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Bose-Einstein supersolid phase for a type of momentum-dependent interaction
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A class of nonlocal interactions between bosons is found to favor a crystalline Bose-Einstein condensation
ground state. By using both low-energy effective field theory and a variational wave function method, we
compare this state not only with the homogeneous superfluid, as has been done previously, but also with the
normal (nonsuperfluid) crystalline phase and obtain the phase diagram. The key characters are (1) the interaction
potential displays a negative minimum at finite momentum, which determines the wave vector of this supersolid
phase, and (2) the wavelength corresponding to the momentum minimum needs to be greater than the mean
interboson distance.
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Since Penrose and Onsager’s first discussion [1] on the
existence of supersolids, namely, a phase with coexistence
of superfluid and crystalline order, both experimental [2] and
theoretical [3] attempts have been made for decades in search
of this phase. Recently reported observations of a supersolid
phase in 4He systems [4] revitalized this fundamental interest.
Nevertheless, some subsequent experimental evidence as well
as various proposed microscopic mechanisms [5] remain
controversial.

Progress on the physics of cold atoms and molecules
opens a new possibility to study the supersolid phase thanks
to clean and controlled experimental systems. One of the
most fascinating facts is the unprecedented tunability of the
interaction potentials because of internal degrees of freedom
of atoms and molecules [6,7], which allows one to address a
theoretical question, namely, what interaction potentials can
support the supersolid phase in continuous space? Recent
experimental progress on dipolar quantum gases allows us
to explore new physics of quantum many-body systems with
nonlocal interactions [8]. It is well established that nonlocal
interaction potentials stabilize the supersolid phase on the lat-
tice [9]. The possibility of finding a Bose-Einstein supersolid
phase [10] was also put forward for several continuum model
systems such as dipolar quantum gases [11], atom-molecule
mixture gases [12], and Rydberg atom gases [7,13]. Recently,
Henkel et al. [13] found that the Fourier transform of an
isotropically repulsive van der Waals interaction potential
with a softened core has a partial attraction in momentum
space, which gives rise to a transition from a homogeneous
Bose-Einstein condensate (BEC) to a supersolid phase because
of roton instability. However, whether the supersolid phase
they found is stable against fluctuations and how it should
compare with the nonsuperfluid (normal) crystal phase has
not been studied. Recent work on dipolar gases [14] showed
that the dipolar dominating interaction does not support a
supersolid phase in the phase diagram between the uniform
superfluid and the normal crystal phase, where this phase had
been speculated to exist.

In this Rapid Communication, we show that interaction
potentials, which display a minimum of negative value at
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a finite momentum, lead to a modulating superfluid order,
namely, a Bose-Einstein supersolid (BES) phase. We perform
effective field theory analysis and variational calculation to
determine not only the phase boundary between the uniform
superfluid (USF) phase and BES, which has been previously
analyzed by roton instability for dipolar [10,11] or van der
Waals interaction [13], but also the phase boundary between
BES and the normal (nonsuperfluid) insulating crystal (IC)
phase. We shall begin with a heuristic argument to show how
a stripe BES phase should arise from the competition between
kinetic and interaction energy in the regime of roton instability.
Next, we shall study as a concrete example the softened dipolar
interaction recently proposed for Rydberg atomic gases [7]. A
similar potential is also proposed in Ref. [13]. We will establish
the ground state in the sense of variational principle and
find a first-order phase transition from the uniform superfluid
phase to the triangular crystalline BES phase. Finally, we shall
compare the energies of BES and IC phases of the same lattice
configurations and find a regime in which the triangular-lattice
BES is stable and has lower energy than both USF and (normal)
IC. The result is summarized in Fig. 1.

To explore the physics of the BES phase, we start with
the continuum Hamiltonian of two-dimensional interacting
bosons:

H =
∫

d2�rψ̂†(�r)

[
− h̄2

2m
∇2 − µ

]
ψ̂(�r)

+ 1

2

∫
d2�r1d

2�r2ψ̂
†(�r1)ψ̂†(�r2)V (�r1 − �r2)ψ̂(�r2)ψ̂(�r1),

(1)

where the first term of H corresponds to the kinetic energy
and the second to the two-body interaction energy.

It is commonly accepted that the ground state for such
a continuous bosonic system should be USF at the kinetic
energy dominating regime. The USF phase is described by a
coherent state |USF〉 = exp[

∫
d2x

√
neiφ0ψ̂†(x)]|�〉, where n

is the mean particle density, φ0 a constant phase, and |�〉 is the
vacuum state with no particle. The energy of this state is given
by EUSF = (N/2)nU (k = 0), where N is the mean particle
number and U (k) is Fourier transform of the interaction
potential. We first analyze the instability of the USF phase.
This can be performed using an effective field theory
approach [15,16]. The real time action of this bosonic system
is S[ψ̄,ψ] = ∫

d2x dt{ih̄ψ̄∂tψ − H [ψ̄,ψ]}. Fluctuations on
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FIG. 1. (Color online) The phase diagram of bosons with steplike
interaction. USF, IC, and BES phases are separated by solid lines with
crosses showing the data points from variational calculation. Analysis
of the collective excitation spectrum shows the instability of USF at
the red dotted line and that of BES at the dark blue dash-dotted line.
At low density, the USF phase and IC phase exist, while at high
density, a stable BES phase is found in the yellow shaded regime.
When ñ >∼ 1, the IC state is not stable (see text).

top of the uniform superfluid state are considered by writing
the boson field ψ(x,t) = [ρ0 + δρ]1/2eiφ , assuming δρ and
|∇φ| are small. The quasiparticle spectrum is readily derived
after integrating out the δρ field:

ε(k) =
√

h̄2k2

2m

[
h̄2k2

2m
+ 2nU (k)

]
.

For a potential that has a negative minimum at a finite
momentum, this spectrum at that momentum drops,
eventually hits zero, and becomes imaginary when increasing
the density n. That suggests that the assumed USF (coherent)
state is unstable toward possible crystalline order.

To show the BES phase arises, we first give a heuristic
argument by considering a simple stripe BES state
|BES〉 = exp{√N [(

√
2/2)b†Q/2 + (

√
2/2)b†−Q/2]}|�〉, where

Q = [Q,0] and Q is the minimum point of U (k).
The energy of this state is given by EsBES =
N [(h̄2Q2/8m) + (1/4)nU (Q)] + EUSF. When the term
(h̄2Q2/8m) + (1/4)nU (Q) is negative, namely, the interaction
energy dominates over the kinetic energy, the stripe BES state
has lower energy than the USF state. (We also go beyond
the mean field state and compare with the two component
fragmented state

|f 〉 =
l=N/2∑

l=−N/2

αl

(b†Q/2)
N
2 +l(b†−Q/2)

N
2 −l√(

N
2 + l

)
!
√(

N
2 − l

)
!
|�〉,

where {αl} are variational parameters [17] and the coherent
stripe BES state is found to have the lowest energy.) We thus
conclude that the BES state arises from the competition of
kinetic energy and interaction energy.

To be concrete, we further apply the two-particle interaction
of a steplike form V (�r) = D/r3

0 if r < r0; V (r) = D/r3

otherwise. The form of this potential is an approximation to
the interaction between polarized Rydberg atoms proposed
in Ref. [7]. Two dimensionless parameters of this system are
ñ ≡ n × r2

0 and rd ≡ 2mDn1/2/h̄2; ñ characterizes the relation
between r0 and the interparticle distance, and rd characterizes
the strength of interaction. A phase transition from USF to IC
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FIG. 2. (Color online) (a) Fourier transform of the steplike two-
body interaction. (b) Bogoliubov quasiparticle spectrum for a USF
state. The plot shows the real part of the spectrum with ñ = 1. The
solid line corresponds to rd = 5, the dashed line to rd = 15, and the
dash-dotted line to rd = 23. (bottom) Phase transition from the USF
to the triangular crystalline BES phase. |φK|2 ≡ 1/N〈b†

KbK〉 is the
occupation fraction of the lowest finite momentum.

has been found when varying rd at the regime of ñ ≈ 0.9 [14].
The IC (single particle per site) phase is described in a second
quantization form by |	IC〉 = ∏

�Ri
c
†
�Ri

|0〉, where �Ri is the
direct lattice vector at site i, and the single particle wave
function corresponding to c

†
�Ri

is the Wannier function φ �Ri
(�r).

The Fourier transform of this steplike interaction is shown
in Fig. 2(a). It is straightforward to obtain the excitation
spectrum, which is shown in Fig. 2(b). It can be seen that the
spectrum displays instability. The origin of this effect is that
the Fourier transform of the interaction, U (k), has a negative
minimum at a finite momentum. Now the question is to find the
stable variational minimum in the coherent state space. With
|G〉 = exp[

∫
d2xφ(x)ψ̂†(x)]|�〉 [so that ψ̂(x)|G〉 = φ(x)|G〉],

the energy of this state is readily given by

E=
∫

dr
h̄2

2m
| �∇φ|2 + 1

2

∫
dr1dr2V (r1−r2)|φ(r1)|2|φ(r2)|2,

(2)

where V (�r) is the interaction potential.
We first check whether the system favors an extended or lo-

calized state. This purpose is fulfilled by applying the Gaussian
ansatz, which means φ(�r) = (

√
N/

√
π )σe−(|�r|2/2σ 2). The total

energy of this system is given by Et = Ek + Edip, where the
kinetic energy Ek = N (h̄2/2mσ 2) and the interaction energy
Edip = N2(1/2π2)(D/r3

0 )g(r0/σ ). Here g(x) is approximately
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π2(1 − e−2x2
). The energy per particle is (h̄2/2mσ 2) +

(ND/2π2r3
0 )g(r0σ ). In the thermodynamic limit N → ∞,

interaction dominates, and E(σ ) = (ND/2π2r3
0 )g(r0/σ ). We

found that as long as
∫

d2�rV (�r) > 0, σ → ∞ minimizes the
energy, implying that the system favors an extended state in
space. Since for rd > 0,

∫
d2�rV (�r) > 0, we conclude that the

system favors an extended state when rd is positive.
Up to this point, we have learned that this system favors an

extended state which is not necessarily a uniform superfluid.
Having argued heuristically that a momentum-dependent
interaction may favor a BES state, it is natural to compare
the energy of a nonuniform coherent state which has discrete
lattice symmetries. Thus we can write the condensate wave
function in such a form: φ(�r) = 〈ψ(�r)〉 = √

n
∑

K φKeiK·�r ,
with K = pG1 + qG2, where G1 and G2 are two primitive
vectors spanning the two-dimensional reciprocal lattice. The
corresponding ground state is |G〉 = exp(

∑
K

√
NφKb

†
K)|�〉.

The order parameter that characterizes the phase transition
from USF to BES is an occupation fraction at some finite
momentum K , |φK|2 = 1/N〈b†KbK〉. In this assumed ground
state subspace, the energy per particle is given by

E =
∑

K

h̄2K2

2m
φ∗

KφK + n

2

∑
K1,K2,q

U (q)φ∗
K1+qφ

∗
K2−qφK2φK1 .

(3)

Now the problem reduces to minimizing this energy functional
with such a constraint

∑
K |φK|2 = 1, which is equivalent to

the enforcement of conservation of the total particle number.
By δ(E − µ

∑
K φ∗

KφK)/(δφ∗
K) = 0, we obtain

µφK = h̄2K2

2m
φK + n

∑
K′

,q

V (q)φ∗
K′+qφK′ φK+q , (4)

where µ is the chemical potential.
We computed the energies for three different

configurations—stripe, square, and triangle lattices—and
found that the triangular lattice is the most energetically
favored. The optimal lattice constant aBES is found
to be slightly larger than 2π/Qmin, where U (Qmin)
corresponds to the negative minimum of the potential. For
the particular steplike interaction, Qmin is related to r0 by
Qmin ≈ 3.9/r0 ∼ π/r0. The transition between USF and BES
is of first order, as shown in Fig. 2.

To study the stability of the BES phase, we further explore
the fluctuations on top of the ground state. In the presence of the
BES phase, we can get the effective field theory for the density
and phase fluctuation,1 δρ(x,t) and ϕ(x,t), respectively, writing
ψ(x,t) = [ρ0(x) + δρ(x,t)]1/2eiϕ(x,t), where ρ0(x) = |φ(x)|2.
The effective action for δρ and ϕ to quadratic order is

Seff[δρ,ϕ] =
∫

dt

∫
d2xL (x,t) ,

L = −h̄δρ∂tϕ − 1

8
h̄2

(
�∇ δρ√

ρ0

)2

− 1

2
ρ0h̄

2( �∇ϕ)2 (5)

− 1

2

∫
d2x′V (x − x′)δρ(x,t)δρ(x′,t) ,

1Another collective mode of the BES phase is lattice vibrations.
All low-energy fluctuations shall be studied together systematically
in the future.

where ρ0(x) is the modulus square of the condensate wave
function.

Since the effective theory possesses only discrete transla-
tional symmetries, a Brillouin zone and its reciprocal lattice
vectors can be defined. Let η(x) ≡ δρ(x)/

√
ρ0. The effective

action in the momentum space is

Seff =
∫

dt
∑
k∈R

∑
K1,K2

[AK1K2 (k)ηK1+k(∂tϕ
∗
K2+k)

+BK1K2 (k)ηK1+kη
∗
K2+k+CK1,K2 (k)ϕK1+kϕ

∗
K2+k]+ c.c.,

(6)
with

AK1K2 (k) = −α−K1+K2 ,

BK1K2 (k) = −1

8
h̄2(K1 + k)2δK1,K2

(7)

− 1

2

∑
K

αKαK2−K1−KU (k + K2 − K),

CK1K2 (k) = 1

2

∑
K

h̄2[(K1 + k) · (−K2 − k)]αKαK2−K1−K,

where K1,K2 are reciprocal lattice vectors and αK is the Fourier
component of

√
ρ0(x). The first Brillouin zone is divided into

“R” (right) and “L” (left) subzones according to time reversal;
the summation k ∈ R in Eq. (6) means summing over the R
subzone. The preceding effective theory is quadratic in fields.
Formally, the action can be written in a block diagonal form as

Seff =
∑
k∈R

[η†(k) ϕ†(k)]G −1
k

[
η(k)

ϕ(k)

]
,

with

G −1
k ≡

[
B̃(k)T + B̃(k)∗ Ã(k)∗∂t

−Ã(k)T ∂t C̃(k)T + C̃(k)∗

]
, (8)
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FIG. 3. (Color online) The excitation spectrum on top of the BES
state from the �[≡ (0,0)] point to X[≡ (π/aBES,0)], where aBES is
the lattice constant of the supersolid lattice. There are branches of
spectrum, the lowest three of which are shown.
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where the crystal momentum k is a good quantum number, and
η(k) and ϕ(k) correspond to column vectors formed by {ηK+k}
and {ϕK+k}, with K running over pG1 + qG2. The energy
spectrum is determined by the poles of Gk, that is, det[G −1

k ] =
0 [15]. Figure 3 shows typical results we obtained which indi-
cate the stability of the BES phase. However, for sufficiently
large rd , the spectrum becomes imaginary near k = 0 (crystal
momentum), indicating instability of the BES state. The stable
regime of the BES state is shown in the phase diagram of Fig. 1.

We further estimate the energy of the IC state. The IC state
is described by |	IC〉 = ∏

�Ri
c
†
�Ri

|0〉, where the single-particle

wave function corresponding to the creation operator c
†
�Ri

is the

Wannier function φ �Ri
(�r). Here we consider the case where each

localized wave function contains exactly one boson, forming
a triangular lattice. The lattice constant ac is thus determined
by the density (ac = [2/(

√
3n)]1/2), which is different from

the lattice constant of BES, aBES, determined by the minimum
point of U (k). The Wannier function is approximated by a lo-
calized Gaussian φ �Ri

(�r) ∼ (1/
√

πσ ) exp{−[(�r − �Ri)2/2σ 2]},
with σ/ac ranging from 0 to 0.3, over which the overlap be-
tween neighboring Gaussian wave functions can be neglected
[18], and the energy is obtained by EIC(σ ) = 〈	IC|H |	IC〉.
The calculation involves calculating an integral with Monte
Carlo methods, which causes some noise of the phase boundary
of the IC phase. When ñ >∼ 1, minimizing EIC(σ ) gives
σ/ac → 0.3, indicating that the IC state with the given
lattice constant is unstable. We expect insulating crystals with
more than one particle per site [19,20] or insulating crystal-
supersolid phase separation to exist in the unstable regime.

In the phase diagram (Fig. 1), the BES is stable and is
the most energy favored in the yellow shaded regime. The
lower boundary is determined by comparing the energy of
the BES state and EIC(σ = 0.3ac), while the right boundary
is computed from the instability of the BES spectrum. In the
unstable regime, the proposed BES state has lower energy than
the IC state but is not stable against quantum fluctuations.

In conclusion, we studied a bosonic system with two-body
interaction potentials which display a negative minimum at
a finite momentum and found a stable supersolid phase
arising from BEC at finite momenta. The stability of this
supersolid phase is checked against quantum fluctuations. A
unique feature of the BES state is that it breaks both U (1)
and translational symmetry with a single-order parameter,
namely, the superfluid order parameter 〈ψ(�r)〉 is not only
finite but also spatially modulated. The physical interpretation
is that particles are not localized in space but condensed
to a single, common wave function which is modulated
like a solid. This is conceptually different from one of
the widely considered supersolid pictures of 4He [1,4], in
which supersolidity is a mixture of two orderings: atoms
form charge-density-wave order (a crystal structure) and,
at the same time, vacancies or interstitials undergo usual
(zero-momentum) BEC. For the conventional superfluid phase
originating from zero-momentum BEC, there exists long-
range phase coherence, but the phase correlation function is
homogeneous, not modulated, in space. In contrast, for the IC
phase, particles are localized in space to each lattice site, so
there is no long-range phase coherence. Therefore, as predicted
for cold gas experiments, a signature of the BES phase is the
modulated phase coherence. This state also opens fundamental
questions for future studies, for example, how the supercurrent
is affected by the simultaneous presence of crystalline ordering
and topological configurations such as a vortex coupled to a
crystal defect.

Note added. Recently, a related, independent study
appeared [20] that discovered by exact numerical algorithms
for a similar model system a supersolid phase occurring in the
same parameter regime.

We thank Erhai Zhao and Uwe R. Fischer for helpful
discussions. This work is supported by ARO Grant No.
W911NF-07-1-0293.

[1] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
[2] M. W. Meisel, Physica (Amsterdam) 178, 121 (1992).
[3] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962); A. F. Andreev

et al., Sov. Phys. JETP 29, 1107 (1969); G. V. Chester, Phys.
Rev. A 2, 256 (1970); A. J. Leggett, Phys. Rev. Lett. 25, 1543
(1970); Science 305, 1921 (2004).

[4] E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004);
Science 305, 1941 (2004).

[5] N. Prokof’ev, Adv. Phys. 56, 381 (2007).
[6] A. Micheli, G. Pupillo, H. P. Buchler, and P. Zoller, Phys. Rev.

A 76, 043604 (2007).
[7] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and

P. Zoller, Phys. Rev. Lett. 104, 223002 (2010).
[8] D. Wang et al., Phys. Rev. A 81, 061404(R) (2010);

S. Ospelkaus et al., Nat. Phys. 4, 622 (2008); M. W. Mancini,
G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa,
Phys. Rev. Lett. 92, 133203 (2004); C. Ospelkaus et al., ibid.
97, 120402 (2006); D. Wang et al., ibid. 93, 243005 (2004).

[9] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
Rep. Prog. Phys. 72, 126401 (2009).

[10] Y. Pomeau and S. Rica, Phys. Rev. Lett. 72, 2426
(1994).

[11] S. Giovanazzi, D. O’Dell, and G. Kurizki, Phys. Rev. Lett.
88, 130402 (2002); U. R. Fischer, Phys. Rev. A 73, 031602
(2006); S. Komineas and N. R. Cooper, ibid. 75, 023623 (2007);
O. Dutta, R. Kanamoto, and P. Meystre, Phys. Rev. Lett. 99,
110404 (2007); Phys. Rev. A 78, 043608 (2008).

[12] L. Radzihovsky and S. Choi, Phys. Rev. Lett. 103, 095302
(2009).

[13] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302
(2010).

[14] K. Mitra, C. J. Williams, and C. A. R. S. de Melo, e-print
arXiv:0903.4655 (2009).

[15] V. N. Popov, Functional Integrals and Collective Excitations
(Cambridge University Press, Cambridge, 1987).

[16] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2007).

[17] E. J. Mueller, T. L. Ho, M. Ueda, and G. Baym, Phys. Rev. A
74, 033612 (2006).

[18] K. Maki and X. Zotos, Phys. Rev. B 28, 4349 (1983).
[19] A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev.

Lett. 76, 499 (1996).
[20] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and

G. Pupillo, Phys. Rev. Lett. 105, 135301 (2010).

021602-4

http://dx.doi.org/10.1103/PhysRev.104.576
http://dx.doi.org/10.1016/0921-4526(92)90186-V
http://dx.doi.org/10.1103/RevModPhys.34.694
http://dx.doi.org/10.1103/PhysRevA.2.256
http://dx.doi.org/10.1103/PhysRevA.2.256
http://dx.doi.org/10.1103/PhysRevLett.25.1543
http://dx.doi.org/10.1103/PhysRevLett.25.1543
http://dx.doi.org/10.1126/science.1103584
http://dx.doi.org/10.1038/nature02220
http://dx.doi.org/10.1126/science.1101501
http://dx.doi.org/10.1080/00018730601183025
http://dx.doi.org/10.1103/PhysRevA.76.043604
http://dx.doi.org/10.1103/PhysRevA.76.043604
http://dx.doi.org/10.1103/PhysRevLett.104.223002
http://dx.doi.org/10.1103/PhysRevA.81.061404
http://dx.doi.org/10.1038/nphys997
http://dx.doi.org/10.1103/PhysRevLett.92.133203
http://dx.doi.org/10.1103/PhysRevLett.97.120402
http://dx.doi.org/10.1103/PhysRevLett.97.120402
http://dx.doi.org/10.1103/PhysRevLett.93.243005
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1103/PhysRevLett.72.2426
http://dx.doi.org/10.1103/PhysRevLett.72.2426
http://dx.doi.org/10.1103/PhysRevLett.88.130402
http://dx.doi.org/10.1103/PhysRevLett.88.130402
http://dx.doi.org/10.1103/PhysRevA.73.031602
http://dx.doi.org/10.1103/PhysRevA.73.031602
http://dx.doi.org/doi.org/10.1103/PhysRevA.75.023623
http://dx.doi.org/10.1103/PhysRevLett.99.110404
http://dx.doi.org/10.1103/PhysRevLett.99.110404
http://dx.doi.org/10.1103/PhysRevA.78.043608
http://dx.doi.org/10.1103/PhysRevLett.103.095302
http://dx.doi.org/10.1103/PhysRevLett.103.095302
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://arXiv.org/abs/arXiv:0903.4655
http://dx.doi.org/10.1103/PhysRevA.74.033612
http://dx.doi.org/10.1103/PhysRevA.74.033612
http://dx.doi.org/10.1103/PhysRevB.28.4349
http://dx.doi.org/10.1103/PhysRevLett.76.499
http://dx.doi.org/10.1103/PhysRevLett.76.499
http://dx.doi.org/10.1103/PhysRevLett.105.135301

