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Polarons and molecules in a two-dimensional Fermi gas
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We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity
dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In
contrast to three dimensions, where similar calculations predict a sharp transition to a dimer state with increasing
interspecies attraction, we show that the polaron Ansatz always gives a lower energy. However, the exact solution
for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This
reflects the importance of particle-hole pairs in lower dimensions and makes simple variational calculations
unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for
which both Ansätze give inaccurate results.
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Since interactions between atoms can be tuned to essentially
any value, cold atomic gases provide a unique opportunity
for studying experimentally many-body physics in regimes
that cannot be realized in other systems. Recently, much
attention has been given to the problem of a Fermi gas with
a low concentration of a second species, a so-called highly
imbalanced gas (see, e.g., [1–3]). One fundamental problem
is the nature of the ground state of a single impurity atom in a
Fermi gas. For weak interspecies attraction, the ground-state
energy is well described in terms of a state with an impurity
atom dressed by a single particle-hole excitation of the Fermi
sea, often referred to as a “polaron” [4,5], while for strong
attraction, a state based on a molecular picture gives a lower
energy [6,7]. The transition between the two states is predicted
to be sharp [6,8].

It is natural to ask whether this picture persists in lower
dimensions. This is of theoretical interest since on general
grounds one would expect quantum fluctuations, in this case
the creation of many particle-hole pairs, to play an important
role. In addition, the problem is on the verge of being
investigated experimentally with the use of optical lattices [9].
In one dimension, a polaronic description gives qualitative
agreement with known exact results [10]. In this Rapid
Communication, we consider the case of two dimensions. We
perform simple variational calculations based on the polaron
and molecule pictures, and these predict that the polaronic state
has the lower energy for all interaction strengths, in marked
contrast to what happens in three dimensions. For an infinitely
massive impurity, the problem may be solved exactly, and the
results show that the actual ground state incorporates aspects
of both pictures: A two-body bound state is present for all
coupling strengths in addition to distortions of the continuum
states. We show that the energy of an impurity gives important
information about correlations in its vicinity and about mutual
interactions between impurities at nonzero density.

Model. We consider a uniform two-dimensional (2D) Fermi
gas of atoms of species a, to which is added a single impurity
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atom of species b. The two species may be either different
hyperfine states of the same element or different atomic
species, in which case b may be bosonic or fermionic. The 2D
confinement may be realized by a very tight trapping potential
in the transverse direction [9] and weak longitudinal trapping.
For densities low enough that only s-wave interactions are
important, the Hamiltonian reads

H =
∑

k

ε
(a)
k a

†
kak +

∑
k

ε
(b)
k b

†
kbk +

∑
kk′q

v(q)

V
a
†
k+qakb

†
k′−qbk′

since a-a interactions may be neglected because of the
Pauli principle. The single-particle eigenstates are 〈x|k〉 =
eik·x/

√
V , where we take the system to be enclosed in a 2D

box of volume V ≡ L2 with periodic boundary conditions.
The single-particle energies are ε

(σ )
k = k2/2mσ , where mσ is

the mass of species σ (we take h̄ = 1 throughout); ak(bk)
annihilates an a(b) atom in state |k〉. The interaction is modeled
as v(q) = g2 for particle momenta less than a cutoff value �

and zero otherwise. The coupling g2 and the cutoff may be
eliminated in favor of the two-body binding energy εB � 0
[11],

1

g2
= − 1

V

∑
|p|<�

1

εB + p2

2µ

= −2µ

4π
ln

(
1 + �2/2µ

εB

)
, (1)

with the reduced mass µ = (m−1
a + m−1

b )−1. For εB �
�2/2µ, none of the results depend on the cutoff, and we take
� → ∞ at the end of the calculation.

Polaron. We describe the state using the variational
Ansatz [4]

�P =
(

φ0b
†
0 +

∑
|q|<kF <|k|

φkq b
†
q−ka

†
kaq

)
|N〉, (2)

which describes an impurity atom b (here with zero momen-
tum) dressed by a cloud of particle-hole excitations of the
ground state |N〉 of N a atoms. This state is an expansion of
the true state in terms of numbers of particle-hole excitations,
truncated at first order. Minimizing the energy functional for
this Ansatz leads to equations for the energy of the state relative
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FIG. 1. (Color online) Energy E as a function of εB for the polaron
Ansatz (for the q = 0 approximation, see text) and the dimer Ansatz.
For εB < 2εF , the dimer has momentum pM 	= 0; the thin straight
line indicates the dimer energy at pM = 0.

to the ground-state energy of N a atoms, E ≡ 〈H 〉�P
− E

(N)
0 ,

and the amplitudes φkq:

E = 1

V

∑
q

nqTq
(
E + ε(a)

q

)
,

φkq

φ0
= 1

V

Tq
(
E + ε

(a)
q

)
E − �εkq

. (3)

Here the T matrix T(q)(E + ε
(a)
q )−1 = g−1

2 − V −1 ∑
|k|<�

(1 − nk)(E − �εkq)−1 plays the role of an effective interaction,
with �εkq ≡ ε

(a)
k − ε

(a)
q + ε

(b)
q−k, and nq ≡ �(kF − q) is the

Fermi function, with kF being the Fermi momentum. In
the thermodynamic limit (keeping the majority density na =
N/V = k2

F /4π fixed), this becomes an integral equation,
whose root E may be found numerically.

For now, we will focus on the equal-mass case, mσ ≡
m = 2µ. The energy E(εB) obtained numerically is shown
in Fig. 1. In the weak-coupling limit εB � εF ≡ k2

F /2m, the
energy E 
 −2εF / ln(2εF /εB) decreases very rapidly with
increasing εB . This result can be interpreted as a mean-
field shift E ∼ naḡ, where the density-dependent effective
interaction ḡ = −4π/m ln(na4πh̄2/mεB) is the leading term
in Tq for E,εB → 0. In the strong-coupling limit εB � εF ,
we find E 
 −εB − ηεF , with η ≈ 0.26. Some analytical
insight into these results may be obtained by approximating
�εkq = (k2 − k · q)/m by k2/m, as has proven qualitatively
correct in the 3D case [12]. This “q = 0” approximation
gives the equation E ≈ naT0(E) = −εB exp(2εF /|E|) + 2εF ,
whose solution is plotted for comparison in Fig. 1. It gives
the correct weak-coupling limit; in the strong-coupling limit it
yields E 
 −εB − 2ε2

F /εB , which misses the term O(εF ). We
have also studied the case of arbitrary mb and found that the
mass dependence of the polaron energy is weak if energies are
expressed in units of k2

F /2µ.
At first sight, it is somewhat surprising that for strong

coupling the polaronic Ansatz leads to an energy close to
that of a molecule in vacuum. In this limit, the overlap
probability of �P with the noninteracting ground state is given
by Z ≡ |φ0|2 
 2εF /εB , which tends to zero. Thus, the state
is comprised mainly of holes and an ab dimer, as may be seen

from Eq. (2), and the coefficients φkq [Eq. (3)] reduce to the
wave function for a molecule in vacuo plus a hole. The leading
contribution to the energy is thus the energy of a molecule in
free space since the hole has an energy of at most εF .

Molecule. In three dimensions, it has been demonstrated
that a simple variational wave function based on a molecular
picture gives a lower energy than the polaron Ansatz (2) for
sufficiently strong attraction [7], and we investigate whether
this happens in two dimensions. In its simplest form, such an
ab dimer with zero total momentum may be modeled using
the trial state [7]

�M =
∑

|k|>kF

ϕkb
†
−ka

†
k|N − 1〉, (4)

which corresponds to a correlated ab pair in states with
momentum greater than kF and a Fermi sea with N − 1
noninteracting atoms. Minimizing the energy functional leads
to the following equation for the energy EM (again relative to
that of the N -particle Fermi sea):

1

g2
= − 1

V

∑
kF <|k|<�

1
k2

2µ
− (EM + εF )

, (5)

whose solution is

EM = −εB + k2
F

2mb

,

and ϕk ∝ �(k − kF )/(ε(b)
k − EM ). This result is simple

because in 2D the density of states is independent of energy:
The energy of the dimer is shifted by the kinetic energy of
the lowest state not Pauli blocked. In this approximation, the
bare zero-momentum dimer state is always energetically less
favorable than the polaronic solution, and there is no sharp
transition (Fig. 1), in contrast to the 3D case.

The question arises whether dimers with nonzero momen-
tum have a lower energy. The extension of (4) to a dimer with
momentum p is �

(p)
M = ∑

|k|>kF
ϕ

(p)
k a

†
kb

†
p−k|N − 1〉, which

leads to an equation similar to Eq. (5). The solution is

EM (p) − EM (0) = p2

2M
− k2

F

2µ

[
1 +

(
M/mb

pa2

)2]−1

, (6)

where εB ≡ h̄2/2µa2
2 defines the 2D scattering length a2. For

εB >
k2
F

2µ

ma

mb
, the dimer energy is minimal for p = 0. For εB <

k2
F

2µ

ma

mb
, however, a dimer at p = pM 	= 0 is favorable because

the kinetic-energy increase is outweighed by the reduced Pauli-
blocking shift.1 For concreteness, consider the equal-mass
case: The dimer momentum pM = 2

√
kF a2 − 1/a2 changes

smoothly from pM = 0 (at εB = 2εF ) to pM → kF as εB →
εF /2, where the energy reaches the continuum threshold EM =
0 (Fig. 1). In that regime, EM = −εF + 2

√
εB(

√
2εF − √

εB).
Thus, the bare dimer is energetically unfavorable compared
with the polaronic Ansatz for any coupling strength. To obtain
more insight, we now examine an exact solution.

1Although the lowest-energy dimer has nonzero momentum, its
velocity vanishes by definition, ∂pE(pM ) = 0.
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Infinite-mass limit. We consider the case where the impurity
atom is very massive, mb � ma . In addition to being exactly
soluble by use of Fumi’s theorem [13], this is also relevant to
experiments with atomic mixtures (e.g., Li and Yb [14]). The
massive impurity may be treated as a static defect, which has
two effects on the Fermi gas: It creates a two-body bound state
with energy −εB , and it also shifts the energy levels in the
continuum. In any number of dimensions, the energy shift of
an s-wave level in the continuum is given by −kδ0(k)/maR,
where δ0(k) is the s-wave phase shift and R is the radius of the
sphere containing the Fermi gas. The density of s-wave levels
per unit interval in k is π/R. The total energy change when an
impurity is added to the N -atom system is

E = −εB − 1

maπ

∫ kF

0
dk kδ0(k). (7)

In 2D, the scattering phase shift is given by cot δ0(k) =
ln(k2/2maεB)/π in the zero-range limit [11].

For large εB , �E ≡ E + εB 
 −εF + εF

ln(εB/εF ) . The lead-
ing term corresponds to the fact that the phase shift is close
to π , and consequently, each of the continuum s levels has
become close to the next lower one in the absence of the
impurity, thereby lowering the energy by εF . The logarithmic
term may be thought of as an effective atom-dimer repulsion.
This is in stark contrast to the result �EM = k2

F /2mb → 0+
(mb → ∞) obtained from the dimer Ansatz. Moreover, for
the polaron in the heavy-impurity limit, we find numerically
�E ≈ −0.14εF + O(n2

a), which is much smaller in magni-
tude than the exact result, −εF .

The exact result shows that the ground state has a bound
two-body state and that levels in the continuum are modified.
It therefore incorporates aspects of both the polaron and the
dimer pictures. The missing ingredient in the trial states we
have used is components with a higher number of particle-
hole pairs: This is treated only to first (zeroth) order in the
polaron (dimer) Ansatz. In the language of perturbation theory,
the T matrix employed in the polaron Ansatz is calculated
in the ladder approximation and thus contains only particle-
particle and hole-hole scattering. However, it is known that the
T matrix for scattering of a fermion from a massive impurity is
essentially independent of the presence of the medium because
Pauli blocking of ladder diagrams is compensated by impurity-
hole scattering [15]. Our calculations show that the higher-
order impurity-hole scattering processes change �E to leading
order from −0.14εF (for one particle-hole pair) to −εF in the
exact result.

However, the bare-dimer picture worked reasonably well
in 3D, predicting a molecular transition in agreement with
Monte Carlo results. To understand this paradox, let us look
at the role of dimensionality in the dimer problem. Solving
(5) in D = 1,2,3 (for equal masses) yields an energy of the
form EM 
 −εB − εF + cDεF ( 2εF

εB
)(D−2)/2 as εB → ∞. The

last term corresponds to an upshift of the dimer energy due
to Pauli blocking of the states |q| < kF . In D = 3 the upshift
vanishes in the limit εB � 2εF : This is because the density
of states 
(ε) ∝ √

ε vanishes at low energies, so that the
contribution from Pauli blocking for ε < 2εF has a negligible
weight for εB → ∞. The situation is dramatically different in
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FIG. 2. (Color online) Number of majority atoms ν in the dressing
cloud of an impurity as a function of εB .

lower dimensions. In D = 2, the density of states is constant
and thus leads to an interaction-independent displacement of
the vacuum energy by 2εF , recovering the total shift +εF . This
also illuminates why bare dimers should be even less favorable
in 1D [16], where the low-lying states have an even stronger
weight 
(ε) ∝ 1/

√
ε, leading to a diverging upshift for strong

coupling.
Dressing cloud of an impurity. Important information about

the structure of the dressing cloud of an impurity may be
extracted from the results for the energy. As is done in
the theory of dilute mixtures of helium isotopes [17], we define
the quantity ν = (∂na/∂nb)µa

= −(∂µb/∂na)/(∂µa/∂na),
where µσ is the chemical potential of a σ atom. Physically, this
is the number of a atoms in the dressing cloud of an impurity.
The requirement that µa be held fixed ensures that far from the
impurity, the density of a atoms is unchanged by the addition of
the impurity. For nb � na , this number can be deduced from
the single-impurity energy, ν = −∂E/∂εF , which is plotted
in Fig. 2. As expected, ν tends to zero in the weak-coupling
limit, ν 
 2/ ln(2εF /εB), for ma = mb. For mb → ∞, we can
infer that there is exactly one dressing atom as εB → ∞,
ν → 1. This contrasts with the polaron Ansatz, which for
mb → ∞ predicts νP → η ≈ 0.14 (following a peak near
εB = 2εF ), illustrating that the single–particle-hole picture
highly underestimates the impurity dressing. For comparison,
the bare-dimer Ansatz predicts the unphysical result νM = −1,
amounting to a deficit of atoms in the dressing cloud due to
Pauli blocking.

Nonzero impurity density. An intriguing question concerns
the behavior at nonzero impurity density: Do the “dressed”
impurity atoms behave as fermions, bosons, or neither of
them? For weak attraction, it is not implausible that the dressed
impurities have the same quantum statistics as bare ones. In
contrast, for strong attraction, one may expect the basic degrees
of freedom to be best described in terms of ab dimers, which
are bosons for fermionic impurities and vice versa. On the
basis of simple arguments, we cannot arrive at a definite
conclusion about the statistics obeyed by the elementary
excitations; to do so, it would be necessary to investigate
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the importance of exchange processes in a system with two
impurities.2

Let us consider the case when the quasiparticles are
fermionic. This could apply for weakly interacting fermionic
impurities and also for bosonic ones if they form a tightly
bound dimer with a majority atom. We now show that the
single-impurity findings have implications for the thermody-
namic properties at nonzero concentration nb/na � 1. The
total energy density E of such a Fermi liquid then reads
E(nb) 
 E(0) + E0(nb) + E(εB)nb + 1

2f n2
b, where E(0) is the

majority energy, E0(nb) = πn2
b/m∗

b denotes the kinetic-energy
density, with the effective mass m�

b modified by interactions,
and the term nbE(εB) gives the energy reduction due to binding
of independent quasiparticles. Even in the absence of direct
interactions between b fermions, there is an induced interaction
between them, mediated by the majority Fermi gas [18]. It
turns out to be repulsive owing to the Pauli principle and
is characterized by the Landau parameter f = ν2∂εF /∂na .
Note that since in 2D the density of states ∂na/∂εF = ma/2π

is constant, f is nonzero for na → 0. We mention that for
bosonic quasiparticles, the effective interaction follows in a
similar fashion [19], the difference being that there is a direct
s-wave interaction and that the induced interaction is attrac-
tive. However, how that influences the induced interactions

2Even if the polaron Ansatz gives the lower energy, one cannot
conclude that the elementary excitations obey the same statistics as
the impurity atom since the polaron state is dominated by a rather
incoherent superposition of many dimer-hole configurations.

depends nontrivially on the degeneracy of the bosons and is
left for future studies.

Finally, we mention that the properties of impurities can be
probed using techniques similar to those in 3D. By exciting
collective oscillations, the effective mass is accessible [3].
With increasing coupling, this tends to ∞ for the polaron and
to M for the dimer Ansatz. Another key tool is radio-frequency
spectroscopy [2], where a b atom is transferred from its initial
hyperfine level to an empty one via a pulse of frequency
ω. For a polaron, the transition rate �(ω) decomposes into
a quasiparticle peak ∝Zδ(ω − |E|), indicating the polaron
contribution, and an incoherent background �inc(ω), which
increases as (ω − |E|)3/2 for 0 � ω − |E| � εF and falls
off as ω−2 for ω − |E| � εF if final-state interactions are
ignored. This contrasts with the dimer Ansatz, which yields
�M (ω) ∝ �(ω − |E|)/ω2 without any quasiparticle peak.

In summary, using variational wave functions, we find no
evidence for a sharp transition between the polaron and the
molecular picture in two dimensions. Comparison with the
exact result for a heavy impurity shows that both Ansätze lead
to inaccurate results for the dressing cloud of the impurity in
the strong-coupling limit. This reveals the key role of many
particle-hole pairs, and it reflects the importance of quantum
fluctuations in lower dimensions. We conclude that more work
is needed to understand the nature of the ground state of an
impurity with finite mass in a two-dimensional Fermi gas.
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