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General approach to spatiotemporal modulational instability processes
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In this article, we derive the general exact solution of the modulation instability gain. The solution described
here is valid for 1-D, 2-D, and 3-D cases considering any temporal response function of the medium and with
possible higher order Kerr nonlinearities. In particular, we show that the gain induced by modulation instability
is initial condition dependent, while the usual calculations do not lead to such a dependence. Applications for
current and high-interest nonlinear propagation problems, such as 1-D optical fiber propagation with delayed
Raman response and 2-D filamentation in gases, are investigated in detail. More specifically, we demonstrate
that the 2-D model of filamentation based on the balance between higher order Kerr terms leads to a modulation
instability window. The impact of both self-steepening and space-time defocusing effects is also highlighted.
Finally, we discuss the influence of the finite-time response of the different order electronic Kerr effects on the
growth of the expected modulation instability bands.
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I. INTRODUCTION

From the 1960s until today, the modulation instability
(MI) process has remained the subject of numerous ex-
perimental and numerical studies in transparent materials
[1–6]. When a quasicontinuous wave propagates through a
nonlinear medium, it can experience, in appropriate phase-
matching conditions, spatiotemporal instabilities that manifest
themselves by the exponential growth of weak perturbations.
More specifically, MI results from the interplay between
linear effects, such as group-velocity dispersion (GVD) or
diffraction, and the Kerr-induced nonlinearity. For instance,
in optical waveguides, if the focusing (defocusing) nonlinear
medium exhibits anomalous (normal) dispersion at the pump
frequency ω0, because processes such as ω0 + ω0 → (ω0 +
ω) + (ω0 − ω) can be nonlinearly phase matched, spectral
bands spontaneously grow symmetrically with respect to
the input wave frequency even in the absence of any seed.
However, both higher order dispersion and birefringence char-
acteristics can strongly affect the existence of new windows
of scalar and vectorial MI effects [7,8]. Similarly, MI can also
appear in the spatial domain because of the balance between
diffraction and the Kerr effect. For instance, it has been shown
that multifilamentation [9], that is, the splitting of an ultrashort
ultra-high-power laser into several distinct structures, is a
direct manifestation of spatial MI. On the other hand, recent
experiments have been able to determine the higher nonlinear
refractive indices of gases such as argon, nitrogen, and oxygen
[10]. These higher nonlinear indices manifest themselves at
high intensity by the cancellation and even a sign reversal
of the global nonlinear refractive index of the considered
gases. These measurements are of particular importance for
the understanding of pulse propagation dynamics since it has
been demonstrated that in some conditions, these indices are
responsible for the collapse saturation during the filamentation
process [11]. The scope of this article is then twofold. In
Sec. II, we theoretically study the stability of the nonlinear
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Schrödinger equation and derive the exact solution for MI.
This solution is valid for 1-D, 2-D, and 3-D propagation
cases and is established with potential higher order Kerr
terms and noninstantaneous temporal responses. The master
equation derived here can hence describe any situation of
scalar MI. Moreover, conversely to usual derivation of MI
gain, we show that the gain bands are strongly dependent on
the initial noise conditions. In Sec. III, we apply this analytical
basis to investigate in detail the MI process for different
configurations and materials. First, according to the recent
measurements of higher order Kerr terms of some gases, we
demonstrate the existence of a 2-D MI regime directly induced
by these nonlinear indices. Indeed, on-axis MI can occur in the
normal dispersion regime when the global nonlinear refractive
index becomes negative at very high intensities. Moreover, we
analyze how the self-steepening and space-time defocusing
terms modify the MI bands. Second, we show that the
master equation gives also the exact solution of MI in optical
fibers when a delayed Raman effect is taken into account.
In particular, we predict possible complex configurations of
MI gain bands using the widely used waveguide category
of photonic crystal fibers. Finally, we study the influence of
the electronic finite-time response on the MI. In particular,
we demonstrate that the time response of the Kerr-induced
nonlinear index has to be relevantly evaluated in order to
accurately describe MI band growth.

II. MODULATIONAL INSTABILITY ANALYSIS

In this section, we consider a linearly polarized (along a
vector u) electric field propagating in a transparent centrosy-
metric medium. The electric field can be written as

E(−→r ,z,t) = [ε(−→r ,z,t)eik0z−iω0t + c.c.]u, (1)

where c.c. denotes complex conjugation, ε is the slowly
varying envelope, −→r is the transverse direction, and k0 is
the wave vector at the associated pulsation ω0.
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In the frame propagating at the pump frequency group
velocity vg = 1/k(1) and neglecting harmonic generation, ε

verifies

∂zε = i

2k0
T −1�⊥ε + i

∑
n�2

k(n)

n!
(i∂t )

nε + iT k0�nε, (2)

where k(n) = (∂nk)/(∂ωn)|ω0 is the nth-order dispersion co-
efficient of the medium evaluated at ω0 and �n is the
nonlinear refractive index. �⊥ = ∂2/∂x2 + ∂2/∂y2 in 3-D
or �⊥ = ∂2/∂r2 + 1/r(∂/∂r) in 2-D denotes the transverse
Laplacian. Assuming that the medium is transparent, �n can
be written as �n = ∑

j�1 n2jR2j (t) � |ε|2j , where � accounts
for convolution [12]. Depending on the considered medium,
one can consider only n2 (e.g., for propagation in fiber) or a
full development up to n10 (as shown in [11]). R2j (t) accounts
for the (2j + 1)th-order temporal response function of the
medium, which are all real and verify

∫ ∞
−∞ R2j (t)dt = 1 and

R2j (t < 0) = 0. R2(t) can take into account both electronic
induced nonlinear responses (generally admitted as instanta-
neous) and vibrational or rotational responses. For instance, for
silica fiber-propagation problems, one generally takes R2(t) =
(1 − fr )δ(t) + frH (t) with H (t) = faha(t) + fbhb(t), where
δ is the Dirac function; ha = τ1(τ−2

1 + τ−2
2 )e−t/τ2 sin(t/τ1);

hb = 2τb−t

τb
e−t/τb ; fr = 0.18; fa = 0.79; fb = 0.21; τ1 = 12.2

fs; τ2 = 32 fs; τb = 96 fs; and n2j (j > 1) = 0 [13]. In the
air propagation problem, one takes R2(t) = (1 − fr )δ(t) +
frH (t), where H (t) = τ1(τ−2

1 + τ−2
2 )e−t/τ2 sin(t/τ1); fr =

0.5; τ1 = 62.5 fs; and τ2 = 70 fs, with the higher order non-
linear indices n2j measured recently in [10]. In both cases, the
electronic nonlinear response is considered as instantaneous.
Finally, T = 1 + (ik(1))/(k0)∂t [T −1 = 1 − (ik(1)/k0)∂t ] ac-
counts for self-steepening (space-time defocusing). Equa-
tion (2) allows us to describe the propagation of electric field
up to the single-cycle limit [14].

The steady state solution (i.e., considering a monochro-
matic plane wave) of Eq. (2) can be expressed as

ε(z) =
√

I0e
ik0Dnz, (3)

with Dn = ∑
j�1 n2j I

j

0 and I0 being the incident intensity.
The stability of the continuous-wave steady state solution

of Eq. (2) is examined by studying the evolution of the system
in the presence of a small complex perturbation a(r,t):

ε(z) = [
√

I0 + a(r,t)]eik0Dnz, (4)

with |a(r,t)|2 � I0. Substituting Eq. (4) into Eq. (2) and
linearizing, we find the equation describing the evolution of
a(r,t):

∂za(r,t) = T −1 i

2k0
�⊥a(r,t) + i

⎛⎝∑
n�2

k(n)

n!
(i∂t )

n

⎞⎠ a(r,t)

+ iT k0I0n2eff (t) � [a(r,t) + a∗(r,t)],

where

n2eff (t) =
∑
j�1

jR2j (t)n2j I
j−1
0 . (5)

If one considers a cylindrical symmetry around
the propagation axis and considering that a(r,t) =

H(
∫ ∞
−∞ ã(k⊥,ω)e−iωtdω), where H is the Hankel transform

defined as H(f )(r) = ∫ ∞
0 k⊥J0(k⊥r)f (k⊥)dk⊥ with J0 being

the zeroth-order Bessel function, one obtains the propagation
equation for ã(k⊥,ω):

∂zã(k⊥,ω) = −i

⎡⎣ k2
⊥

2k0

(
1 − k(1)

k0
ω

)
−

∑
n�2

k(n)

n!
ωn

⎤⎦ ã(k⊥,ω)

+ ik0

(
1 + k(1)

k0
ω

)
I0n2eff (ω)[̃a(k⊥,ω)

+ ã∗(−k⊥, − ω)], (6)

where n2eff (ω) = ∫ ∞
−∞ n2eff (t)e

iωtdt .
Writing the equation propagation for ã∗(−k⊥, − ω), using

the fact that n2eff (ω) = n∗
2eff

(−ω) [since all R2j (t) are real], and
defining u = ã(k⊥,ω) + ã∗(−k⊥, − ω) and v = ã(k⊥,ω) −
ã∗(−k⊥, − ω), u and v then satisfy the following partial
differential equation system:

∂u

∂z
= i[D−u + (D+ + S)v],

(7)
∂v

∂z
= i[(D+ + N )u + D−v],

where

D+ = − k2
⊥

2k0
+

∑
n�1

k(2n)

(2n)!
ω2n,

N = 2k0I0n2eff (ω),

D− = k2
⊥k(1)

2k2
0

ω +
∑
n�1

k(2n+1)

(2n + 1)!
ω2n+1,

S = 2k(1)ωI0n2eff .

Defining K =
√

−D+(D+ + N ) − (S2/4) and �(z) =
(D− + S/2)z, the two solutions of Eq. (7) are

u(z) = ei�(z)

2

×
(

u0 cosh(Kz) + i
D+v0 + S

2 u0

K
sinh(Kz)

)

v(z) = ei�(z)

2

×
(

v0 cosh(Kz) + i
(D+ + N )u0 − S

2 v0

K
sinh(Kz)

)
,

where u0(k⊥,ω) = u(k⊥,ω,z = 0) and v0(k⊥,ω) =
v(k⊥,ω,z = 0). Finally, the evolution of the perturbation
ã(k⊥,ω) can be expressed as

ã(k⊥,ω) = ei�(z)

(
ã0 cosh(Kz) + i

Ã0

K
sinh(Kz)

)
, (8)

where Ã0 = [D+ã0 + N/2(̃a0 + ã0
	) + (S/2)̃a0

	], with ã0 =
ã(k⊥,ω,z = 0) and ã0

	 = ã∗(−k⊥, − ω,z = 0). In the follow-
ing numerical simulations, ã0 is the initial noise spectrum
calculated as ã0 = H(

∫ ∞
−∞ a(r,t,z = 0)eiωtdt), while ã0

	 is
calculated as ã0

	 = H(
∫ ∞
−∞ a∗(r,t,z = 0)eiωtdt).
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The evolution of the spatiotemporal noise is then gov-
erned by Eq. (8). In particular, MI occurs when Re(K) > 0,
that is, when D+(D+ + N ) + S2/4 < 0, roughly leading to
an exponential growth of a. More precisely, MI occurs
if (−N − √

N2 − S2)/(2) < D+ < (−N + √
N2 − S2)/(2).

Equation (8) is a general solution of MI in any nonlinear
medium which can present a delayed nonlinear response
and higher order nonlinear Kerr terms. However, one has to
emphasize that this equation can be extended to a 3-D model
by replacing k2

⊥ by k2
x + k2

y and considering a 2-D spatial
Fourier transform instead of a Hankel transform. Moreover,
the 1-D case (i.e., for fiber-propagation issues) is obtained
by setting k⊥ = 0. One generally uses an ansatz function for
a [8,15–19]. Using such a method does not allow us to retrieve
the exact solution for the evolution of a. Instead, one can only
evaluate a gain (which does not intrinsically depend on the
initial seeding). The fact that the growth is dependent on the
initial noise could play a role in rogue wave generation [20].
Moreover, considering the initial condition dependence of
Eq. (8) at a fixed ω, the maximal gain is dependent on the
spatial gradient of both ã0 and ã0

	. Consequently, it explains
why multifilamentation occurs in the region of strong noise
gradients. Since we have neglected the nonlinear terms with
respect to a, the only limit of validity of this model is potential
cascading phenomena, which can occur when |a|2 becomes
nonnegligible.

III. RESULTS AND DISCUSSION

A. 2-D analysis

In this section, we consider the propagation in argon of a
cylindrical pump beam in order to investigate the impact of
its higher order Kerr coefficients, which have been recently
measured up to n10 [10]. Moreover, we assume here that all
the nonlinear responses are instantaneous, that is, R2j (t) =
δ(t) ∀j . Figure 1 shows the comparison between the integration
of Eq. (2) and the results obtained from Eq. (8) for two
different regimes in argon at atmospheric pressure and in a
normal dispersion regime. As demonstrated in [11], Eq. (2)
can accurately describe the propagation of filaments, providing
that the plasma contribution stays negligible. The numerical
simulations were performed by starting from a CW pump with
a superimposed small noise (with a random spectral phase
added to each frequency bin) as a seed for the MI. Since, in real
experiments, the perturbations have their maximum intensity at
the laser central frequency, in the frequency domain, and at the
center of the pulse, in the spatial domain, we have also checked
that using a noise with an amplitude presenting a Gaussian
distribution centered on the pump frequency in both spectral
and spatial domains does not affect qualitatively the MI bands.
We clearly note the excellent quantitative agreement between
analytical and numerical results, thus confirming the validity
of our calculations. It is worth mentioning that calculations
using an ansatz would only allow us to retrieve the envelope
of the gain but not its fine structure.

Figure 1(a) [Fig. 1(b)] displays the analytical (numerical)
MI gain bands for a 20 TW/cm2 pump propagating through
1 m of argon at atmospheric pressure. At low intensities
(n2eff > 0), the gain displays an X pattern in the (k⊥,ω)
space. Neglecting higher order dispersion coefficients,
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FIG. 1. (Color online) (left) Analytical and (right) numerical
MI gain (dB) after propagation of a (top) 20 TW/cm2, (middle)
30 TW/cm2, and (bottom) 40 TW/cm2 pump trough 1 m in
argon when taking into account both self-steepening and space-time
defocusing.

four-wave mixing processes ω0 + ω0 → (ω0 + ω) + (ω0 −
ω) are phase matched if the condition (N − √

N2 − S2)/(2) �
(k2

⊥)/(2k0) − k(2)ω2 � (N + √
N2 − S2)/(2) is respected. At

the pump frequency (ω = 0) and considering the temporal
response of the medium as instantaneous, instabilities are
maximal for k2

⊥max
= 2k2

0I0n2eff . This instability can then lead
to the pulse breakup and consequently to multifilamentation.
Moreover, one can associate with this instability a power P =
πI0/k2

⊥max
= λ2

0/(8πn2eff ) which corresponds to the widely
studied critical power. Neglecting the higher order Kerr terms,
if a pulse carries a power above P , then it will lead to a
self-similar blowup singularity of Eq. (2) and to the pulse
collapse [1].

For other frequencies, instabilities are maximal for k2
⊥max

=
2k0{

∑
n�1 (k(2n))/[(2n)!]ω2n + k0I0n2eff }. Figure 2 compares

the emission angle θ (ω)=k⊥max/k(ω) obtained with our cal-
culations for I0 = 20 TW/cm2 (an offset corresponding to
the natural divergence of a pulse with a waist of 200 µm
has been added) with those experimentally measured in the
visible [21] and in the infrared [22]. Even if MI calculations are
intrinsically done with a continuous plane wave with an infinite
spatial extension (which does not correspond to filamentation
of ultrashort pulses), MI calculations accurately reproduce the
conical emission induced during the filamentation. The good
agreement between our calculations and the angles measured
experimentally consequently confirms that conical emission is
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FIG. 2. (Color online) Comparison between experimental mea-
surements of conical emission in the visible (black circle) and in the
infrared (red square) with MI calculations (blue line).

indeed generated by off-axis four waves mixing (4WM) during
filamentation when n2eff >0.

The situation significantly changes at higher intensity when
n2eff < 0. In particular, the X pattern completely disappears,
but a mechanism of MI still occurs. As stated earlier, MI
occurs as soon as the condition D+(D+ + N ) + S2/4 > 0 is
respected. This condition is equivalent to

n− < n2eff (ω)I0 < n+, (9)

with

n− = −
k0D+

(
2 − k(1)2 ω2

2k2
0

)
k(1)2

ω2
,

n+ = −D+
2k0

.

More particularly, Fig. 3 displays the frequency range where
on-axis (k⊥ = 0) MI is possible. When I0 lies in the range
23.5–31.9 TW/cm2, on-axis MI occurs. At higher intensity,
∀ (k⊥, ω), n2eff I0 < n−, meaning that no phase matching and,
consequently, no MI can occur.

As a result, one can distinguish two cases. At moderate
intensities [30 TW/cm2; Figs. 1(c) and 1(d)] such that
n− < n2eff I0 < n+, strong on-axis MI is observed. For higher
input intensities [40 TW/cm2; Figs. 1(e) and 1(f)], the gain
drastically decreases since the phase matching condition is no
longer fulfilled.

One has to note that Théberge et al. [22] have observed on-
axis infrared emissions which cannot be explained by off-axis
4WM processes. The MI calculations show that such on-axis
emissions appear as soon as n2eff <0.

One should emphasize that the general solution can be
used to enhance or reduce the gain at specific frequencies
by adjusting the phase and amplitude of the initial seeding.
Figure 4 displays the MI gain bands for a pump intensity of
30 TW/cm2 when ã0 and ã0

	 are in phase (solid red line)
and out of phase (dashed blue line). By adjusting their
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FIG. 3. (Color online) Diagram displaying the spectral region
where on-axis MI occurs (gray region) and lying between n+ and
n− (black lines). The lines display n2eff I0 with I0 = 20 TW/cm2 (red
solid line), 30 TW/cm2 (dashed green line), and 40 TW/cm2 (dash-
dotted violet line), assuming the Kerr response as instantaneous, i.e.,
n2eff (ω) = n2eff ∀ω.

relative phases, the gain can be enhanced or reduced, the
latter being maximal (minimal) when ã0 and ã0

	 are in phase
(out of phase).

We have shown previously that the higher order Kerr terms
lead to on-axis MI in the normal dispersion regime. In this
paragraph, we study the influence of self-steepening (SS) and
space-time defocusing (STD) on MI band growth. The effect
of these terms has already been discussed [23]. However, our
general expression obtained in Sec. II allows us to better
capture the MI dynamics. To perform this study, we have
removed the contributions of these two terms (by setting
k(1) = 0) from the analytical and the numerical calculations,
and we have repeated the same calculations as in the previous
section. In Figs. 5(a) and 5(b), the intensity of the pump is
20 TW/cm2 so that n2eff > 0. In that condition, neglecting
both SS and STD does not lead to significant change of the
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FIG. 4. (Color online) Gain bands through 1 m argon for a pump
of 30 TW/cm2 when ã0 and ã0

	 are in phase (solid red line) and out
of phase (dashed blue line).
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FIG. 5. (Color online) Comparison between numerical and an-
alytical calculations of the gain (dB) in the (k⊥,ω) space when
neglecting both self-steepening and space-time defocusing. (a, b)
Gain induced by a 20 TW/cm2 pump (n2eff > 0), (c, d) gain induced
by a 30 TW/cm2 pump (n2eff < 0), and (e, f) gain induced by a
40 TW/cm2 pump (n2eff � 0) after 1 m propagation.

MI bands. Only a slight deviation of the emission pattern can
be noticed at frequencies far from the frequency pump. In
the intermediate regime shown in Figs. 5(c) and 5(d), both
shape and value of the gain change. In particular, neglecting
SS and STD leads to a dramatic overestimation of the MI.
This is due to the fact that the coupling between the pump
and the MI bands is overestimated if one neglects SS and STD
far from the frequency pump. Hence, without SS and STD,
the maximal gain is obtained at ω = 0 and ω = 2ω0 while
the full calculation gives the frequencies of maximal gain at
ω = 0.3ω0 and ω = 1.7ω0 (see Fig. 4). At higher intensities
[Figs. 5(e) and 5(f)], the MI gain bands are dramatically
overestimated.

It results from Figs. 5(e) and 5(f) that neglecting both SS
and STD suppresses the regime where MI is annihilated (high-
intensity regime). When neglecting both SS and STD, the
condition which has to be respected for the MI to occur is
reduced to

n2eff (ω)I0 < n+. (10)

When the intensity increases, this condition is always re-
spected, which leads to MI, as shown in Fig. 6.

−5

−4

−3

−2

−1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency Ω/ω0

On-axis MI allowed

I0=30 TW/cm2

I0=40 TW/cm2

n+

I0=20 TW/cm2

10
 5

 n
2

I 0 

FIG. 6. (Color online) Diagram displaying the spectral region
where on-axis MI occurs (gray region) when neglecting both SS and
STD. This region is below n+ (black line). The lines display n2eff I0

with I0 = 20 TW/cm2 (red solid line), 30 TW/cm2 (dashed green
line), and 40 TW/cm2 (dash-dotted violet line) assuming the Kerr
response as instantaneous, i.e., n2eff (ω) = n2eff ∀ω.

B. 1-D analysis in the presence of Raman-induced delayed
nonlinear response

In order to underline the generality of the solution derived
in Sec. II, we calculated analytical and numerical solutions
of the MI gain induced in a single mode fiber (SMF) in
the presence of vibrational Raman nonlinearity. We consid-
ered the propagation of a 1550 nm 5 GW/cm2 continuous
wave in a 15-cm-long standard SMF (anomalous dispersion
k(2) = −2.1 × 10−26 s2/m1 and positive nonlinear index n2 =
2.6 × 10−20 m2/W1) when the vibrational Raman effect is
taken into account. Figure 7(a) displays both analytical and
numerical MI-Raman gain bands. Since the general solution
here takes into account the contributions of both real and
imaginary parts of the Raman effect, the global gain is no
more symmetric with respect to the pump frequency, with an
amplification (absorption) at longer (shorter) wavelengths. We
confirm again the excellent quantitative agreement between
analytical and numerical results by showing in Fig. 7(b) that
the relative error is less than 1%. The slight discrepancies
are mainly from the finite propagation step used during the
split-step Fourier numerical simulation. The combined action
of parametric and Raman effects was already discussed in
the early work of Bloembergen and Shen [24], and later,
the resulting global (parametric-Raman) gain was widely
investigated in the context of optical fibers [15,17,18,25]. With
our general solution, the results obtained in these works can be
retrieved only by calculating the parameter K . However, the
gain evaluated with the help of an ansatz function [as shown
in Fig. 7(a)] is only a rough estimation of the real gain, in
particular, around the pump frequency. Moreover, calculating
K cannot describe the asymmetry induced by the imaginary
part of the Raman response function. When the MI gain bands
do not overlap the Raman bands, positive gain is expected in
the anti-Stokes band when simply evaluating K , while this part
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FIG. 7. (Color online) (a) Analytical (red dots) and numerical
(solid blue line) MI gain bands calculated after 15 cm propagation
in a SMF fiber with a pump of 5 GW/cm2 in the presence of a
delayed Raman nonlinearity. The black dashed line represents the
gain calculated using an ansatz function. (b) Relative error between
numerical and analytical calculations.

of the spectrum actually undergoes losses, as can be noticed
in Fig. 7(a).

Nowadays, fiber dispersion properties can be engineered to
a very high degree, thus allowing phase matching induced
by higher order dispersion for ultrabroadband wavelength
conversion [26]. For instance, the fourth-order dispersion can
induce additional scalar MI bands in the normal dispersion
regime [7]. It has been shown that in the presence of negative
fourth-order dispersion near zero dispersion frequency, MI
bands can grow up even by pumping in the normal disper-
sion regime. Consequently, by pumping in the anomalous
dispersion regime, it is then possible to observe two pairs
of MI sidebands [19]. We consider here this possible complex
configuration of the MI process using the waveguide category
of photonic crystal fibers (PCF). Figure 8 compares the
analytical and numerical gain bands obtained by pumping a
PCF which exhibits a low anomalous dispersion between its
two zero dispersion wavelengths. Both linear and nonlinear
fiber properties can be found in [27]. We used a 2.6 GW/cm2

pump intensity at 1064 nm and a fiber length of 1 m. It clearly
appears that Eq. (8) is also able to perfectly retrieve the two
pairs of MI sidebands induced by second- and fourth-order
dispersion terms. Besides the impact of higher order dispersion
on the phase matching, our solution describes the asymmetrical
shape of MI induced by the Raman gain. Indeed, we have
adjusted here the input wave intensity so that the first standard
MI sidebands are superposed to the silica Raman gain band
(0–30 THz). Consequently, we retrieve again that the global
MI-Raman gain is no more symmetric with respect to the pump
frequency. As previously, the standard gain evaluation can give
a rough estimation of the real gain in specific conditions.

C. Impact of Kerr electronic time response on the
MI band growth

In this section, we underline the impact of the time response
of the different higher order nonlinear Kerr terms on the

−60 −40 −20 0 20 40 60

−20

−10

0

10

20

30

−60 −40 −20 0 20 40 60
−10

0

10

G
ai

n 
(d

B)
Re

la
tiv

e 
er

ro
r (

%
)

(a)

(b)

MI 4 MI 4MI 2

Frequency detuning (THz)

Frequency detuning (THz)

FIG. 8. (Color online) (a) Numerical (blue line) and analytical
(red dots) MI gain bands obtained in 1-m-long PCF with two zero
dispersion frequencies in presence of a delayed Raman nonlinearity.
The black dashed line represents the gain calculated using an
ansatz function. (b) Relative error between analytical and numerical
calculations.

induced MI. A recent work has highlighted the influence of a
finite nonlinear response time [28] on the spatiotemporal MI
growth, but using the usual simplified approach. Conversely,
our method gives the exact solution even in the presence
of a delayed nonlinear response without any approximation.
Since the systematic study of any situation of MI is out of
the scope of the present article, we have limited our work
to 1-D MI gain in argon (as, for instance, relevant in the
frame of hollow-core fiber propagation [29,30]) with non-
purely-instantaneous nonlinear responses. Since no accurate
information about the time response of the higher order
nonlinearities is so far available, we used the same expression
for all nonlinearities (i.e., the Debye-type relaxation model).
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FIG. 9. (Color online) On-axis gain bands after 1 m propagation
through argon with a pump of (a) 20 TW/cm2, (b) 30 TW/cm2, and
(c) 40 TW/cm2 with different Kerr electronic time responses (0 fs,
blue line; 0.5 fs, green dots; and 2 fs, red triangles).
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We write ∀j , R2j (t) = (1/τ )e−t/τ for t > 0 and R2j (t) = 0 for
t < 0, although the different terms exhibit a priori distinct tem-
poral behaviors. We used three distinct values of τ (0, 0.5 fs,
and 2 fs) for pump intensities of 20, 30, and 40 TW/cm2,
which correspond to the three regimes observed when the Kerr
effect is supposed to be instantaneous. Figure 9 displays the
MI bands calculated after a 1 m propagation through 1 bar of
argon with the same initial noise. In the low-intensity regime
[Fig. 9(a)], while MI is not allowed for τ = 0, on-axis MI is
allowed for increasing τ . On the contrary, in the intermediate
regime [Fig. 9(b)], a reduction by 20 orders of magnitude
of the generated MI bands is observed when increasing
the time response. Finally, in the high-intensity regime
[Fig. 9(c)], increasing the time response leads to MI, while
phase matching cannot be achieved if τ = 0. It appears that
even for very small values, the Kerr electronic time response
is crucial to accurately describe the efficiency of MI band
generation. In particular, we show that increasing the time
response from 0 to 2 fs leads to a drastic change of the MI
bands in all intensity regimes.

IV. CONCLUSION

In this article, we have derived the general expression of
modulation instability in the presence of a continuous plane
wave pump. The model, valid in 3-D, 2-D, and 1-D, allows

us to evaluate the MI gain in the presence of higher order
Kerr terms and any retarded nonlinear response (including
the Raman response). We have shown that if the propagation
of a pulse can be described by the equilibrium between
the Kerr terms, then on-axis MI bands grow up as soon
as the effective nonlinear index becomes negative. We have
also highlighted the impact of self-steepening, space-time
defocusing, andfinite-time nonlinear response on the MI band
growth. Finally, in the frame of the fiber-propagation problem,
we have shown that our analytical model perfectly describes
the MI band growth in the presence of the Raman effect
and complex dispersive properties. Moreover, we foresee
that comparable analytical solutions can be found for vec-
torial MI, that is, for propagation through a birefringent
medium.
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[11] P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz,
O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104,
103903 (2010).

[12] J.-L. Oudar, J. Quant. Electron. 19, 713 (1983).
[13] Q. Lin and G. P. Agrawal, Opt. Lett. 31(21), 3086 (2006).
[14] T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[15] S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 9, 1061 (1992).
[16] J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).

[17] K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665
(1989).

[18] E. A. Golovchenko and A. D. Pilipetskii, J. Opt. Soc. Am. B 11,
92 (1994).

[19] F. Biancalana, D. V. Skryabin, and P. St. J. Russell, Phys. Rev.
E 68, 046603 (2003).

[20] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature (London)
450, 1054 (2007).
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