattered photon spectra
were predicted within the classical picture [34–37] of Thomson
scattering. These substructures have not yet been confirmed
experimentally. The effect of radiation back reaction on the
spectra was studied in [38] and found to be important. Only
a few publications address quantum calculations in pulsed
fields for scalar particles [39] and for spinor particles [40,41].
In [42], a connection between the emitted angular spectrum in
nonlinear Compton scattering and the carrier envelope phase
in few-cycle laser pulses was established. In a related field,
electron wave-packet dynamics in strong laser fields has been
studied in, e.g., [43,44].

In our paper we calculate the emitted photon spectrum
in nonlinear Compton scattering using a generalized Volkov
solution with temporal shape in light-cone coordinates. The
aim of our study is to compare the QED calculations for
nonlinear Compton scattering with results from a classical
calculation, i.e., Thomson scattering. Our paper is organized
as follows. In Sec. II we present Volkov states in pulsed laser
fields. Section III continues with the calculation of the matrix
element and the transition probability. A slowly-varying-
envelope approximation is discussed. Numerical results are
presented in Sec. IV. We discuss various limiting cases of our
general results, including monochromatic plane waves and
the Thomson limit. As a main result, a scaling law is pre-
sented, connecting the Thomson spectrum with the Compton

spectrum. In the Appendix we present the Fourier transforma-
tion of the Volkov state which furnishes a representation of the
S matrix in momentum space.

II. TEMPORALLY SHAPED VOLKOV STATES

A strong laser field may be considered as a coherent state of
photons |C〉, characterized by the polarization and momentum
distribution Cµ(k), if the depletion of the laser photons from
|C〉 by an interaction process with electrons is negligible, i.e.,
for any relevant scattering process S = 〈out; C ′|S|in; C〉 with
C ′ = C is valid, where “in” and “out” are particle number states
without coherent parts [45]. Then, it is possible to work within
the Furry picture [46], where the interaction of an electron
with the classical background field Aµ(x), which is the Fourier
transform of Cµ(k), is treated nonperturbatively and solutions
of the Dirac equation

(i 
∂ − e
A − m)ψ(x) = 0 (4)

are utilized as basic “in” and “out” states for the perturbative
expansion of the S matrix. For background fields in the form
of plane waves, closed solutions of (4) can be found,

ψp,s(x) =
(

1 + e

2k · p

 k 
A

)
exp{iSp(x)} up,s√

2Ep

, (5)

where the free Dirac spinor for momentum p and spin s fulfills
(p
 −m)up,s = 0 and is normalized to ūp,s ′up,s = 2mδss ′ . The
phase is the classical Hamilton Jacobi action

Sp(x) = −p · x + f (k · x), (6)

with f = f1 + f2, f1 = − ∫ k·x
φ0

dφ
eA·p
k·p and f2 = ∫ k·x

φ0
dφ e2A2

2k·p .
Equation (5) represents the famous Volkov states, whose
perturbative expansion in terms of interactions with the laser
field is depicted in Fig. 1 of [45] (the expansion parameter,
i.e., the coupling strength at the vertices, is a0 defined below).

For the vector potential we use a real transverse plane wave

Aµ = A0 g(k · x) (εµ

1 cos ξ cos k · x + ε
µ

2 sin ξ sin k · x), (7)

modified by an envelope function g and fulfilling A · k = 0
and k · k = 0. The parameter ξ determines the polarization of
the laser: It is linearly x (y) polarized for ξ = 0 (ξ = π/2)
and circularly polarized for ξ = ±π/4. For other values of ξ ,
the laser is elliptically polarized [47]. The vector potential is
normalized such that the mean energy density or the energy
flux 〈E2〉 ∝ −AµAµ = g2A2

0/2, where 〈· · ·〉 means averaging
over the fast oscillations of the carrier wave, is independent
of ξ , but the dimensionless laser amplitude a, as defined in
the Introduction, is time dependent. A time-independent laser
strength parameter may be defined by the normalized peak
value of the vector potential a0 = eA0/m (with this definition,
a2 = a2

0/2 for g ≡ 1). The vector potential (7′) can also be
cast into a complex form,

Aµ = A0g(k · x)

2

(
ε

µ
+e−ik·x + ε

µ
−e+ik·x) = A0g

2
Bµ, (7′)

with the complex polarization vectors ε
µ
± = cos ξε

µ

1 ±
i sin ξε

µ

2 and ε+ · ε− = −1, ε± · ε± = sin2 ξ − cos 2ξ , and the
definition Bµ = ε

µ
+e−ik·x + ε

µ
−e+ik·x .
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In what follows, the temporal pulse shape will often be
chosen as a hyperbolic secant pulse,

g(k · x) = 1

cosh
(

k·x
σ

) , (8)

with width σ , or a Gaussian

g(k · x) = exp

{
− (k · x)2

2σ 2

}
. (9)

In addition to these special cases, any other smooth function
g which depends solely on k · x is possible.

Since the vector potential Aµ depends only on k · x, it is
convenient to work in light-cone coordinates [39,41], defined
with respect to the lightlike four-vector n+ = k/ω = (1,n). We
will always choose the coordinate system such that the laser
pulse propagates along n = (0,0, − 1). Then the light-cone
components of a four-vector Bµ may be defined by a projection
via

B+ ≡ B · n+ = B0 + B3, B− ≡ B · n− = B0 − B3, (10)

B⊥ ≡ (B1,B2) (11)

with n
µ
− = (1, − n). In these new coordinates, the scalar prod-

uct reads A · B = 1
2 (A+B− + A−B+) − A⊥ · B⊥. Arranging

these components as a four-vector B = (B+,B−,B⊥), one may
introduce a nondiagonal metric

gµν =

⎛
⎜⎜⎜⎝

0 1
2 0 0

1
2 0 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ (12)

with determinant
√−g = 1/2; thus the Lorentz-invariant

volume element is
√−gd4x = 1

2dx+dx−d2x⊥. The inverse
transformation is given by B0 = 1

2 (B+ + B−), B3 = 1
2 (B+ −

B−). With this convention for light-cone coordinates, the
relation k · x = ωx+ holds, and the conjugate momentum to x+
is P−, and vice versa. The mass-shell relation or free-particle
dispersion relation E2

p = p2 + m2 reads

p− = p2
⊥ + m2

p+
. (13)

In these coordinates, the Volkov wave function (5) reads

ψp,s(x) = Cp(x⊥,x−,x+)
up,s√
2Ep

, (14)

Cp(x⊥,x−,x+) = [1 + dpg(x+)( 
 k
 ε−eiωx++ 
 k
 ε+e−iωx+ )]

× e− i
2 (p+x−+p−x+)+ip⊥·x⊥+if (x+) (15)

with dp = a0m/(4k · p). Some details of the Volkov solution
(14) and (15) are considered in [49] (cf. Figs. 1 and 2 therein).
For instance, the effect of the laser pulse is a local deformation
of the electron wave fronts due to the buildup of an effective,
time-dependent momentum qµ(x+) = pµ + g2(x+)bpkµ with
bp = m2a2

0/4k · p. The momentum qµ(x+) achieves its maxi-
mum at the center of the laser pulse, x+ = 0. Thus, inside the
laser pulse, especially for x+ = 0, the fully dressed electron
wave function behaves as ∝e−iq·x = e−i(m+bpω�)t+ibpω�z in a
reference frame comoving with the initial electron outside the

laser pulse, i.e., p = (m,0,0,0), in contrast to the free-electron
wave function ∝e−ip·x = e−imt , i.e., the electron wavelength
changes and the wave fronts become tilted. Both effects are
proportional to the ponderomotive potential, i.e., ∝bpω� =
ma2

0/4 = Up/2, where ω� = p · k/m is the laser frequency in
the frame comoving with the initial electron.

III. CALCULATION OF THE MATRIX ELEMENT

A. The S matrix

The interaction of the Volkov electron eV with photon
modes different from the laser field is treated by a perturbative
S matrix expansion. The Born approximation of the matrix
element for the emission of one photon, i.e., nonlinear
Compton scattering eV (p) → eV (p′) + γ (k′), is depicted in
Fig. 1. Using Feynman rules [48], the S matrix element for
such a process is given by

Sf i = 〈p′,s ′; k′,ε′
λ′ |S[A]|p,s〉

= −ie

∫
d4xψ̄p′,s ′ (x)

eik′ ·x
√

2ω′ 
 ε′
λ′ψp,s(x), (16)

which reads in light-cone coordinates, suppressing spin (s,s ′)
and polarization indices of the outgoing photon (λ′) from
now on,

Sf i = N0

∫
d4xūp′ (1 + dp′g 
 B
 k)

× 
 ε′(1 + dpg 
 k
 B)upei(Sp−Sp′ +k′·x) (17)

= N0

2

∫
d2x⊥dx+dx− �(x+) eiH (x+,x−,x⊥) (18)

with N0 = −ie/
√

2ω′2Ep2Ep′ and

�(x+) = T 0
0 + g eiωx+T 1

1 + g e−iωx+T 1
−1 + g2 T 2

0

+ g2 e2iωx+T 2
2 + g2 e−2iωx+T 2

−2, (19)

where

T 0
0 = ūp′ 
 ε′up, (20)

T 1
±1 = ūp′ (dp′ 
 ε∓
 k
 ε′ + dp 
 ε′
 k
 ε∓)up, (21)

T 2
0 = 4(k · ε′)dpdp′ ūp′ 
 kup, (22)

T 2
±2 = dpdp′ ūp′( 
 ε∓
 k
 ε′ 
 k
 ε∓)up. (23)

Because 
 ε∓
 k
 ε′
 k
 ε∓ = −2(ε′ · k)(ε∓ · ε∓) 
 k, one finds
T 2

±2 = 0 for circular polarization. Furthermore,

H (x+,x−,x⊥) = Sp − Sp′ + k′ · x

= (p′ + k′ − p) · x + f (x+) − f ′(x+) (24)

FIG. 1. Feynman diagram for nonlinear Compton scattering as
the decay of a laser dressed Volkov electron state.
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with f ′ = f (p → p′) = f1(p′) + f2(p′) and

f1(x+; p)

= − ma0

k · p

∫ k·x

φ0

dφ g(φ)[p · ε1 cos ξ cos φ+p · ε2 sin ξ sin φ],

(25)
f2(x+; p)

= − m2a2
0

2k · p

∫ k·x

φ0

dφ g2(φ)[cos2 ξ cos2 φ + sin2 ξ sin2 φ].

(26)

Inspecting Eq. (24), it is obvious that the dependence of H on
x− and x⊥ is trivial and the integrations over these variables
in Eq. (18) can be done analytically. As a result, momentum
conservation is imposed on the components p′

+ = p+ − k′
+

and p′⊥ = p⊥ − k′
⊥, and the exponent

H+(x+) = 1
2 (k′

− + p′
− − p−)x+ + f (x+) − f ′(x+) (27)

remains. Due to the nontrivial pulse-dependent structure of
H+, the x+ integration does not yield another conservation
law. Thus, the frequency of scattered photons ω′ is not fixed by
energy and momentum conservation as a function of scattering
angle θ , i.e., ω′ remains as independent parameter. Including
the x+ dependence of �(x+), some rather complicated func-
tions of ω′ emerge:

A M
N =

∫ ∞

−∞
dx+gM (x+) exp i{H+(x+) + Nωx+}. (28)

With these definitions, the S matrix element can be written as

Sf i = (2π )3δ2(k′
⊥ + p′

⊥ − p⊥)δ(k′
+ + p′

+ − p+)N0M (29)

with

M = T 0
0 A 0

0 + T 1
1 A 1

1 + T 1
−1A

1
−1 + T 2

0 A 2
0

+T 2
2 A 2

2 + T 2
−2A

2
−2. (30)

For a derivation in momentum space see the Appendix. The
integrals A M

N are numerically convergent for M � 1 due to
the presence of the pulse function in the integrand, rendering
the range of integration practically finite. The integral A 0

0 ,
however, contains a divergent part and must be regularized.
A possible method has been proposed in [41], where one
multiplies the integrand with a convergence factor e−ε|x+|, ε >

0, and performs an integration by parts. The result is

A 0
0 = − 2

P−

∫ ∞

−∞
dx+

d(f − f ′)
dx+

exp{iH+(x+)}

+ 4ei[f (0)−f ′(0)] lim
ε→0+

ε

P 2− + ε2
(31)

with P− = k′
− + p′

− − p−. In (31), the first part is now conver-
gent and the second part is proportional to a δ distribution with
support at ω′ = 0. The latter contribution can be neglected in
our analysis for ω′ > 0. Physically, this last term relates to
the scattering of free electrons in the “in” and “out” states,2

2It is seen best in a momentum representation that there is a
contribution to the Volkov state from the free electron without any
interaction with the laser field; see the Appendix.

i.e., the dressed-electron lines are replaced by free-electron
lines in the Feynman diagram in Fig. 1, which is forbidden by
energy momentum conservation. Consequently, from ω′ = 0
follows k′ = 0; there is no scattering described at all by this
contribution (i.e., p′ = p). The regularized version (31) of A 0

0
will be used in the subsequent numeric calculations.

B. Slowly-varying-envelope approximation

The calculations are simplified by utilizing the slowly-
varying-envelope approximation (SVEA) of the phase of the
A M

N functions. This approximation scheme is suitable for
long pulses with σ � 1. Typically σ is proportional to the
number of laser oscillations under the envelope. For f1, which
is proportional to g [see Eq. (25)], an integration by parts is
performed, yielding∫

dφ g(φ) sin φ = −g(φ) cos φ +
∫

dφ
dg

dφ
cos φ, (32)

∫
dφ g(φ) cos φ = g(φ) sin φ −

∫
dφ

dg

dφ
sin φ. (33)

The SVEA basically means neglecting the second terms
containing the derivative of the pulse shape dg/dφ because it
is O(1/σ ) smaller than the first term. For f2 [∝g2; cf. Eq. (26)]
we use∫

dφ g2(φ) cos2 φ ≈ 1

2

∫
dφ g2(φ) + 1

2
g2(φ) sin φ cos φ,

(34)∫
dφ g2(φ) sin2 φ ≈ 1

2

∫
dφ g2(φ) − 1

2
g2(φ) sin φ cos φ,

(35)

which becomes particularly handy if
∫

dφ g2 is known
analytically, such as for the hyperbolic secant pulse (8), where∫

dφ cosh−2 φ/σ = σ tanh(φ/σ ) + const, or the Gaussian
pulse (9),

∫
dφ exp(−φ2/2σ 2)2 = √

πσerf(φ/σ )/2 + const,
where erf(x) is the normalized error function. Finally, the
SVEA result for the phase reads

f1=− ma0

k · p
g(x+)[p · ε1 cos ξ sin ωx+−p · ε2 sin ξ cos ωx+],

(36)

f2 = − m2a2
0

4k · p

[ ∫ ωx+
dφ g2(φ)

+ g2(x+) cos ωx+ sin ωx+(cos2 ξ − sin2 ξ )

]
, (37)

generalizing the approximation scheme of [40] to linear laser
polarization.

Even for short pulses, such as for σ = 5, meaning that
there are about five laser oscillations in the pulse, i.e., the
pulse length is ≈15 fs for λ = 800 nm, the SVEA is quite a
good approximation; see Fig. 2 for selected examples.

C. The spectral distribution of scattered photons and
the cross section

In the standard formalism, scattering experiments are
thought of as constant streams of particles interacting. Con-
sequently, the square of the S matrix contains a factor T
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FIG. 2. (Color online) Comparison of the SVEA (dark-colored dashed and dotted curves) and the full numerical results (light-colored
solid curves) for different scattering angles θ = 0 (red dashed), θ = 1/γ (blue dotted), and θ = 2/γ (green dash-dotted) for the real parts of
the functions A 0

0 (top row) and A 1
−1 (bottom row) for σ = 5 as a function of the normalized frequency ω′/4γ 2ω. Parameters are a0 = 1.5,

ω = 1.5 eV, γ = 105. Left (right) panels are for circular (linear) polarization.

which originates from the square of the energy-momentum
conservation; it is interpreted as δ(Pi − Pf )2 → V T

(2π)4 δ(Pi −
Pf ), with the volume V and interaction time T which are
both set to infinity. For the purpose of rendering this quantity
finite, usually the differential rate per unit time and unit

volume, dwi→f = |Sf i |2
V T

d�, is considered, where d� denotes
the final-state phase space. Here, however, the interaction is
happening only within a finite time interval. Because of lacking
one δ distribution, the square of the S matrix now reads

|Sf i |2 = (2π )3V δ(p′
⊥ + k′

⊥ − p⊥)δ(p′
+ + k′

+ − p+)|N0M |2,
(38)

where the dependence on the finite interaction time is con-
tained in M . Thus, it is not necessary to define a differential
rate per unit time. An appropriate observable is the Lorentz
invariant emission probability of photons per unit volume and
laser pulse,

dN = |Sf i |2
V

d�, (39)

which has as a classical analog the spectral density of scattered
photons in Thomson scattering (cf. [26,37]),

d2Nclassical

dω′d�
= − ω′

16π3
j ∗(k′) · j (k′), (40)

jµ(k′) = e

∫
dτuµ(τ ) eik′ ·x(τ ), (41)

where uµ(τ ) and xµ(τ ) are the classical four-velocity and orbit
from a solution of the Lorentz force equation for a spinless

pointlike charge, and jµ(k′) is the retarded Fourier transform
of the electron current. The notion of Thomson scattering
is specified to mean this particular calculation scheme. A
quantum spectral density is given by the expression

d2Nss ′λ′

dω′d�
= ω′e2

16π3

|Mss ′λ′ |2
4p+p′+

(42)

which is (39) integrated over the final electron momentum p′
and we note the spin and polarization dependence explicitly
here. Averaging over the spin of the incoming electron and
summing over the spin of the outgoing electron and the
polarization of the outgoing photon yields a quantity which
is directly comparable to the classical spectral density,

d2Nquantum

dω′d�
= 1

2

2∑
s,s ′=1

∑
λ′

d2Nss ′λ′

dω′d�
, (43)

where the integrated photon number Nquantum is a Lorentz
invariant. We can construct a cross section, unambiguously
in respect of the pulse shape and pulse length (a different
definition of the cross section without this property has been
proposed in [41]), by dividing Eq. (43) by the normalized
number of photons, NL, in the laser pulse, i.e.,

d2σ

dω′d�
= 1

NL

d2Nquantum

dω′d�
(44)

with NL = ∫ ∞
−∞ dt

〈|S|〉
ω

, where S = E × B is the Poynting
vector of the laser field, derived from the vector potential (7′),

022101-5
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FIG. 3. (Color online) Total cross section σtot for Compton
scattering normalized to the Thomson cross section σT . Red curve,
Klein-Nishina cross section. Symbols, numerically calculated cross
section in a pulsed laser field with a0 = 0.001. Blue stars, σ = 20
for a hyperbolic secant pulse; green circles, σ = 30 for a Gaussian
pulse; black diamonds, σ = 100 for a Gaussian pulse.

yielding

NL = ω

2

a2
0m

2

e2

∫ ∞

−∞
dt g(t)2 (45)

with
∫ ∞
−∞ dt cosh−2 φ/σ = 2σ/ω and

∫ ∞
−∞ dt exp(−φ2/

2σ 2)2 = √
πσ/ω for the pulse shapes (8) and (9), respectively.

Using this definition, the total cross section is independent of
the pulse shape function g and the pulse length σ in the limit
a0 → 0. This has been checked numerically by a comparison
of dσ

d�
= ∫

dω′ d2σ
dω′d�

with the differential Klein-Nishina cross
section [48], or σtot = ∫

dσ
d�

d� with the total Klein-Nishina
cross section. In particular, in the limit y1 → 0 we obtain
the total Thomson cross section σT = 665.25 mb accurately,
as exhibited in Fig. 3 for three different pulse shapes and
pulse lengths. In the nonlinear regime, d2σ/dω′d� becomes
an effective cross section [50] as it explicitly depends on
the laser strength parameter a0 as well as on details of the
pulse shape. For a given pulse shape function g, the cross
section dσ

d�
for the first harmonic is a characteristic function,

i.e., independent of the pulse length σ . This was confirmed
numerically with great accuracy by considering Gaussian
pulses with σ = 10, . . . ,600.

IV. DISCUSSION

A. Monochromatic limit

In the famous case of monochromatic Compton scattering,
the frequency of the scattered photon is uniquely defined by
the scattering angle. For a finite temporal laser pulse, however,
this tight relation is lost. As outlined in Sec. III C, there is a
distribution of the emitted photons for a fixed angle. As an
example, we exhibit in the left top panel of Fig. 4 the spectral
density d2Nquantum/dω′d� as a function of � ′ = ω′/ω′

1,classical
for fixed �. The vertical thin lines depict the positions of
the harmonics for a monochromatic plane wave with infinite
duration at the same value of a0, given by [48]

ω′
� = ω′

�,quantum = �k · q

(q + �k) · n′ , (46)

introducing the intensity-dependent quasimomentum of the
electron q

(′)
− = p

(′)
− + bp(′)k− with bp(′) = m2a2

0/4k · p(′) and
the dressed mass-shell relation q2 = q ′2 = m2

∗ = m2(1 +
a2

0/2), where p′
− = [(p′

⊥)2 + m2]/2p′
+ is determined by the

free-particle dispersion relation and p′
+ and p′

⊥ are fixed
by energy-momentum conservation [see below (26)]. Note
that only p

(′)
− , the conjugate momentum to x+, is modified

by an intensity-dependent contribution, i.e., q
(′)
+ = p

(′)
+ and

q(′)
⊥ = p(′)

⊥ . The integer � labels the individual harmonics, which
are not equidistant in general.

In a pulsed laser field, each harmonic consists of a bunch of
spectral “lines” (or subpeaks) visible in the top panels of Fig. 4
with a certain width �ω′

� determined by the maximum value
of intensity in the laser pulse. The high-energy tail of each
harmonic bunch is given by ω′

�(a0 → 0) which is produced at
the edges of the laser pulse. The low-energy edge is given by
ω′

�(a0) and accounts for the maximum redshift at the center of
the pulse. Thus, the spectral width of each harmonic � is given
by

�ω′
� = ω′

�(a0 → 0) − ω′
�(a0)

= ω′
�(a0)ω′

�(a0 → 0)
bpk · n′

�k · p
. (47)

The number of subpeaks in a bunch is proportional to the
pulse length σ and the intensity a2

0 . The highest subpeak takes
its maximum value at a higher frequency ω′ than predicted by
(46), and thus at a smaller intensity-dependent redshift than the
monochromatic harmonics due to a lower average a0. Hence,
one could say that this maximum is blueshifted as compared
to the monochromatic plane wave.

Increasing σ from 20 to 50 does not lead to an accumulation
of spectral weight at the nonlinear Compton frequencies as
could be expected naively. The number of subpeaks increases
but the average shape of the harmonic bunch is more or less the
same for σ = 20 and 50 with the same spectral width. In fact,
to obtain the monochromatic limit, it is not efficient to take
simply the limit σ → ∞. A method with better convergence
is to introduce a flat-top area in the pulse. This, however,
introduces a second pulse length parameter: The total pulse
length now consists of the rise “time” σ and the flat-top “time”
τ . The flat-top part of the pulse is parametrized as gbox(φ; τ ) =
�(φ + πτ )�(πτ − φ), where a factor π is introduced so that
τ is comparable to the Gaussian and hyperbolic secant widths
σ in terms of laser oscillations under the envelope, and �(φ)
is the Heaviside step function. Then, the complete pulse is
parametrized as

gflat top(φ; σ,τ ) = gbox(φ; τ ) + g(φ − πτ )�(φ − πτ )

+ g(φ + πτ )�(−φ − πτ ). (48)

The spectrum converges rather fast to sharp peaks centered
at the nonlinear Compton frequencies upon increasing τ

from 0 to 30 while keeping σ = 20 constant, as seen in the
bottom panel of Fig. 4: The strengths are located at the sharp
nonlinear Compton energies. The remaining wiggles around
the nonlinear Compton energies vanish upon increasing τ

further.
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FIG. 4. (Color online) Top panels: Spectral density d2Nquantum/dω′d� as a function of the scaled frequency � ′ = ω′/ω′
1,classical for a

hyperbolic secant pulse with σ = 20 (left) and 50 (right). Bottom panel: Spectral density for a flat-top pulse with hyperbolic secant edges,
τ = 30 and σ = 20. In all panels a0 = 1.0, γ = 105, ω = 1.5 eV, θ = 1/γ , and ϕ = 0. The thin vertical lines depict the nonlinear Compton
energies defined in Eq. (46).

In the monochromatic limit τ → ∞, the rising and trailing
edges of the pulse shape function become unimportant, i.e.,
g → 1, and the function H+ in (27) reduces to

H+ = 1

2
(k′

− + q ′
− − q−)x+ + α1 sin ωx+ − α2 cos ωx+

− bp − bp′

2
(cos2 ξ − sin2 ξ ) sin 2ωx+ (49)

with αi = ma0(εi · p/k · p − εi · p′/k · p′) and identifying
the electron quasimomenta q

(′)
− . Upon plugging (49) into

(18) and expanding into a Fourier series, one obtains a
fourth energy-momentum conservation by integrating over x+,
yielding q− + �k− = q ′

− + k′
−. The four energy-momentum

constraints together lead again to Eq. (46).
The individual harmonics, consisting of a multitude of

subpeaks, begin to overlap if the lower edge of the (� +
1)st harmonic coincides with the upper edge of the �th
harmonic, i.e.,

ω′
�(a0 → 0) � ω′

�+1(a0). (50)

This happens always for sufficiently large values of a0

and �. The notion of individual harmonics becomes in-
appropriate, as one rather observes a continuous spectral
distribution.

B. Comparison with Thomson scattering

There are different bookkeeping parameters for the char-
acterization of the Thomson regime as the limiting case
of the presently considered scenario. One parameter is y�

introduced in Eq. (2). An alternative would be to employ
the outgoing momenta instead of the incoming ones, defining
ŷ = (ŝ − m2)/m2 with ŝ = (p′ + k′)2. When four-momentum
conservation holds, both definitions coincide (since k′ and p′
both depend on �) and ŝ coincides with the usual Mandelstam
variable s. However, this is not the case here. These recoil
parameters are compared in Fig. 5. The parameter ŷ is a

FIG. 5. (Color online) Different recoil parameters ŷ(ω′) and y�

for � = 1,2,3 as functions of the scaled frequency � ′ = ω′/ω′
1,classical.
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function of ω′, as it depends on ω′ through k′,

ŷ = 2
p′ · k′

m2
= 2

m2

(p · k′) (p · k)

(p · k − k′ · k)
= 2γ 2ω′(1 − n′ · β)

mγ − ω′ 1−n·n′
1−n·β

,

(51)

which diverges at ω
′
∞ = mγ (1−n·β)

1−n·n′ , defining the boundary of
phase space. Thus the physical phase space is given by 0 �
θ < π , 0 � ϕ < 2π , and 0 < ω′ < ω′

∞. An interpretation of
the phase-space boundary will be given in Sec. IV C.

To relate the Compton amplitude with the classical
Thomson counterpart it is instructive to consider the phase
exponential, e.g., H+ ± ωx+ in A 1

±1; cf. Eq. (28). For
the sake of simplicity, a backscattering head-on geometry
with a circularly polarized laser is assumed in this sec-
tion. Then, after using some light-cone algebra, the phase
reads

H+ ± ωx+ =
[
k′
− + p′

− − p−
2

± ω

]
x+

−
(

m2a2
0

4k · p
− m2a2

0

4k · p′

)∫ ωx+
dφ g2(φ) (52)

=
[

k′ · p

n+ · p′ ± ω

]
x+ + k′ · k

(k · p)(k · p′)

× m2a2
0

4

∫ ωx+
dφ g2(φ). (53)

Momentum conservation implies n+ · p′ = n+ · p − n+ · k′.
For n+ · k′ � n+ · p, the leading term

[
k′ · p

n+ · p
x+ ± ω

]
+ k′ · k

(k · p)2

m2a2
0

4

∫ ωx+
dφ g2(φ)

= k′ · x(τ ) ± ωx+ (54)

agrees with the corresponding expression obtained in a
classical calculation for Thomson scattering (cf. [37]). The
frequency of backscattered photons in monochromatic plane
waves is obtained from (46) by neglecting �k with respect to
q in the denominator, i.e.,

ω′
�,classical = �

k · q

q · n′ . (55)

In Thomson scattering, the harmonics are always equidistant.
A series of plots showing the transition from Thomson to
Compton scattering is exhibited in Fig. 6. The deviations
between Thomson and Compton scattering are (i) a nonlinear
redshift in frequency and (ii) a slight modification in the
amplitude starting notably at y1 = 0.12. It is obvious that
the redshift is much more pronounced at higher frequencies.
Figure 6 quantifies the well-known fact [48] that Compton
scattering turns into Thomson scattering in the low-energy
limit. For the chosen parameters (a0 = 1.0,ω = 1.5 eV) the
differences become significant for γ � 104. Very drastic
differences are obvious for γ = 105 (bottom right panel of
Fig. 6).

C. Scaling properties of the spectral density

The classical and quantum spectral densities for arbitrary
pulse shapes can be related by the scaling law

d2Nclassical

dω′d�
(ω′,θ ) = 1

η

d2Nquantum

dω′d�
(χω′,θ ) (56)

with the two scaling factors η and χ which are determined by
the monochromatic results. The frequency scaling factor χ is
given by

χ = ω′
�,quantum

ω′
�,classical

= n′ · u + n′ · n
a2

0
4n·u

n′ · u + n′ · n
( a2

0
4n·u + � ω

m

) = q · n′

(q + �k) · n′

(57)

where u = p/m. A continuous effective �eff has to be used,
which follows from the inversion of ω′

�,quantum, yielding

�eff(ω
′) =

ω′
ω

(
n′ · u + n′ · n

a2
0

4n·u
)

n · u − n′ · nω′
m

= q · k′

q · k − k′ · k
, (58)

which simplifies to χ = 1 − k′ · k/p · k = 1 − k′
+/p+. The

scaling of the frequency naturally also includes the scaling
behavior of the phase-space factor, which is proportional
to ω′2.

The scaling factor η describes the scaling of the differential
probabilities defined by

η =
(

ω′−2
quantum

dσquantum

d�

) (
ω′−2

classical

dσclassical

d�

)−1

, (59)

where the differential cross sections dσquantum and dσclassical

are the monochromatic plane-wave cross sections, yielding
for circular polarization [37]

η = J�

K�

= 1 + x2

1 + x

L�

2L� − 8
a2

0
J 2

� (z)
, (60)

where x = (1 − χ )/χ , y∗ = 2�k · p/m2
∗, and �eff has to be

used instead of � everywhere. The other definitions are L� =
J 2

�+1(z) + J 2
�−1(z) − 2J 2

� (z), K� = −8J 2
� (z)/a2

0 + 2L�, J� =
K� + x2

1+x
L�, and z = 2�

√
a2

0/2
1+a2

0/2

√
x
y∗

(1 − x
y∗

); J� are Bessel

functions of the first kind. In the limit a0 → 0 one gets

lim
a0→0

η = 1 + x2

1 + x

1

2 − 4 x
y∗

(
1 − x

y∗

) , (61)

which is a good approximation for a0 < 1. For linear laser
polarization we expect a similar relation to hold, but with
the appropriate linearly polarized monochromatic plane-wave
cross section instead.

The scaling function χ is related to the momentum transfer
from the incoming electron to the outgoing electron via p′

+ =
χp+. Thus, χ is the fraction of p+ momentum transferred
from the incoming electron to the outgoing electron p′

+.
Furthermore, the fraction of momentum transferred to the
photon is k′

+ = (1 − χ )p+ so that 1 − χ is another measure of
the electron recoil. χ is a monotonically decreasing function of
ω′. The point χ (ω′) = 0 corresponds to p′

+ = 0 and k′
+ = p+,

i.e., the total amount of momentum is transferred from the
electron to the photon. Further increase in ω′ would render
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FIG. 6. (Color online) The photon spectrum d2N/dω′d� as a function of the scaled frequency � ′ = ω′/ω′
1,classical(θ ) for γ =

102,103,104,3 × 104,6 × 104,105 (i.e., y1 = 0.0012,0.012,0.12,0.35,0.7,1.2) from top left to bottom right for θ = 1/2γ and ϕ = 0 for a
hyperbolic secant pulse shape. The upper blue curves are for the quantum spectral density d2Nquantum/dω′d� (43) of Compton scattering,
whereas the lower red curves are the classical spectral density d2Nclassical/dω′d� (40) of Thomson scattering. The vertical gray lines mark the
positions of the monochromatic harmonics Eqs. (46) and (55) in the upper and lower halves of each panel, respectively. The other parameters
are a0 = 1.0, ω = 1.5 eV, σ = 20, and ξ = 0, i.e., linear laser polarization.

χ as well as p′
+ negative. This defines the boundary of the

physical phase space for the outgoing particles. When p′
+ < 0,

then, due to the free-particle dispersion relation (13), also
p′

− < 0. This, however, would lead to a negative energy Ep′

because Ep′ = (p′
+ + p′

−)/2 < 0. Consequently, there exists
a maximum frequency ω′

∞, defined by χ (ω′
∞) = 0:

ω′
∞ = p · k

n′ · k
= mγ (1 − n · β)

1 − n · n′ , (62)

which can also be obtained as the limit lim�→∞ ω′
� = ω′

∞,
with ω′

� from Eq. (46). This also coincides with the singularity
in ŷ; see Eq. (51). For the backscattering head-on geometry
we obtain ω′

∞ = m/2 for electrons initially at rest and
ω′

∞ = mγ (1 + β)/2 ≈ Ep for ultrarelativistic particles, i.e.,

the maximum backscattered frequency is determined by the
energy of the incoming electron. The momentum components
p′

+, p′
−, and Ep′ are depicted in the left panel of Fig. 7 as

functions of ω′ in the electron rest frame. The right panel of
Fig. 7 shows the dependence of ω′

∞ on the scattering angle θ .
It takes its minimum at the backscattering direction θ = 0 and
goes to infinity in the limit θ → π , i.e., forward scattering.

D. Further differences between the classical
and QED calculations

As demonstrated in the preceding sections and quantified
by the scaling law, the main difference between the spectral
densities of Thomson and Compton scattering is caused by
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FIG. 7. (Color online) Left panel: Different components of the outgoing electron momentum p′
X as a function of frequency ω′ for

backscattering geometry in the rest frame of the incoming electron. Shown are p′
− (red, dash-dotted), p′

+ (green, dashed), and p′
0 = Ep′ (blue,

solid). The physical phase space has its support at χ > 0, i.e., for 0 < ω′/m < 0.5 = ω′
∞/m in this case. Right panel: Maximum frequency

ω′
∞ as function of scattering angle θ , where θ = 0 denotes the backscattering direction.

the proper treatment of the electron recoil in the latter.
Additionally, there is another regime where the quantum
description goes beyond a classical calculation, even if ŷ � 1,
where the total Thomson and Compton cross sections are equal
in leading order. This happens in regions of phase space where
individual harmonics are overlapping [see Eq. (50)]. There,
the subpeaks in the quantum calculation show completely
different patterns in comparison to a classical calculation; see
Fig. 8. Consequently, the scaling law may not be applied where
harmonics are overlapping. For a better orientation, the spectral
ranges of the individual harmonics are marked in Fig. 8, where
the lower (upper) edges are depicted by dotted (dashed) lines.
Due to the finite pulse length σ , the actual spectral distribution
reaches over these edges by O(σ̃ ), where σ̃ = γ 2(1 + β)2/σ .
The gray shaded areas mark the overlapping regions with a
width of 2σ̃ .

The generation of the subpeaks can be described as an
interference effect [37]. Thus, when the harmonics overlap,
for a fixed value of ω′ there are contributions from different
harmonics and their interference reacts very sensitively to
subtle changes in the phase of the A M

N functions; see Eqs. (53)
and (54). The difference in the spectral distributions looks
qualitatively similar to Fig. 1 of [38], where the influence

of the classical radiation reaction force on the spectrum was
studied. The radiation reaction force also provides an electron
recoil in the classical calculation, slightly changing the phases
and leading to a modified spectrum.

V. SUMMARY

In this paper, we discussed nonlinear Compton scattering
in the Furry picture and employed light-cone coordinates for
temporally shaped laser pulses. We emphasized the structure of
the Volkov wave functions in a pulsed laser field. The S matrix
element for nonlinear Compton scattering was evaluated in the
framework of Volkov states within the Furry picture. An ex-
pression for the cross section which is unambiguously defined
in respect of the pulse shape and pulse length was presented.

We focused on the differences between classical calcu-
lations of nonlinear Thomson scattering and quantum cal-
culations of nonlinear Compton scattering. In both cases,
spectral broadening and harmonic substructures have been
found, which are, however, shifted in the quantum calculation.
These harmonic substructures, still lacking an experimental
verification, are interpreted as an interference effect. We found
that for small recoil parameter y� defined in (2), i.e., y� � 1,

FIG. 8. (Color online) Comparison of the quantum (upper, d2Nquantum/dω′d�) and classical (lower, d2Nclassical/dω′d�) spectral distributions
as a function of ω′ for fixed angles θ = 1/γ , ϕ = 0. The overlap regions of different “harmonics” are highlighted as gray shaded areas. Parameters
are σ = 50, ω = 1.5 eV, a0 = 2.0, γ = 80, i.e., ŷ � 2.5 × 10−3.
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the differential quantum transition probability in many cases
coincides with the classical Thomson scattering result also for
pulsed laser fields, i.e., quantum effects are mostly negligible
in this regime. Also, the total Compton cross section coincides
with the Thomson cross section σT for y� < 10−2.

As a main result, we presented a scaling law, connecting
the classical and quantum spectral densities for arbitrary y�,
e.g., y� > 10−2, relating the classical and quantum results.
The remarkable feature is that the substructures of individual
harmonics are also simply scaled. One might speculate that the
scaling law may also be applied for arbitrary laser beams, in
particular, for strongly focused beams. Hence, it might serve
as a tool for adding recoil effects to results obtained within
classical Thomson scattering models.

Furthermore, we also found regions in phase space where
the differential probabilities for Thomson and Compton
scattering are different, although y� < 10−2 and the total cross
sections coincide. This happens for sufficiently large values
of a0, when the individual harmonics are overlapping. In
these regions of phase space, both spectral densities show
a different, almost erratic behavior. This observation is in
qualitative agreement with previous studies of the effect of the
radiation reaction force on the spectrum of nonlinear Thomson
scattering. The radiation reaction force introduces an electron
recoil in Thomson scattering to the classical picture. Of course,
the scaling law is not applicable in the regions where the
spectral densities show this erratic behavior.
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APPENDIX: VOLKOV STATES IN MOMENTUM SPACE

Here, we provide the Fourier transformation of the Volkov
state (5) to obtain the matrix element for nonlinear Compton
scattering as a convolution in momentum space. For the Fourier
transformation we use the convention

F̃ (Q) =
∫

d4xF (x)eix·Q, F (x) =
∫

d4Q

(2π )4
F̃ (Q)e−ix·Q,

(A1)

where the scalar product has to be taken with respect to the
metric (12). The Fourier transform of the Volkov matrix Cp(x)
[see Eq. (15)] reads

C̃p(Q⊥,Q+,Q−)

= (2π )3δ2(Q⊥ − p⊥)δ(Q+ − p+)

×{G0(Q−) + dp 
 k[ 
 ε−G1(Q−)+ 
 ε+G−1(Q−)]} (A2)

with

GN (Q−) =
∫

dx+e
i
2 (Q−−p−)x+g|N |(x+)eiNωx++if (x+). (A3)

The functions GN describe the nontrivial, pulse-dependent
momentum distribution of the Volkov wave function. In
particular, G0 has to be regularized similarly to (31) to allow
for a numerical evaluation, where a contribution ∝δ(Q− − p−)
emerges, which describes the free part of the Volkov electron
without any interaction with the laser pulse. In total, this part of
the wave function behaves as ∝δ4(Q − p) which is just a free
monochromatic electron wave (momentum eigenfunction) in
momentum representation.

Using the Fourier representation of the Volkov state,
the matrix element for nonlinear Compton scattering
(16) reads

Sf i = N0(2π )3δ2(p′
⊥ + k′

⊥ − p⊥)δ(p′
+ + k′

+ − p+) ×
× [

T 0
0 (G ∗

0 � G0) + T 1
1 (G ∗

0 � G1)

+T 1
−1(G ∗

0 � G−1) + T 2
0 (G ∗

1 � G1)

+T 2
2 (G ∗

−1 � G1) + T 2
−2(G ∗

1 � G−1)
]

(A4)

with the convolution

(G ∗
N � GM ) ≡

∫
dQ−
4π

G ∗
N (Q− − k′

−)GM (Q−). (A5)

Comparing (A4) with (29) and (30), we find

A 0
0 = G ∗

0 � G0, A 1
±1 = G ∗

0 � G±1,

A 2
0 = G ∗

1 � G1, A 2
±2 = G ∗

∓1 � G±1.
(A6)

The representation (A4) of the Compton amplitude together
with (A5) furnishes another interpretation of the subpeaks in
the Compton rate as the overlap of the momentum distributions
of incoming and outgoing Volkov states.
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