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Scaling laws for precision in quantum interferometry and the bifurcation
landscape of the optimal state
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Phase precision in optimal two-channel quantum interferometry is studied in the limit of large photon number
N � 1, for losses occurring in either one or both channels. For losses in one channel an optimal state undergoes
an intriguing sequence of local bifurcations as the number of photons (or losses) increase. The optimal state has
a continuous form in the Fock state basis for large N . The loss parameter limits any precision improvement over
classical light to at most a constant factor independent of N . We determine a crossover value of photon number
Nc beyond which supraclassical precision is progressively lost.
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It has been recognized that using quantum states of light
may increase the resolution of interferometric measurements
[1–3]. Particular states of N photons achieve the Heisenberg
limit of phase resolution for standard error on the phase
estimate �ϕ = 1/N , an improvement over the classical (or
shot-noise) limit �ϕ = 1/

√
N that is obtainable when N

photons enter the interferometer one at a time. These bounds
are derived by an application of the Cramer-Rao inequality
[2] for the standard error of an unbiased estimator, �ϕ �
(νF)−1/2, whereF is the quantum Fisher information (QFI) [4]
and ν is the number of repeated independent trials. Assuming
any instrument is composed of three components: quantum
input state, dynamics, and measurement; the functional F
depends only on the first two — it assumes an optimal
measurement choice. For pure states in a single mode F/4 =
�2n̂ ≡ 〈n̂2〉 − 〈n̂〉2 (where n̂ is the number operator) and a
familiar uncertainty relation is recovered: �n�ϕ � 1/2. Thus,
for a lossless two-mode interferometer QFI and precision are
greatest for the maximum variance state, or “NOON state” [5];
it saturates the Heisenberg limit. Unfortunately, it is also highly
susceptible to noise, especially dissipation [6].

To mitigate this problem various two-component states
were proposed [7–9], where the loss of a number of photons
in the first mode does not destroy the superposition. The
precision performance under dissipation of various Gaussian
states, e.g., squeezed, coherent, and thermal states, has also
been considered recently [10]. In all cases, the precision was
found to be supraclassical for certain range of losses and N .

In the lossy case the pure input state of two oscillator modes
maximizing QFI,

|φ〉 =
N∑

n=0

φn|n〉1|N − n〉2, (1)

must balance supraclassical precision against robustness to
photon loss. In this notation the NOON state has two nonzero
components, φ0 = φN = 1/

√
2. For a lossy interferometer,

light propagates in each arm as a damped harmonic oscillator,
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with frequencies ω(1),ω(2) and dissipation γ (1),γ (2). Equiv-
alently, losses can be introduced by beam-splitters in each
mode with reflectivity R(1,2) = 1 − exp{−γ (1,2)t}. Those lost
photons siphoned out of the modes are then traced over. In
the simpler case of losses in only one of the two modes,
R(1) = R > 0, R(2) = 0, as might occur when that mode is
directed through a partially transparent test sample, the state
|φ〉 decays into a mixture ρ̂ = ∑

k |ψk〉〈ψk| with

|ψk〉 = 1√
wk

∑
n

√
	n; ke

inϕφn|n − k,N − n〉, (2)

corresponding to the loss of k photons. Here wk is the
normalization factor; the phase difference is ϕ = (ω(1) − ω(2))t
and the loss enters via coefficients 	n;k = ( n

k )Rk(1 − R)n−k .
Fisher information of the mixed state resulting from losses is
a weighted sum over pure components F = ∑

k wkFk , where
Fk = 4�2n̂1 for pure states |ψk〉 [8].

Previously, numerical optimization was used to construct
optimal states for a small number of photons. Reference [8]
showed sub-Heisenberg scaling of Fisher information and
raised the possibility that a shot-noise (linear) scaling might set
in for N � 1. This hypothesis is not easy to test by numerical
effort alone: we prove the linear upper bound and observe that
it is not saturated until the number of photons is quite large,
e.g., N > 103 at 10% loss. Indeed, for larger N the candidate
optimal states (two-component state [9,10] or spin-coherent
state in high-loss regime [11]) cease to be good approximations
to the true optimal state [12], the form of which we derive
analytically.

Independently, shot-noise scaling was established in a
recent analytical study [13] under the assumption of zero prior
phase information. Our analysis has no such limitation and we
prove the tightness of our bound by constructing the optimal
state explicitly.

Evolution of optimal state. Here we study the analytically
tractable limit N � 1 by treating n/N ≡ x ∈ [0; 1] as a
continuous parameter. Examining the limits of small and large
loss has revealed a scaling relationship for the optimal Fisher
information

Fopt(N,R) = N2F̃
(

NR

1 − R

)
, (3)
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FIG. 1. (Color) Probability weights ρ
, represented as stacked
histograms (top) and positions x
 (bottom), as a function of r .
Different components are indicated using color. Black solid line on the
bottom figure is the rescaled Fisher information F̃(r) and the blacked
dashed is its asymptote 4/r; convergence takes place for much larger
values of r . Thresholds r2,r3,r4 correspond to appearances of new
components at the origin. Components separate from the origin at
critical values r ′

1,r
′
2,r

′
3,r

′
4. The data for 20 � r � 25 are magnified

(top figure, lower right corner) showing components with very small
weight.

that cleanly interpolates between these limits. The nontrivial
dependence on N and R is captured by a single quantity:
r = NR/(1 − R). The structure of the optimal state also
depends on r alone, except for small differences due to
a discrete nature of parameter x = n/N . We were able
to demonstrate that for any finite r the optimal state can
have only a finite number of components. This number
increases with r as the optimal state undergoes a sequence
of bifurcations: an unbalanced NOON state ceases to be
optimal for r < r ′

1 ≈ 0.912 957 [14], superseded by a state√
1 − ρ1|N〉1|0〉2 + √

ρ1|x1N〉1|(1 − x1)N〉2. We find that for
larger values of the parameter (r > r2), an optimal state
acquires a third component |0〉1|N〉2, which shifts away from
the origin to |x2N〉1|(1 − x2)N〉2 for r > r ′

2 and so on. The uni-
versal set of bifurcation points r ′

1 < r2 < r ′
2 < r3 < r ′

3 < · · ·
as well as weights ρ
 and positions x
 of components in the
(m + 1)-component state |φ〉 = ∑




√
ρ
|x
N〉 are determined

by solving a system of 2m − 1 or 2m equations. The results are
shown in Fig. 1. An important caveat is that since component
positions x
N are not integers in general, they may appear as
two adjacent integer components for finite N .

The numerical results of Ref. [8] correspond to the leftmost
region r ∼ 1 of Fig. 1. In this work we are primarily interested
in the regime r � 1 (not shown) as the loss parameter R,
determined by the properties of the medium, is fixed while the
number of photons N increases. The optimal states seemingly
increase in complexity with increasing N (r) as the number of
components increases. But as the density of these components

increases, the optimal state |φ〉 may be approximated by a
continuous function.

Precision, quantified by F , will always improve at least
linearly with the photon resource N , (by sending the photons
through the instrument one at a time) but the more insightful
question is: How does the amount of “intrinsic” Fisher infor-
mation, i.e., per photon, scale with N if photons are combined
in some optimal quantum superposition? Examination of
Eq. (3) shows that, r being proportional to N , a quadratic
(Heisenberg) scaling of the Fisher information can be seen
only for small r; as QFI approaches asymptote 4/r for larger
values, it is replaced with a linear (shot-noise) scaling.

General upper bound. This general linear upper bound can
be demonstrated without making an approximation of large N

or R ∼ 1. Since the variance is unaffected by a constant shift,
one can rewrite the F as

4
∑

k

[∑
n

	n;k

(
n − k

R

)2

|φn|2 − 4wk〈ψk|n − k

R
|ψk〉2

]
.

(4)

Observing that the second term is negative and performing the
sum over k in the first term, we obtain the inequality

F � 4
1 − R

R

∑
n

n|φn|2 � 4
1 − R

R
N = Fupper. (5)

This upper bound (Fupper) is always valid for any R > 0
demonstrating that quadratic precision (at the Heisenberg limit
F ∝ N2) is only possible for R ∝ 1/N . When R is fixed, it
implies F ∝ N , scaling proportional to the shot-noise limit.
This bound also appeared recently in the context of global
phase estimation [13].

Limit Fupper is reachable asymptotically as can be shown
by constructing a wave function that minimizes the correction
�F = Fupper − F . In the limit R ∼ 1 we approximate the
true optimal state {φn} by a continuous function φ̃(x̃) (with
x̃ = 1 − x = 1 − n/N ), smooth on scales ∼ 1/

√
N , and

obtain, approximately,

�F ≈ 4N2

r

∫ ∞

0

(
x̃φ̃2(x̃) + 4

r
φ̃′2(x̃)

)
dx̃, (6)

where the upper limit has been set to infinity since the width
of φ̃(x̃) is much smaller than 1. The term proportional to φ̃2(x̃)
is the first term of Eq. (4) subtracted from Fupper, and the term
proportional to φ̃′2(x̃) is the second term in Eq. (4) taken with
the opposite sign.

Minimization of (6) subject to the boundary condition
φ(0) = 0 [15] and the normalization constraint produces

φ̃(x̃) = (r/4)1/6

Ai′(µ1)
Ai

[( r

4

)1/3
x̃ + µ1

]
, (7)

where Ai(z) is the Airy function, µ1 ≈ −2.338 107 . . . is its
first (largest) zero, and the prefactor ensures normalization.
Together with the next order correction, the Fisher information
of the optimal state Fopt = Fupper − �Fmin is

Fopt = 4N2

r

[
1 − |µ1|

(
4

r

)1/3

+ O

(
1

r1/2

)]
. (8)
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For R ∼ 1 (r ∼ N ) the width of (7) is O(N2/3); so is the
leading correction in Eq. (8). The upper bound becomes
saturated when the number of photons exceeds a value
of Nc estimated by equating the principal term and the
leading-order correction. This yields Nc = rc(1 − R)/R with
rc ∼ 4|µ1|3 ∼ 50.

Interestingly, the spin-coherent state proposed in Ref. [11]
also has a continuous shape, but in the form of a Poisson
distribution. Its width is comparable to that of the Airy function

state for N ∼ 2.9
√

R
1−R

but becomes much narrower for larger
N , increasing only as a square root of mean. Unfortunately, the
spin-coherent state fails to achieve supraclassical precision.

Arbitrary loss in both arms. Whenever both R(1) and R(2) are
nonzero, the density matrix is a mixture of pure states |ψk1k2〉
resulting from the loss of k1 and k2 photons in modes (1)
and (2), respectively. In Eq. (2) the factor

√
	n;k becomes√

	
(1)
n;k1

	
(2)
n;k2

and the states |ψk〉 become |ψk1k2〉.
The number of photons lost in each mode is not observed

directly, although their sum k = k1 + k2 can be inferred by
subtracting the detected photon number from the input N .
Consequently the linear decomposition of the Fisher informa-
tion serves only as an upper bound F �

∑
k1,k2

wk1k2Fk1k2 [8]
and the determination of quantum Fisher information requires
the diagonalization of the density matrix [4]:

F = 4
∑

i

λi〈vi |n̂2
1|vi〉 −

∑
i,j

λi ,λj > 0

8λiλj

λi + λj

|〈vi |n̂1|vj 〉|2,

(9)

where λi and |vi〉 are eigenvalues and eigenvectors of the den-
sity matrix, respectively. Diagonalizations within subspaces
corresponding to a fixed total number of lost photons k =
k1 + k2 may be carried out independently. In the limit N � 1
the coefficients 	

(1,2)
n;k may be approximated by Gaussians

so that the corresponding density matrix is also Gaussian
in the continuous limit as long as R(1) �= R(2) and the wave
function |φ〉 is smooth on scales ∼ √

N . This density matrix
may be expanded in terms of wave functions of harmonic
oscillator with the aid of the Mehler formula [16], and the
sum (9) is evaluated noting that nonzero matrix elements
correspond to j = i ± 1. The surprising outcome is that the
exact Fisher information equals the linear upper bound (Fupper

for arbitrary loss in both arms) in the asymptotic limit.
This is also true in the symmetric loss case (R(1) = R(2))
as the optimal state itself turns out to be a Gaussian. This
case has some import; firstly, it is relevant for balanced
instruments where phases may be introduced in either arm,
e.g., gyroscopes, and, secondly, the analysis has an extended
applicability beyond losses in modes (1) and (2) to those
occurring in any superposition of these modes. Accordingly,
the discussion is applicable to losses in detection after the mode
mixing.

Expressed in terms of parameters r (1,2) = NR(1,2)/(1 −
R(1,2)), the upper bound (5) changes to F � 4N2/(

√
r (1) +√

r (2))2 = Fupper.
The optimal wave function is computed by minimizing

the correction to the Fisher information [x = n/N , x∗ =

√
r (1)/(

√
r (1) +

√
r (2))]:

�F ≈ N2
∫ 1

0

[
(x − x∗)2

√
r (1)r (2)

φ̃2(x) + 4φ̃′2(x)

(
√

r (1) +
√

r (2))4

]
dx,

(10)

which produces a Gaussian centered at x = x∗ of width√
2(r (1)r (2))1/8/(

√
r (1) +

√
r (2)). This width scales as N3/4

(cf. N2/3 for single mode losses).
For moderate losses, this optimal form is attained when the

number of photons is large. In the limit of large losses, this
asymptotic form is reached with a small number of photons
(see Fig. 2), within reach of current laboratory capabilities.
The Fisher information together with the leading correction is

Fopt = 4N2

(
√

r (1) +
√

r (2))2

[
1 − 2

(r (1)r (2))1/4
+ O

(
1

r

)]
.

(11)

The correction scales as N1/2, in contrast to the N2/3 scaling
for single-mode losses. Correspondingly, the crossover to the
limiting behavior is expected for smaller N . The convergence
to asymptotic precision for the case of single-mode and
symmetric losses is illustrated in Fig. 3.

Summary and outlook. We have shown analytically
that dissipation limits the increase in precision offered by
nonclassical interferometers. This result has to be kept in mind
if various proposals [17,18] for a “quantum leap” in sensitivity
of gravitational wave detectors are to be implemented. Absent
losses, precision can be boosted with NOON states of
(theoretically) up to 1010 photons by estimates of Ref. [19].
Losses would imply a much lower threshold Nc; moreover the
optimal state is described by a continuous wave function — a
plus, as the difficulty of generating NOON states for large
N stems from the need to eliminate unwanted middle
components.

The existence of the upper limit leads to a new metric to
describe the performance of the entire family of states: What
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FIG. 2. (Color) Optimal 20-photon states for 95% loss (r = 380)
in one (left) and two (right) modes. Red bars represent amplitudes φn

obtained by numerical optimization. Black lines represent analytical
approximation with an Airy function and a Gaussian. These optimal
states offer a precision improvement (square root of Fisher informa-
tion) over coherent light of just 6% (single-mode losses) and 0.4%
(symmetric losses), owing to high loss amount. (For single-mode
losses, using coherent light, the precision used in calculation is for
the optimal reflectivity of the input beamsplitter in Mach-Zehnder
interferometer.)
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FIG. 3. (Color) Left: Fisher information for symmetric (R(1) =
R(2) = R) and single-mode (R(1) = R, R(2) = 0) losses for optimal
N -photon states as a fraction of the linear upper bound [N (1 − R)/R
and 4N (1 − R)/R, respectively]. The curves must tend to 1 for large
N , but the convergence is faster for losses in both arms. For symmetric
losses we use exact Fisher information, not the approximate upper
bound. Right: Collapse of data when replotted as a function of r =
NR/(1 − R) [see Eq. (3)].

fraction of the optimum value of the Fisher information is
obtained in the asymptotic limit N � 1? The two-component
state attains only 47.95% of the optimum value (single-channel
loss). Interestingly, the Holland-Burnett (HB) state [20] guar-
antees performance at 50% of the optimum in all cases, no
loss, one-arm or two-arm losses, and is easier to generate.

It is an open question if the optimal quantum metrology
is feasible; we give a partial answer by providing intuition
necessary to construct a family of states saturating the upper
bound. The optimal state has a continuous (smooth) form
with a width that scales as a power of photon number Nε .
The smoothness property is important as we have seen;
choosing ε = 2/3(3/4) for one- (two)-mode loss ensures
faster saturation of the limit, but any value 1/2 < ε < 1 will
suffice. The latter inequality is strict, e.g., symmetric losses:
the HB state is suboptimal as its width ∝ N . Similarly, the
spin-coherent state (width ∝ √

N ) fails to achieve the upper
bound; in fact, it is equivalent in performance to coherent

light by Caves’ theorem [17]. One might envisage using an
unequal number of photons, |N − M〉 and |M〉 at the input
ports of an MZ interferometer: the width of the state after the
first beamsplitter can be controlled by varying M between 0
(spin-coherent state) and N/2 (HB state). Unfortunately, the
resulting state lacks the required smoothness so that at most
54.25% of the optimum can be reached with this strategy.

As a final note, we enlarge upon two proposed applications
of quantum light; to free-space target acquisition and ranging,
and to gravity-wave observation. For locating a target at
10 km distance, clear weather attenuation coupled with a
typical 10% reflectance results in total loss of 99–99.9 %.
Optimal Fisher information per received photon is 4/R, thus
naively one would expect a twofold improvement in phase
precision �φ over coherent light (having Fisher information
unity per received photon) even for high losses. This com-
parison is for an interferometer with 50 : 50 beamsplitters;
precision can be trivially increased with coherent-light inputs
by optimizing the beamsplitter reflectances. Compared with
this strategy, nonclassical light can improve precision by at
most a factor of (1 + √

1 − R)/
√

R, i.e., by 3–10 % for losses
above. This fractional advantage in the very high loss limit
does not offset the high practical cost of generating those
optimal states we have discovered. This result should moderate
expected outcomes of such proposals.

To contrast, consider two-mode losses R ≈ 1%, the
expected domain of advanced interferometric gravitational
wave detectors with high-reflectivity mirrors and state-of-the-
art photodetectors. The improvement to �φ over classical light
for the same N � 1 approaches a factor of 1/

√
R. This tenfold

improvement falls far short of more optimistic estimates
assuming idealized conditions [18,19] but still represents a
clear, nontrivial advantage for the optimal input states we have
discovered. The ability to reduce intrinsic quantum noise by an
order of magnitude without an associated increase in radiation
pressure noise (the photon flux has not increased) is certainly
of interest for gravity wave detectors.
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