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Factoring numbers with a single interferogram
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We construct an analog computer based on light interference to encode the hyperbolic function f (ζ ) ≡ 1/ζ

into a sequence of skewed curlicue functions. The resulting interferogram when scaled appropriately allows us
to find the prime number decompositions of integers. We implement this idea exploiting polychromatic optical
interference in a multipath interferometer and factor seven-digit numbers. We give an estimate for the largest
number that can be factored by this scheme.
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To find the factors of a large integer number N is a problem
of exponential complexity. Indeed, the security of codes relies
on this fact but is endangered by Shor’s algorithm [1], which
employs entanglement between quantum systems [2]. In the
present paper we report the optical realization of a new
algorithm for factoring numbers, which takes advantage of
interference only.

A naive way of approaching the problem of factorization
consists of dividing N by integers �, starting from � = 3
until N/� is an integer. In the worst case, this procedure
requires

√
N divisions before one would find a factor. On

a digital computer, division of large numbers is a rather costly
process. However, in many physical phenomena, division
occurs in a rather natural way. For example, a wave of
wavelength λ, propagating over a distance L, acquires a
phase φ = 2πL/λ and therefore probes the ratio L/λ. In the
optical domain, λ is measured in nanometers (nm), that is
λ = � nm. When we also express the path length L in units of
nm, that is, L = N nm, the phase φ = 2πN/� is sensitive to
the ratio N/�. For factors of N , φ is an integer multiple of 2π .
Otherwise φ is a rational multiple of 2π .

In order to enhance the signal associated with a factor
relative to the ones corresponding to nonfactors, we use
interference of waves, which differ in their optical path length
by an integer multiple. In this way we take advantage of con-
structive interference when � is a factor of N , but destructive
interference when � is not a factor of N . The cancellation
of terms is most effective when the individual optical paths
increase in a nonlinear way. In this case, the intensity of
the interfering waves is determined by the absolute value
squared of a truncated exponential sum [3]. A polychromatic
source of light, which contains several wavelengths λ = � nm,
allows us to test several trial factors simultaneously, taking
advantage of the properties of truncated exponential sums [4]
with continuous arguments.

Our method is motivated by recent work on factorization
using truncated exponential sums [5], which has been realized
in several experiments [6]. However, it differs from the past
realizations in three important points: (i) the division of N by
the trial factors � is not precalculated [7], but it is performed
by the experiment itself, (ii) all the trial factors are tested
simultaneously in a single experiment, and (iii) a scaling

property inherent in the recorded interferogram of a single
number allows us to obtain the factors of several numbers.

The optical setup used to implement this idea is a symmetric
Michelson interferometer with M + 1 paths in free space
shown in Fig. 1 for M = 3. To calibrate the interferometer, the
mirrors are arranged such that the path lengths are identical to
the length r of the reference path. Next we displace these
mirrors in a nonlinear way to obtain the final path length
xm ≡ r + (m − 1)2x of the mth arm. Here x denotes the
unit of displacement. The preparation of the interferometer
is completed after we have blocked the reference mirror.

The intensity in the exit port of the interferometer is given
by the interference of the waves in the remaining M arms.
Since we deal with balanced beam splitters, all waves have the
same amplitude. However, due to the different arm lengths xm

of the interferometer, the phases φm = 2πxm/λ = 2πr/λ +
2π (m − 1)2x/λ give rise to the intensity

I (λ; x) =
∣∣∣s (x

λ

)∣∣∣2
, (1)

which we have expressed by the curlicue function [8]

s(ξ ) ≡ 1

M

M∑
m=1

exp[2πi(m − 1)2ξ ]. (2)

Here we have normalized the output intensity with respect
to the source intensity. Moreover, the reference phase φr ≡
2πr/λ which is independent of m has dropped out due to the
fact that the intensity in Eq. (1) involves the absolute value
squared of the sum s.

From Eq. (2) we note that |s|2 has a dominant maximum
at ξ = 0 with s(0) = 1 and decaying oscillations on the sides.
Moreover, we recognize the periodicity property s(ξ + 1) =
s(ξ ). Therefore, it suffices to consider s = s(ξ ) in the interval
−1/2 � ξ � 1/2. In addition |s(ξ )|2 is symmetric with respect
to ξ = 0.

We now consider the dependence of the intensity I given by
Eq. (1) on the wavelength λ for a fixed unit x of displacement.
The argument ξ of s is the ratio x/λ = k(λ; x) + τ (λ; x), which
we represent by the sum of the integer k and the correction term
τ with −1/2 � τ � 1/2. For a fixed value of x, k and τ depend
on λ. It is this dependence of I = I (λ; x) on λ which contains
the information about the division by λ. Indeed, whenever λ
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FIG. 1. Experimental setup for factoring numbers using classical
interference in a generalized symmetric Michelson interferometer
with M + 1 paths. This analog computer consists of a polychromatic
source (halogen lamp), M balanced beam splitters, M + 1 mirrors,
and a spectrometer connected to a charge-coupled device (CCD)
camera. The M interfering paths are varied with respect to the
reference path of length r , defined by the reference mirror Mr and
indicated by thin vertical dashed lines, by displacing the M mirrors.
The length of the mth arm reads xm = r + (m − 1)2x, with the unit of
displacement x and m = 1,2, . . . ,M . Here we depict the case M = 3.

is such that s = 1 we find τ = 0 and hence x/λ = k, which
implies that λ is a factor of x.

Since x and λ only enter into the intensity as a ratio, we
find immediately the scaling law

I (λ; x) = I

(
N

λ

x
; N

)
, (3)

which suggests that we can find the factors of N by rescaling
the interferogram as a function of the dimensionless variable

ξN ≡ N
λ

x
. (4)

Hence, we can exploit the wavelength λ as well as the unit of
displacement x to scan the possible trial factors in the interval
1 � ξN �

√
N . In principle, by choosing a suitable value of x

and an appropriate interval of wavelengths, we can factor any
large value of N .

It is illuminating to compare our method of factoring
numbers to Shor’s algorithm [1]. Both implement a function.
We use a physical system, that is, a classical analog computer
to obtain the continuous function f (ζ ) ≡ 1/ζ . Shor’s method
takes advantage of the exponentially large Hilbert space of
a quantum system to encode the discrete function g(i) ≡
aimodN whose period shares a common factor with N . In
contrast, we exploit the very change of the periodicity induced
by the function 1/ζ in the interferogram consisting of a
sequence of skewed curlicue functions.

We now turn to the experimental implementation of our
technique based on a symmetric Michelson interferometer
with M = 3 beam splitters and four mirrors. Each mirror is
mounted on a single axis translation stage which consists of a
5-mm manual travel stage, a 50-mm step motor, and 20-µm
piezoelectric and feedback control stage with a resolution of
10 nm.

The polychromatic source of the interferometer is a halogen
lamp with a bandwidth ranging from 400 to 800 nm. The
interference pattern at the output port is measured by a
spectrometer [9] connected to a 2048-pixel charge-coupled
device (CCD) array of resolution 0.005–0.006 nm, as a

I
λ

460.5 461.5 462.5
λ nm

1151 1153 1155 1157
ξN

1137 1136 1135 1134 1133 1132 1131 1130
x λ

1149 1151 1153 1155 ξN

N 1306349 1133 1153

N 1308567 1131 1157

FIG. 2. Experimental interferogram I = I (λ; x), obtained by
the multipath Michelson interferometer of Fig. 1, for a unit of
displacement x = 523 426.8 nm, in the wavelength range 460.36 �
λ � 463.24 nm (center) and factorization of the two numbers N =
1 308 567 = 1131 × 1157 (bottom) and N ′ = 1 306 349 = 1133 ×
1153 (top), by rescaling the wavelength axis according to Eq. (4).
The dots represent the measured values and the curve is obtained
by joining the experimental points. The insets magnify the behavior
of the interferogram in the neighborhood of the three trial factors
1153,1155, and 1157, whose locations are indicated by dotted,
dashed, and dashed-dotted lines, respectively. Only when the dom-
inant maximum in the interferogram is located at an integer do we
have a factor of N or N ′. Every dominant maximum corresponds to
a factor x/λ as indicated by the horizontal axes at the bottom.

continuous function of the wavelengths λ associated with the
polychromatic source. The spectrometer and the CCD can
cover a range in wavelengths of the order of the light source.
An accuracy of the order of 0.006 nm in a single pixel requires
the use of a CCD bandwidth of 13 nm.

The calibration of the interferometer with a suitable
accuracy is one of the challenging tasks in this experiment.
We first determine when all path lengths xm are equal to r , by
measuring the polychromatic two-path interference between
the mth beam and the reference beam, for each m = 1,2,3, with
the mirror Mr tilted by a small angle with respect to all the other
mirrors. Then we block the mirror Mr and obtain nonlinear
interfering path lengths by translating each mirror Mm with
the piezoelectric translators combined to the step motors. Our
experiment uses the displacement unit x = 523 426.8 nm.

In the center of Fig. 2, we show the resulting interferogram
as a function of the wavelength λ in the interval [460.36 nm,
463.24 nm]. Next we use this pattern to factor two distinct
numbers. We start with N = 1 308 567 = 1131 × 1157 and
present toward the bottom of Fig. 2 an axis with the variable
ξN rescaled according to Eq. (4). We clearly identify the factor
1157 by the maximum being located [10] at an integer, as
shown by the inset. Moreover, we use the same interferogram
to factor the number N ′ = 1 306 349 = 1133 × 1153. For this
purpose we show on the top the rescaled variable ξN ′ . Again
we can identify the factor 1153 by the maximum being located
at an integer.

What is the range of wavelengths necessary to factor a
given number N? The answer to this question emerges from
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the condition that the spectrum must cover all test factors
ranging from 1 to

√
N , that is, 1 < ξN <

√
N , together with

the scaling transformation Eq. (4) which translates into the
wavelength requirement 1/N < λ/x < 1/

√
N . Hence, for

a given wavelength range λmin � λ � λmax we can factor
numbers N from the interval

Nmin ≡
(

x

λmax

)2

� N � x

λmin
≡ Nmax, (5)

We emphasize that this inequality also puts a restriction
on the displacement x. Indeed, in order to have Nmin � Nmax

we need to satisfy the condition (x/λmax)2 � x/λmin, which
implies

x � λ2
max

λmin
. (6)

According to Eq. (5) the largest possible number that can be
factored is given by the maximum value of x which translates
with the help of Eq. (6) into

Nmax =
(

λmax

λmin

)2

≡ β2. (7)

With the wavelength domain of the halogen lamp we find from
Eq. (7) the value Nmax = 4.

This conservative estimate originates from the constraint
that we have to cover a wavelength domain large enough to
include all test factors up to

√
N . Nonetheless we can still

find the factors of some numbers as demonstrated by Fig. 2.
Indeed, each dominant peak in the interferogram corresponds
to a factor p of a number N = pq. Since the scaling law Eq. (4)
predicts ξN = Nλ/x = pqλ/x, that is, q = x/λ, the spectral
range λmin � λ � λmax allows us to determine the factors

qmin ≡ x

λmax
< q <

x

λmin
≡ qmax. (8)

To illustrate this feature we have included in Fig. 2 a horizontal
axis on which we mark the possible factors q given by the
maxima of the curlicue function.

One possibility of circumventing the bandwidth limitation
given by Eq. (7) consists of repeating the experiment for
different values of the unit x of displacement while maintaining
the bandwidth expressed by the dimensionless parameter β.
For a given integer N to be factored, we choose n suitable
values of x = xi , with i = 0,1, . . . ,n − 1, in order to cover
subsequent intervals [ξ (i)

N ,ξ
(i+1)
N ] of test factors with ξ

(i)
N ≡

Nλmin/xi such that [ξ (0)
N ,ξ

(n)
N ] = [1,

√
N ]. We achieve this goal

provided xi+1 = xi/β, with x0 ≡ Nλmin, and n � logβ

√
N

number of interferograms.
Similarly, we can factor any number in the interval Nmin <

N < Nmax by using n � logγ

√
Nmax interferograms, provided

γ ≡ Nmin/Nmaxβ > 1. Such interferograms are obtained for
values xi such that xi+1 = xi/γ < xi , with

x0 ≡ Nmaxλmin. (9)

For example, for factoring all the integers N such that
Nmax = 10Nmin it would be enough to exploit a wavelength
bandwidth β = 20 in order to achieve the value γ = 2.

In conclusion, we have outlined and verified by an ex-
periment an approach toward factoring numbers with the
help of a multipath Michelson interferometer where the
individual optical path lengths increase quadratically leading
to Gauss sums. However, we could have easily implemented
any other polynomial increase where an exponential sum
determines the output intensity of the interferometer. We have
factored different numbers with up to seven digits from a
single recorded interferogram exploiting a remarkable scaling
property.

Our experiment relied on only M = 3 interfering paths.
However, for larger numbers to be factored, it can be useful
to increase either the number of paths M or the polynomial
order of the interferograms in order to obtain sharper peaks
and better accuracy in the value of the maxima. A standard
best fitting procedure [10] would allow us, in principle, to
achieve the necessary accuracy even exploiting small values
of M . Nevertheless it is possible with M = 2 paths to resolve
consecutive peaks according to the Rayleigh criterion no
matter how large the numbers to be factored.

It is amusing to consider the resources necessary to factor
a 200-digit number, which is considered really difficult on a
classical computer. From Eq. (9) we find for λmin ∼ 100 nm
the estimate x ∼ 1053 m which is much larger than the size of
the universe [11] of 1027 m. Hence, such large numbers are
not factorable with our method in the present form.

Obviously our analog factorization algorithm does not
provide an exponential speedup. Nevertheless it is very
different from other classical algorithms which run on a digital
computer. Indeed, in our case it is a physical phenomenon, that
is, interference, which we exploit to compute the factors of a
given number. Although it is not possible to fully compare a
digital with an analog method, we believe that our procedure
paves the way for the use of physics for solving problems in
number theory and we let “nature” solve complex problems
for us.
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