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Surface code quantum computing with error rates over 1%
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Large-scale quantum computation will only be achieved if experimentally implementable quantum error
correction procedures are devised that can tolerate experimentally achievable error rates. We describe an improved
decoding algorithm for the Kitaev surface code, which requires only a two-dimensional square lattice of qubits
that can interact with their nearest neighbors, that raises the tolerable quantum gate error rate to over 1%. The
precise maximum tolerable error rate depends on the error model, and we calculate values in the range 1.1–1.4%
for various physically reasonable models. These values represent a very high threshold error rate calculated in a
constrained setting.
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Building a quantum computer is a daunting task. Engineer-
ing the ability to interact nonlocal pairs of qubits is particularly
challenging. All existing quantum error correction (QEC)
schemes capable of tolerating error rates above 1% assume the
ability to deterministically interact pairs of qubits separated
by arbitrary distances with no time or error rate penalty [1–3].
The most recent of these works estimates a threshold error rate
pth of 5% [3].

It is far more physically reasonable to assume a two-
dimensional (2D) lattice of qubits with only nearest neighbor
interactions, proposed realizations of which exist for ion traps
[4], optical lattices [5], superconducting qubits [6], optically
addressed quantum dots [7,8], nitrogen-vacancy (N-V ) centers
in diamond [9], and many other systems. For such proposals,
the leading QEC scheme [10,11], which is based on the Kitaev
surface code [12,13], has been shown to possess a pth of
0.75% [10,14,15]. We increase this to 1.1–1.4%, depending on
the error model, and substantially improve the high error rate
performance, resulting in a fivefold reduction of the required
number of qubits at an operating error rate of 0.5%. We achieve
this by carefully using the given error model to calculate
approximate probabilities of different error events, and not
initializing qubits. Note that related 3D topological cluster
state work exists [16–18], and the techniques we describe
could be used to improve the threshold of these schemes as
well, however we focus on the surface code here.

To overview, we begin by describing stabilizers and our
simplified quantum gate sequence, followed by a detailed
discussion of how probable different error events are and
how this information can be fed into the classical decoding
algorithm. We then present the results of detailed simulations,
which apply two-qubit depolarizing noise with probability p2

after two-qubit quantum gates and single-qubit depolarizing
noise with probability pI after identity gates, and which use
measurement gates that report and project into the wrong
eigenstate with probability pM . In addition to the standard
error model with p2 = pI = pM = p, we simulate a balanced
error model with pI = 4p2/5 and pM = 2pI/3, ensuring idle
qubits have the same probability of error as a single qubit
involved in a two-qubit gate and taking into account the fact
that measurement is only sensitive to errors in one basis.
We also simulate pI = p2/1000 and pM = p2/100, modeling
typical error ratios in an ion trap.

A stabilizer [19] of a state |�〉 is an operator S such that
S |�〉 = |�〉. Provided a method of measuring the stabilizer is
available, an error E that anticommutes with S can be detected
as SE |�〉 = −ES |�〉 = −E |�〉. Examples of surface code
stabilizers [12] are shown in Fig. 1(a). Circuits measuring
these stabilizers without explicit initialization gates are shown
in Fig. 2. We assume quantum nondemolition measurements,
which have been experimentally demonstrated using ion traps
[20], optical lattices [21], superconducting qubits [22], and
N-V centers in diamond [23] and theoretically proposed for
optically addressed quantum dots [24,25]. The initial and final
measurements match when +1 is measured and differ when
−1 is measured. An appropriate sequence of two-qubit gates
for measuring all stabilizers across the lattice simultaneously
is shown in Fig. 1(b). Data qubits execute identity gates while
the syndrome qubits are measured.

Repeatedly executing Fig. 1(b) and appropriate syndrome
qubit measurements and data qubit identity gates generates
points in space and time where measurements change sign,
indicating local errors. Renormalization techniques exist ca-
pable of processing perfect syndrome information [26,27];
however, at present only the minimum weight perfect matching
algorithm [28,29] can be used to process the output of realistic
quantum circuits.

The minimum weight perfect matching algorithm takes
coordinates and a measure of separation and matches pairs
of coordinates such that the total separation is a minimum.
Chains of corrective operations connecting matched pairs can
then be applied; however, in practice one would simply update
the classical Pauli frame [1] to avoid introducing further errors.
Prior work has calculated the separation of two syndrome
changes, s1 = (i1,j1,t1) and s2 = (i2,j2,t2), using d(s1,s2) =
|i1 − i2| + |j1 − j2| + |t1 − t2| [10,14,15]; however it was
shown in [30] that this is far from optimal and leads to poor
performance at low error rates. In this work, we focus on the
high error rate performance, and in contrast to [30], which
assumed that all equal length error chains were equally proba-
ble, we approximate the probability P (s1,s2) of a given pair of
syndrome changes being connected by an error chain, and we
set d(s1,s2) = − ln[P (s1,s2)]. This choice of d(s1,s2) works
well as high probability pairs have low separation and are
preferentially matched by the algorithm. This accounts for the
substantial high error rate performance increase we observe.
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FIG. 1. (Color online) (a) Two-dimensional lattice of data qubits
(squares) and syndrome qubits (circles) and examples of the data
qubit stabilizers. (b) Sequence of CNOT gates permitting simultaneous
measurement of all stabilizers. Numbers indicate the relative timing
of gates. The highlighted gates can be tiled to fill the plane.

To calculate P (s1,s2), we study the effect of gate errors.
Figure 3 shows all possible pairs of syndrome changes
resulting from all errors on all meaningfully distinct gates. The
controlled-NOT gates (CNOTs) shown measure an X stabilizer.
The effect of errors on the CNOT gates used to measure a
Z stabilizer can be obtained by interchanging X and Z. Note
that X and Z errors are corrected independently, so only tensor
products of one type of error need be considered.

Working through a specific case, consider error process 6
in Fig. 3(b), a ZZ error after a CNOT gate between an ancilla
(control) and a data qubit (target). The Z error on the ancilla
will be detected at the completion of the current syndrome
extraction cycle. The Z error on the data qubit will be copied
to the ancilla to its left by the next interaction between that pair,
which occurs in the same round [see Fig. 1(b)]. This double
detection is represented by the horizontal line. Since X and Z

errors are corrected independently, ZZ is really shorthand for
ZZ, ZY , YZ, or YY .

Using Fig. 3, Fig. 4 was constructed, grouping gate errors
leading to specific geometrically separated pairs of syndrome
changes. Again working through a specific case, a vertical
pair of changes [Fig. 4(a)] can arise from error processes 1, 7,
11, 18, and 21 from Fig. 3. Error process 21 is a measurement
error and therefore has probability pM . As discussed above, the
others each correspond to 4 of the 15 possible tensor product
errors. Explicitly, error process 1 (ZI ) corresponds to ZI ,
ZX, YI , and YX and therefore has probability 4p2/15. Error
processes 7, 11, and 18 similarly each have probability 4p2/15.
The probability of an odd number of error processes occurring
in each group gives the probability of the presence of the
associated link. Using the standard error model, the probability
of the vertical link shown in Fig. 4(a) is

pA = 16p

15

(
1 − 4p

15

)3

(1 − p) + p

(
1 − 4p

15

)4

+ O(p3).
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FIG. 2. Circuits determining the sign of a stabilizer (a) S =
XXXX or (b) S = ZZZZ without explicit initialization gates.
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FIG. 3. (Color online) Observed syndrome changes as a result of
a single error. The vertical axis is time, the horizontal grid represents
Fig. 1(a), and only relevant qubit world lines are shown. A CNOT gate
suffering an error is drawn in full; otherwise it is represented by a tick
mark protruding in the direction of application. Syndrome changes
occur in pairs. Pairs of changes (shaded circles connected by lines)
resulting from (a–d) specific two-qubit errors on specific CNOT gates,
(e) a syndrome qubit measurement error, and (f) a data qubit memory
error.
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FIG. 4. (Color online) Numbered error processes from Fig. 3
contributing to specific links. Superscripts 1, 2, and 3 indicate
error processes occurring with probability 8p2/15, 2pI/3, and pM ,
respectively. All others occur with probability 4p2/15.

Similar polynomial probability expressions pB , pC , pD ,
pE , and pF can be constructed for Figs. 4(b)–4(f). Some
straightforward modifications of the links and expressions are
required at the temporal and spatial boundaries to account for
missing gates.

The probability P (s1,s2) that two syndrome changes are
connected is the sum of the probabilities of all connecting
paths. The probability of a given path is the product of
the link probabilities along the path, assuming independent
errors. Several approximations of P (s1,s2) are worthy of
study. The simplest approximation is to take a single path
of maximum probability Pmax(s1,s2) and define dmax(s1,s2) =
− ln[Pmax(s1,s2)]. We shall see that this approximation is
sufficient to substantially increase pth and that more accurate
approximations do not lead to further increase. The perfor-
mance of surface code QEC subjected to X errors when using
dmax(s1,s2) and the standard error model is shown in Fig. 5.
We obtained almost identical results for Z errors (not shown),
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FIG. 5. (Color online) Average number of rounds of error
correction before logical X failure as a function of the gate error
rate p when using dmax(s1,s2) and the standard error model.

with small differences due to the lack of geometric symmetry
of the link probabilities.

Figure 5 gives strong evidence of pth = 1.1%. We have
verified this by simulating high distance codes at p = 1.1%
and observing neither increase nor decrease of the failure
time. This is enormously encouraging and motivates one to
better approximate P (s1,s2) in an effort to further increase
pth. Additional accuracy can be achieved by taking all the
shortest length paths (measured in links) between s1 and s2 and
calculating the sum of products of link probabilities along each
path. We define the resulting distance measure as d0(s1,s2).
We can define similar distance measures dn(s1,s2), taking into
account all minimum length l paths and paths of length no
greater than l + n. The performance of surface code QEC
around pth using d0(s1,s2) is shown in Fig. 6. It can be seen
that pth remains 1.1%.

The fact that d0 leads to the same pth as using a single max-
imum probability path distance measure dmax can be explained
by noting that d0(s1,s2) only differs from dmax(s1,s2) if s1 and
s2 are separated by at least two links. Single-link paths are
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FIG. 6. (Color online) Average number of rounds of error
correction before logical X failure as a function of the gate error rate
p when using d0(s1,s2) and the standard error model. The threshold
error rate pth remains 1.1%.
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unique minimum length paths implying d0 = dmax. The vast
majority of error chains, even for p = pth, are only single-link
chains, as the threshold error rate is well below the percolation
threshold. We find the distance modification resulting from
taking into account the multiple paths connecting syndrome
changes separated by multiple links is of order 10–20%. Given
that multiple-link paths are not leading order contributors to
pth in the first place, this relatively small weight change does
not result in an observable improvement of pth.

Higher-order approximations dn(s1,s2) will also result in
the same pth as the distance measure is hardly altered by
increasing n. A typical example of p = 0.01, s1 = (0,0,0),
and s2 = (1, − 1,0) gives d0 = 6.91 (6 paths), d1 = 6.86 (30
paths), and d2 = 6.85 (390 paths). The exponential increase
of the number of paths is well balanced by the exponential
decrease of their probability.

The balanced error model is a better model of all quantum
gates failing with equal probability than the standard error
model, and appropriate modification of the polynomials using
p2 = p, pI = 4p/5, and pM = 8p/15 leads to pth = 1.2%.
The ion trap error model, with p2 = p, pI = p/1000, and
pM = p/100 leads to pth = 1.4%. Arbitrary stochastic error
models are straightforward to analyze using our formalism.

To conclude, by performing a detailed study of the proba-
bility of different pairs of syndrome changes and feeding the

simplest approximation of this information into the minimum
weight perfect matching algorithm, we have been able to
raise the geometrically constrained threshold error rate to
1.1–1.4%, depending on the exact error model, while main-
taining computational efficiency. There is the potential for
still further improvement by taking into account correlations
between X and Z errors.

The practical significance of the threshold increase can be
appreciated by noting that our scheme requires five times fewer
qubits than the previous best surface code scheme [30] to
achieve a given logical error rate at p = 0.5%, with only a
distance 23 code required to extend the lifetime of a qubit by a
factor of 105. Alternatively, [30] requires p = 8 × 10−4 for the
logical error rate to decrease by an order of magnitude when
the distance of the code is increased by 2, whereas from Fig. 5 it
can be seen that our scheme can do the same at p = 2 × 10−3.
These substantial relaxations of the experimental requirements
arise purely from better classical processing.
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