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Optimal detection of entanglement in Greenberger-Horne-Zeilinger states
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We present a broad class of N -qubit Greenberger-Horne-Zeilinger (GHZ)-diagonal states such that
nonpositivity under the partial transpose operation is necessary and sufficient for the presence of entanglement,
including many naturally arising instances such as dephased GHZ states. Furthermore, our proof directly leads
to an entanglement witness which saturates this bound. The witness is applied to thermal GHZ states to prove
that the entanglement can be extremely robust to system imperfections.
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Introduction. Multipartite entanglement is still a phe-
nomenon that is poorly understood and categorized. For some
types of entangled states, such as N -qubit Greenberger-Horne-
Zeilinger (GHZ) states, it requires very little noise (loss of a
single qubit) to entirely destroy the entanglement, whereas
others, such as error-correcting codes, seem much more
robust. If we are ever to use entanglement as a resource in
information-processing protocols, it is essential to understand
when entanglement is present in a system and how to detect
it. For instance, the ability of entanglement to persist at high
temperatures could vastly reduce experimental requirements
and has a direct bearing on the possibility of constructing
quantum memories [1].

Attempts to characterize and detect multipartite entangle-
ment are certainly not new [2–10]. Many additional references
are contained in the wide-ranging review of [9]. While these
strategies are capable of detecting some entanglement, the
majority, with some notable exceptions, including [2–5], are
unable to convey how well these characterizations perform.
They might detect some entanglement, but how much is
missed? Optimality results are crucially important.

A reasonable starting point for these studies is to consider
classes of states, such as those that are diagonal in the GHZ
basis, which arise frequently in quantum information, and are
hence likely to be of most interest. Some partial categorizations
are already known. For instance, thermal GHZ states can
be distilled (using only local operations with respect to the
full multipartite structure) up to a finite temperature, and this
temperature is tight; i.e., above that temperature, entanglement
cannot be distilled [4,5]. However, there is still (bound)
entanglement present in these models above the distillation
threshold [6]. Dür and Cirac [3] also considered a subset
of GHZ-diagonal states and showed necessary and sufficient
conditions for distillation and separability; for distillation of
this subset, the state should be nonpositive with respect to
the partial transpose (NPT) operation across every possible
bipartition, whereas for full separability, the state should be
positive with respect to the partial transpose (PPT) across all
possible bipartitions.

In this Rapid Communication, we substantially broaden the
class of GHZ-diagonal states for which the PPT condition is
necessary and sufficient for the state to be fully separable. This
class includes the special cases of the thermal state studied

in [4–6] and the GHZ-diagonal states in [3]. Our formal-
ism instantly yields an entanglement witness for optimally
detecting that entanglement. Recent work [11] relaxes the
restriction on the class of states, incorporating cluster states
and error-correcting codes, at the cost of specializing the noise
models considered.

GHZ-diagonal states. Consider a system of N qubits, and
define the mutually commuting stabilizer operators

Kn =
{

X1
∏N

m=2 Zm, n = 1,

Z1Xn, n � 2.

Xn is the Pauli X matrix applied to qubit n, and Zx denotes
the application of Z rotations to all qubits for which the N -bit
string x is 1; i.e., writing the nth bit of x ∈ {0,1}N as xn,

Zx =
N∏

n=1

Zxn

n .

Kx is similarly defined in terms of the Kn. Denoting
(|0〉 ± |1〉)/√2 by |±〉, the +1 eigenstate of each of these
stabilizers is

|ψ〉 = |0〉|+〉⊗(N−1) + |1〉|−〉⊗(N−1),

and |ψx〉 = Zx |ψ〉 for x ∈ {0,1}N is an eigenstate of all
products of stabilizers Ky with eigenvalue (−1)x·y . This is
locally equivalent to other GHZ bases, which does not affect
the entanglement structure that we are investigating. However,
this particular formulation will allow an immediate translation
of many of our results to the more general case of graph
states [11]. Any state

ρ = 1

2N

∑
y∈{0,1}N

syKy (1)

is diagonal in this basis, and it is this class of states which we
consider. In order for ρ to be a valid state, we require s0 = 1
and minx∈{0,1}N

∑
y sy(−1)x·y � 0 (i.e., the eigenvector with

minimum eigenvalue is nonnegative).
We are now interested in evaluating the partial transpose

criterion on this state in a first step to determine when there
is entanglement present in the state. Starting from Eq. (1),
we introduce a bipartition z ∈ {0,1}N−1 and take the partial
transpose on those qubits on the zn = 1 side. Without loss
of generality, qubit 1 is assumed to be on the 0 side of the
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bipartition. Recall that under the partial transpose, the Pauli
operators alter by Zn �→ Zn, Xn �→ Xn but Yn �→ (−1)zn−1Yn.
Thus,

ρPT = 1

2N

∑
y∈{0,1}N

syKy(−1)y1
∑N

n=2 ynzn−1 .

Observe that products of stabilizers remain as products of
stabilizers, and as a result, the eigenvectors of ρPT are just
|ψx〉, with eigenvalues fx,z(�s)/2N :

fx,z(�s) =
∑

y∈{0,1}N
(−1)x·ysy(−1)y1

∑N
n=2 ynzn−1 .

If there exists an x and z such that fx,z(�s) < 0, the state is
entangled due to being NPT across the bipartition z.

Entanglement witnesses saturating PPT. Using this formal-
ism, it is straightforward to find an entanglement witness that
will saturate the PPT threshold for any state which is diagonal
in the GHZ state basis. To do this, we measure the observables

Wx,z =
∑

y∈{0,1}N
(−1)x·y(−1)y1

∑N
n=2 ynzn−1Ky.

For any arbitrary density matrix ρ with GHZ stabilizer
expectation values �s,

Tr(Wx,zρ) =
∑

y∈{0,1}N
(−1)x·y(−1)y1

∑N
n=2 ynzn−1sy = fx,z(�s).

Hence, for GHZ-diagonal states, this gives the eigenvalues
of the partial transpose of the state about bipartition z, and
finding Tr(Wx,zρ) < 0 for any x or z proves it is entangled.
This is a genuine entanglement witness in that, for any state
ρ = ∑

x,y µx,y |ψx〉〈ψy |, which may not be diagonal in the
graph state basis, finding one of the observables to be negative
witnesses the fact that it is entangled. To prove this, note that
any ρ can be converted, via local probabilistic operations, into
a graph diagonal state ρd = ∑

x µx,x |ψx〉〈ψx | with the same
diagonal elements [12] and, hence, the same values of �s. So, if
ρ is fully separable, it will have the same value of Tr(Wρ) as
ρd , which we know will be positive since the local conversion
to a diagonal state cannot introduce entanglement.

Separability. We are able to determine whether a GHZ-
diagonal state is NPT with respect to some bipartition and have
an observable that can witness the entanglement. We will now
study the converse, when the state is certainly not entangled.
Again, the stabilizer formalism is immensely helpful. We will
say that Kx and Ky have a compatible basis if at every site n

when Kx is a Pauli matrix σ , then Ky is either σ or 1 at that site
and vice versa. Such cases are relevant because each product
of stabilizers Kx is just a tensor product of Pauli operators, and
hence, its eigenvectors are product states. Two terms Kx and
Ky have a simultaneous product state decomposition if they
have a compatible basis. So, in order to give a fully separable
decomposition of ρ, we group all terms that have a compatible
basis and find the smallest eigenvalue. This grouping of terms
has to have some component of the 1 added such that the
minimum eigenvalue is 0. If we do this, then that grouping of
terms is a separable state, with a decomposition specified by the
common product basis. We are finally left with a condition that
the excess weight of 1 terms should be positive. In the case of a
GHZ-diagonal state, the terms Ky for y ∈ {0,1}N with y1 = 1

do not have any compatible terms, whereas all terms Ky with
y1 = 0 are mutually compatible. We hence change notation
slightly to K1y and K0y , respectively, for y ∈ {0,1}N−1. The
decomposition therefore takes the form

ρ = g(�s)1 +
∑

y∈{0,1}N−1

|s1y |[1 + sgn(s1y)K1y]

+
(∑

y

s0yK0y − 1 min
x∈{0,1}N−1

∑
y

s0y(−1)x·y
)

.

Thus, provided

g(�s) =
⎛
⎝min

x

∑
y∈{0,1}N−1

s0y(−1)x·y −
∑

y∈{0,1}N−1

|s1y |
⎞
⎠ � 0,

we have a separable decomposition of ρ. Compare this to
fx0x̃,x̃⊕z̃(�s) where (−1)x0 = −sgn(s100...0),∑

y∈{0,1}N−1

s0y(−1)x̃·y − sgn(s100...0)
∑

y∈{0,1}N−1

s1y(−1)z̃·y.

The two are equal if x̃ corresponds to the minimal choice in the
separable state decomposition, and there exists a z̃ ∈ {0,1}N−1

such that

sgn(s100...0)s1y(−1)z̃·y � 0 ∀y ∈ {0,1}N−1. (2)

(If s100...0 = 0, then x0 remains a free parameter.) If this
simple condition is satisfied, then PPT exactly detects the
transition between the existence of bipartite entanglement
and full separability of the state which, in turn, makes our
entanglement witnesses optimal.

Equation (2) gives a sufficient condition for the coincidence
of thresholds for full separability and PPT. If not satisfied, is
there really a separation between the PPT threshold and the
best known separable state? For a three-qubit GHZ-diagonal
state, Eq. (2) is fulfilled provided∏

y∈{0,1}2

s1y � 0.

One can see that approximately half of the parameter space
{sy} is covered by Eq. (2) in this case. One example outside
this regime is the state

ρ = 1

8(1 + α)

(
3∏

n=1

(1 + Kn) − 2K1K3 + α1

)
.

Provided α � 2, ρ is a valid state, but it is also PPT with respect
to all possible bipartitions. Our previous construction of a
separable state is valid for α � 4. This can be improved to α �
2
√

2 by rewriting the sum K1 + K1K2 − K1K3 + K1K2K3 as

1

2

1∑
n=0

(X + (−1)nY )1(Z + (−1)nY )2(Z − (−1)nY )3.

Upon implementing the semidefinite programming techniques
of [13], we witnessed entanglement in the region α � 2.828.
Hence, the separable decomposition is not universally optimal,
but neither is the PPT condition.

Thermal states and perturbations. Many noise models
satisfy Eq. (2), including the subclass considered in [3] (all
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s1y equal and positive). We will now discuss the special case
of local dephasing noise on each qubit, which also corresponds
to the thermal state of the Hamiltonian

H = −1

2

N∑
n=1

�nKn,

which has sy = ∏N
n=1 tanh(β�n/2)yn , where β is the inverse

temperature and �n are energy terms. Since sy > 0, z̃ =
00 . . . 0. One can also check that x̃ is 11 . . . 1 and, conse-
quently, derive a simple threshold condition,

tanh
(

1
2β�1

) = e−β
∑N

n=2 �n.

Even though distillable entanglement only persists to a finite
temperature [4,5], bound entanglement, which is all bipartite
and detected by the partial transpose, persists to a temperature
that increases with N (see Fig. 1). Without knowledge of
the optimal solution, as derived here, it was impossible
for previous studies of entanglement witnesses, even those
specifically designed to detect GHZ state entanglement, to
evaluate how well they performed, and they were often far
from optimal. It is not our purpose to reevaluate the plethora
of witnesses available, and instead, we merely compare one
example, taken from [6]; see Fig. 1. As observed numerically
for other graph states in [14], the entanglement is very robust
to perturbations in the �n (on qubits 2 to N , only the average
dephasing strength is relevant). We can also add a local
magnetic field term

H = −1

2

N∑
n=1

�nKn − 1

2

N∑
n=1

δnZn.

Since the terms K ′
n = �nKn + δnZn mutually commute,

[K ′
n,K

′
m] = 0, and K ′2

n = (�2
n + δ2

n)1,

ρ = 1

2N

N∏
n=1

(
1 + tanh

(
1

2
β

√
�2

n + δ2
n

)
K ′

n

/√
�2 + δ2

)
.

FIG. 1. (Color online) Comparison of the PPT critical tempera-
ture for the thermal GHZ state, a lower bound for the model when
perturbed by a uniform magnetic field of strength δ/� = 0.3, and
performance comparison of a previous entanglement witness [6].
Choice of � = kB = h̄ = 1 ensures unitless quantities.

For simplicity of notation, we take all the �n to be equal and
all the δn to be equal. We also set s = tanh(β

√
�2 + δ2/2).

The thermal state can be expanded as

2Nρ =
∑

x∈{0,1}N

∑
y∈{0,1}N

(
s√

�2 + δ2

)wx+wy

δwx �wy ZxKy,

although the summation over y is restricted to cases where
yn = 0 if xn = 1. wx is the Hamming weight of the string
x. To prove the presence of entanglement, we can use the
entanglement witness Wx̃,x̃⊕z̃ from the unperturbed case,

Tr(Wx̃,x̃⊕z̃ρ) =
∑

y∈{0,1}N

( −s�√
�2 + δ2

)wy

(−1)y1
∑N

n=2 ynzn−1 ,

since Tr(ZxKyKz) = δx,00...0δy,z. The critical inverse temper-
ature βδ at which the expectation value of this state is zero is
hence related to the unperturbed β0 by

�√
�2 + δ2

tanh

(
1

2
βδ

√
�2 + δ2

)
= tanh

(
1

2
β0�

)
.

Furthermore, βδ is an upper bound on the true critical β, i.e.,
a lower bound on the critical temperature. Figure 1 indicates
just how robust this entanglement is.

Approximate entanglement witnesses. With the advent of an
optimal solution to the detection of GHZ-like entanglement,
we come across the problem that the desired entanglement
witness is composed of exponentially many terms. This is
to be expected since, in order to function over such a wide
parameter regime, it will be necessary to take into account
the fine detail of the exponentially many parameters of the
state. Nevertheless, one can study how to approximate these
witnesses, and we advocate the approach of starting from
the optimal solution. Figure 2 shows how to implement an
additive approximation to the witnesses across the entire
parameter regime. For any ρ = ∑

a,b µb,a|ψb〉〈ψa|, the first
two gates are just the sequence that maps |ψa〉 into a
computational basis state |a〉, so this circuit simply repre-
sents the input of a state σ = (

∑
a,b µb,a|b〉〈a|) ⊗ 1/2N to a

Hadamard test using a 2N -qubit unitary V . The Hadamard
test has a probability of finding the ancilla in state |0〉 of
1
2 (1 + Tr(σV )). It is readily verified that Tr(σV ) = Tr(Wx,zρ).
After k repetitions, the probability of incorrectly estimating the
value of Tr(Wx,zρ) to an accuracy ε is bounded by Chernoff’s
bound to be no worse than 2e−2kε2

, so using k ∼ O(ε−2) gives
a constant failure probability, independent of N , with a number
of gates O(N ). Further details can be found in [11].

|0〉A H • • • H

ρ CPE H •

11/2N Z Zx CP z
E

FIG. 2. Circuit for additive approximation to optimal entangle-
ment witnesses. The top register is a single ancilla. The other two are
registers of N qubits. Gates are applied transversally, except for CPE ,
which indicates that controlled phases need to be applied between the
qubits of a given register for all pairs (1,n). CP z

E is similar except
that the controlled phase between qubits 1 and n is only applied if
zn = 1.
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Let us now consider witnessing entanglement for thermal
states. With the promise that a state is a thermal GHZ state, it
is only necessary to measure the value of s because we know
the critical value. However, the trick is to build this added
simplicity into a witness. If we start from an N -qubit thermal
GHZ state, we could apply controlled-phase gates along all
qubit pairs (1,n). This would return a state where every qubit
is in a separable state |+〉〈+| + s|−〉〈−|, from which we could
easily extract s, although this is not a witness. However, if we
only measured a subset, M , of the N qubits, we could invoke
the quantum De Finetti theorem [15], which states that to an
approximation that scales with M/(N − M), the M qubits
can be found in a separable state

∫
dσp(σ )σ⊗M , where p(σ )

is some probability distribution over all possible single-qubit
states σ (except that in the present case they must be diagonal
in the |±〉 basis), each of which corresponds to a thermal state
parametrized by s(σ ). By measuring several copies of this
state, it is possible to approximate p(σ ) and hence witness
if the state is entangled by evaluating

∫
dσp(σ )fx,z(s(σ )). If

the subset of M qubits was entangled, the full set of N qubits
certainly was. The entanglement lost by tracing out a large
proportion of the qubits will negatively impact the optimality,
particularly for GHZ states, but for other states, such as the one-
dimensional cluster state [11], this approximation is very mild.

Conclusions. We have given a sufficient condition, which
naturally encompasses a vast range of GHZ-diagonal states,
including those that are experimentally relevant, such that the
existence of an NPT bipartition is necessary and sufficient for
the state to be entangled. This led to an entanglement witness
that optimally detects the existence of an NPT bipartition and
shows that the entanglement in thermal states of GHZ graphs is
extremely robust to some classes of perturbation. Future work
could focus on witnessing entanglement in those cases where
entanglement persists outside the PPT regime, beyond the
current reliance on numerical techniques. Criteria developed
in [10] can already prove the existence of entanglement beyond
the PPT threshold.

We have been careful to express much of this Rapid
Communication in very general terms using the stabilizer
formalism. As such, much of the work extends to graph-
diagonal states, which are also defined by stabilizers and which
cover many of the interesting states in quantum information,
such as cluster states and error-correcting codes. We study this
case in more detail in [11].

Acknowledgments. This work was supported by the Na-
tional Research Foundation and Ministry of Education, Singa-
pore, and Clare College, Cambridge. O. Gühne is thanked for
feedback on the preprint of this paper.

[1] F. Pastawski, A. Kay, N. Schuch, and I. Cirac, Phys. Rev. Lett.
103, 080501 (2009).

[2] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys.
Rev. A 62, 052310 (2000).

[3] W. Dür and J. I. Cirac, Phys. Rev. A 61, 042314 (2000).
[4] A. Kay, J. K. Pachos, W. Dür, and H.-J. Briegel, New J. Phys.

8, 147 (2006).
[5] A. Kay and J. K. Pachos, Phys. Rev. A 75, 062307 (2007).
[6] D. Kaszlikowski and A. Kay, New J. Phys. 10, 053026

(2008).
[7] M. Bourennane et al., Phys. Rev. Lett. 92, 087902 (2004).
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