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Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed
within a Helmholtz framework. A universal nonlinear Snell’s law is derived that describes gray soliton refraction,
in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by
beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The
existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction
at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of
positive or negative lensing operations on soliton arrays at planar boundaries.
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I. INTRODUCTION

Nonlinear interfaces constitute one of the most appealing
fundamental research topics in nonlinear optics. Two reasons
contribute substantially to interest. First, nonlinear interfaces
exhibit a good number of nonlinear wave phenomena, such as
the excitation of nonlinear surface waves (NSW) or soliton
breakup. Second, nonlinear interfaces are a core element
in proposed all-optical devices, such as optical switches or
all-optical gates. The late 1970s and early 1980s witnessed
pioneering works on nonlinear interfaces [1–7]. Nonlinear
surface waves were first described in 1980 [4] when a linear–
Kerr-type nonlinear interface was found to accommodate
localized solutions that preserve their shape while traveling
along the planar boundary. They have since been reported in
contexts involving a great variety of media, such as linear–
diffusing Kerr-type [8,9], two Kerr-type [10–13], saturable
[14], and defocusing thermal media [15]. The stability [16]
and excitation [9,17] of NSWs have been commonly studied
in both single interface and nonlinear waveguide contexts.
Soliton breakup at nonlinear interfaces was predicted in the
numeric simulations of Rozanov [3]. In studying linear–Kerr-
type interfaces, he described how the field entering the second
medium is perturbed by the interface, and subsequently breaks
up into multiple solitonlike beams. Several investigations
revisited this effect for the same type of interfaces [7,18,19]
as well as for those involving two focusing Kerr-type media
[12]. Multisoliton bound states [19] and vector solitons [20]
have also been found to break up at interfaces, whereby
their fundamental components evolve independently as single
solitonlike beams. Of particular interest has been the giant
Goos-Hänchen shift (GHS). This is an enhanced version of the
GHS at the planar boundary separating two linear dielectric
media [21,22] when, instead, different types of nonlinear
interfaces [5,7,12,19,23] are considered.
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To detail potential applications of nonlinear interfaces in
designs of all-optical devices, one must consider nonlinear
waveguides. These structures were a focus of attention during
the 1980s, and the discovery of many interface properties
originated from the study of such waveguides. A range of both
linear and nonlinear materials were proposed as waveguide
layers, leading to a great variety of configurations [24–28].
The review of Mihalache et al. [29] summarizes early studies
and proposes further applications, such as directional cou-
plers [13,30,31]. Nonlinear interfaces have inherent switching
behavior; combinations of high- and low-intensity beams can
be used to modify angles of propagation, which, in turn, may
switch a soliton from refraction to reflection at an interface.
Linear-nonlinear interfaces with a diffusive Kerr-type medium
[32], and interfaces separating two photorefractive media [33],
have been proposed to support such switching behavior.
All-optical gates, facilitated by the superposition of different
Kerr-type materials, were also suggested [34–36]. In this case,
a control soliton may modify interface properties, such that a
signal soliton experiences either reflection or refraction, and
constitutes a basis for design of AND and OR gates.

Experimental work on nonlinear interfaces has mostly
been concerned with verification of theoretical predictions.
The pioneering experiments of Smith et al. involved optical
bistability [37] and the switching response of a linear-nonlinear
interface [6,38]. It was later shown [39] that such interfaces
tend to exhibit single-step, rather than multiple-threshold,
response (particularly for saturable nonlinear media). The
existence of critical angles at nonlinear interfaces was verified
by Alvarado-Mendez et al. [40], where a nonlinear-linear
interface (composed of a photorefractive crystal and air) was
studied. Not only Kerr-type, but also quadratically nonlinear,
media also have been analyzed [41,42], where it was shown
that experimental results were in good agreement with those
from full numerical integration of the coupled scalar wave
equations for the fundamental and second harmonic fields.
Recently, experiments on nonlinear interfaces have focused
on nematicons [43–46], the reorientational dielectric response
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to an external voltage of which is the basis for inducing
refractive index changes in a nonlinear material. Solitons
undergoing tunable reflection or refraction [47], total internal
reflection [47], nonspecular total reflection [48], or nonlinear
Goos-Hänchen shifts along the planar boundary [49] have
been engineered at nonlinear interfaces provided that adequate
electric fields are applied. The ability of controlling soliton
paths in a great variety of scenarios [50–52] turns them into
excellent candidates to lie in the core of all-optical processing
devices [53–56].

The successful particlelike approach developed by Aceves
et al. [10–13] made a major impact on theoretical descriptions.
A simple Newtonian model was found to capture complicated
beam evolution at nonlinear interfaces. In this model, a
soliton is represented by a quasiparticle that evolves in a
potential defined by the interface. While initially describing
Kerr interfaces, the theory was later developed to describe
diffusive Kerr-type [8,57] and saturable Kerr [14] media.
Further generalizations were made to analyze solitons at
non-Kerr interfaces, such as those involving quadratic [58]
and photorefractive [59] media. However, this equivalent-
particle approach is based on the nonlinear Schrödinger (NLS)
equation, for which the paraxial approximation is assumed and
limits the validity of analysis to vanishingly small angles of
incidence [60,61].

Soliton behavior at nonlinear interfaces has, instead, an
inherently nonparaxial character that can arise in two distinct
scenarios. First, significant off-axis nonparaxiality arises
whenever a soliton is either incident or refracted at a significant
angle to the interface. Even for low incidence angles, interfaces
can result in a large angle of refraction. For example, a
larger linear index of refraction in the second medium can
produce this effect, and demand a theoretical framework able
to accommodate arbitrary angles of propagation. Second, a
completely different type of nonparaxiality can appear at
nonlinear interfaces, which is related to strong focusing [62].
For example, if the strength of nonlinearity in the second
medium is much larger than in the first medium, ultranarrow
beams can originate from the interface. This would demand a
vector analysis [63–65] to study properly the propagation of
the emergent beams.

Our work deals only with the first type of angular
(Helmholtz) nonparaxiality. Large angles of propagation
are perfectly described within the framework of Helmholtz
theory [66,67] where, unlike paraxial theory, solutions are
rotationally invariant. The model equation is the full nonlin-
ear Helmholtz (NLH) equation [62,66] without any further
approximation. Not only bright Kerr, but also dark Kerr
[68], two-component [69], boundary [70], bistable [71], and
algebraic [72] Helmholtz solitons have been found to display
nontrivial Helmholtz corrections. This latter framework has
permitted, for instance, description of collisions of Kerr bright
solitons at arbitrary angles [73]. The reflection and refraction
properties of bright solitons [74,75] at the interface separating
two focusing Kerr media have also been revisited within the
framework of Helmholtz theory. A key result is a compact
generalized Snell’s law that relates soliton angles of incidence
and refraction and that is valid for arbitrary angles.

Recently, the Helmholtz-Snell’s law for bright solitons
was generalized to describe black soliton refraction [76]. In

contrast to the vast literature dealing with bright solitons at
nonlinear interfaces, only a few works have considered inter-
faces separating defocusing media. Moreover, those studies
were restricted to phenomena taking place in the vicinity of
the interface. The formation of NSWs at interfaces, where
at least one medium has a defocusing Kerr-type nonlinearity
[77,78], or the generation of kink solitons at the surface of an
optical lattice imprinted in defocusing media [79], represent
two such examples. Unlike these works, developed within
the framework of the NLS equation, Ref. [76] addresses for
the first time the evolution of a dark soliton far away from the
interface as the result of a refraction by a nonlinear interface
separating two defocusing Kerr media. Black soliton refraction
is fully characterized by the generalized Snell’s law. A more
in-depth analysis of gray soliton refraction was beyond the
scope of Ref. [76] and is presented, instead, in this paper.

The nonlinear Snell’s law is briefly revisited in Sec. II. This
is the theoretical basis of our analysis. We then present a further
generalized version that describes the refraction of not only
black and bright solitons [74,76], but also of gray solitons. In
Sec. III, consideration of the parameter defining the grayness
of a dark soliton is shown to lead to refraction properties.
Linear step interfaces (those with identical defocusing Kerr
nonlinearities) are analyzed in Sec. IV. Section V introduces
the total nonrefraction angle, which we prove is the unique
angle of incidence for a gray soliton to be transmitted with
an undeviated trajectory. It is shown to be an inherently
nonparaxial quantity. We find that, in contrast to bright or black
soliton refraction, gray solitons can undergo both internal and
external refraction (dictated solely by the angle of incidence).
This leads to a proposal of lensing properties of planar
interfaces, which have potential in the manipulation of soliton
arrays. Analytical expressions for nonrefraction angles are
presented, and predicted behavior is verified by numerical
simulations. Finally, a discussion of the numerical techniques
employed is given in Sec. VI.

II. GENERALIZED SNELL’S LAW FOR GRAY SOLITONS

Analysis is based on the two-dimensional scalar Helmholtz
equation

∂2E

∂x2
+ ∂2E

∂z2
+ ω2

c2
n2(x,z; |E|)E = 0, (1)

which describes propagation of a TE-polarized monochro-
matic optical beam in a nonlinear medium with refractive
index n(x,z; |E|). For the incidence and refraction Kerr
media (i = 1 and 2, respectively), considered in this work,
n = n0i ± αi |E|2, where αi > 0 are the Kerr coefficients,
and ± corresponds to either a focusing or a defocusing Kerr
nonlinearity, respectively. The E(x,z) is the time-independent
complex field envelope of the optical beam with intensity
I = |E|2. When the longitudinal and transverse coordinates
are scaled as ζ = z/LD and ξ = 21/2x/w0, respectively, and
one adopts a forward z-propagating phase reference E(x,z) =
A(x,z)ejkz, Eq. (1) can be rewritten as

κ
∂2A

∂ζ 2
+ j

∂A

∂ζ
+ 1

2

∂2A

∂ξ 2
− 1

4κ

(
1 − n2

n2
01

)
A = 0. (2)

w0 is a transverse scale parameter equal to the waist of a
reference Gaussian beam with diffraction length LD = kw2

0/2,
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k = n01ω/c represents the wave number, and n01 is the linear
refractive index of medium 1 (which we have used as a
reference medium). In Eq. (2), κ = 1/k2w2

0 is a nonparaxiality
parameter [62,66] that relates the full width 2w0 of the
reference beam to the optical wavelength in a vacuum. The
only approximation made in this analysis is that, in each
medium, n0i � αi |E|2. Under such conditions, one obtains
n2 ≈ n2

0i ± 2n0iαi |E|2.
For propagation in medium 2, which has n = n02 ±

α2|E|2, and using the normalization A(ξ,ζ ) = (n01
2/

kα1LDn02)1/2u(ξ,ζ ), Eq. (2) transforms to

κ
∂2u

∂ζ 2
+ j

∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
−

(
n2

01 − n2
02

4κn2
01

± α2

α1
|u|2

)
u = 0.

(3)

The interface parameters, relating the linear and nonlinear
refractive indices of the adjoining media,

� ≡ 1 −
(

n02

n01

)2

, α ≡ α2

α1
, (4)

allow us to rewrite Eqs. (2) and (3) in a compact form as

κ
∂2u

∂ζ 2
+ j

∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
± |u|2 u

=
[

�

4κ
± (1 − α) |u|2

]
χ (ξ,ζ ) u. (5)

Here, χ (ξ,ζ ) identifies the two media separated by the
planar boundary taking values 0 or 1 when (ξ,ζ ) is in
medium 1 or medium 2, respectively. In the particular case
wherein the boundary is situated at ξ = 0, one has χ (ξ,ζ ) =
H (ξ ), i.e., the Heaviside function. The NLH equation (5) is
fully equivalent to Eq. (1), since no further approximation has
been made in its derivation.

Matching the phase of bright and black soliton solutions,
for focusing [66,67,80] and defocusing [68] Kerr media,
respectively, at each side of the discontinuity yields the
nonlinear Snell’s law [74–76]

γ±n01 cos(θi) = n02 cos(θt ), (6)

which dictates refraction of both bright and black solitons. θi

and θt are the angles of incidence and refraction, respectively,
and

γ± =
[

(1 + 4κβ±)

1 + 4κβ±α(1 − �)−1

]1/2

(7)

is a nonlinear correction term [76]. In Eq. (7), β+ = η2
0/2

and β− = −u2
0 for bright and black solitons, respectively, and

η0 and u0 are the amplitudes of the incident bright soliton
and the background plane wave supporting the black soliton,
respectively.

Importantly, the refraction of gray solitons differs funda-
mentally from that associated with bright or black solitons.
We find that the soliton grayness parameter significantly
affects the net angle of propagation, which, in turn, alters the
laws governing gray soliton refraction at nonlinear interfaces.
Angular corrections in Eq. (6) are thus needed in order to
capture such grayness dependency.

The Helmholtz dark soliton is [68,76]

u(ξ,ζ ) = u0 (A tanh  + jF ) exp

(−jζ

2κ

)

× exp

[
j

√
1 − � − 4κu2

0α

1 + 2κV 2

(
−V ξ + ζ

2κ

) ]
,

(8)

where

 = u0Aα1/2 (ξ + W ζ )√
1 + 2κW 2

and W = V − V0

1 + 2κV V0

. (9)

Here, � = 0 and α = 1 correspond to the propagation in
medium 1; W is the net transverse velocity; V = (2κ)1/2 tan(θ )
is the transverse velocity of the background beam associated
with an arbitrary propagation angle θ relative to the reference
z axis [66]; and

V0 = u0Fα1/2[
1 − � − (2 + F 2)2κu2

0α
]1/2 (10)

is the intrinsic transverse velocity of a gray soliton in
medium 2. In Eq. (8), u0 is the amplitude of the soliton
background and F = (1 − A2)1/2 is the grayness parameter
(F = 0 for black solitons and 0 < |F | < 1 for gray solitons)
[68].

During refraction, the value of F is conserved [76]. This
condition arises from the continuity of the phase across the
interface which, in turn, requires the total intrinsic phase jump
of a Helmholtz gray soliton [68,76]

�φ = −2 tan−1

(
F√

1 − F 2

)
(11)

to be the same in both media. Black (gray) solitons impinging
on a nonlinear interface are thus refracted as black (gray)
solitons in the second medium.

Taking into account the relationship linking transverse
velocities (in normalized units) and angles (in the unscaled
laboratory frame) [66,67], one obtains from Eq. (9)

θni = θi − θ0i and θnt = θt − θ0t , (12)

which are the angular relationships describing, respectively,
the incident and refracted soliton. In Eq. (12), the subscripts
i and t refer to the incident and transmitted (refracted) gray
solitons found at each side of the interface, while θn, θ , and θ0

are the angles corresponding to W , V , and V0, respectively. The
θ0i and θ0t are the intrinsic angles of the gray solitons related
to the incident and transmitted gray solitons, respectively.

The angular relationships in Eq. (12) are shown in Fig. 1
where the interface, represented by a solid white line, has
been rotated in relation to the reference axes. The white arrow
represents the propagation of the background plane wave, or
the corresponding black soliton, incident on the interface at an
angle θi and refracted at an angle θt . Under the same conditions,
a gray soliton represented by a dashed line impinges on the
interface at a net angle of θni < θi as a result of the intrinsic
angle of the incident soliton θ0i . The corresponding intrinsic
component for the refracted soliton θ0t makes the net angle of
refraction of the gray soliton θnt differ from θt .
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FIG. 1. (Color online) Angles of incidence and refraction for both
black and gray solitons in relation to the nonlinear interface.

From the above arguments, Eq. (6) can now be rewritten as

γ±n01 cos(θni + θ0i) = n02 cos(θnt + θ0t ). (13)

Equation (13) is supplemented with the condition of conserva-
tion of soliton grayness during refraction, which allows one to
obtain the value of θ0t from that of θ0i . We have thus derived a
generalized Snell’s law that is also valid for gray solitons. The
law is expressed in terms of both net propagation angles and
intrinsic angular components of the gray soliton dips. When
θ0i = θ0t = 0, this generalized Snell’s law (13) returns the
previously reported results [74,76] for bright (γ+) and black
(γ−) solitons.

Bright, black, and gray soliton refractions are illustrated in
Fig. 2 for a nonlinear interface (� = −0.026 and α = 3) and
two values of κ . Assuming canonical bright (η0 = 1) and dark
(u0 = 1) solitons, two different scenarios are found, which
are distinguished by the size of κ . For κ = 10−4, one obtains
|�| � 4κu2

0 and |�| � 2κη2
0, so that the soliton refraction

characteristics are governed by �. This is demonstrated in
Fig. 2(a), where all soliton types undergo external refraction
with comparable angles of refraction. The scenario changes
completely when κ = 2.5 × 10−3, as is shown in Fig. 2(b).
Here, one has |�| ∼ 4κu2

0 and |�| ∼ 2κη2
0, so that nonlinear

terms may induce different angular corrections in each case,
thus leading to more distinct angles of refraction for each
soliton type. While bright and black solitons undergo external
refraction (θnt > θni), the gray soliton experiences internal
refraction (θnt < θni).

Numerical evidence of the validity of Eq. (13) for describing
bright [74,75] and black [76] soliton refraction has already
been demonstrated. The qualitative behavior dictated by
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FIG. 2. (Color online) Generalized Snell’s law for bright (dashed
red), black (solid black), and gray (dotted blue) solitons. (a) κ = 10−4

and (b) κ = 2.5 × 10−3.
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FIG. 3. (Color online) (a) Generalized Snell’s law for bright,
black, and gray solitons, when κ = 10−3, u0 = 1, and η0 = 1. Full
simulation of (b) bright, (c) black, and (d) gray soliton refractions
when θni = 25o.

Eq. (13) for bright, black, and gray soliton refraction is
illustrated in Fig. 3. Theoretical results shown in Fig. 3(a)
for α = 3 and � = −0.016, predicting either internal or
external refraction, agree well with numerical simulations
undertaken for Figs. 3(b) bright, 3(c) black, and 3(d) gray
solitons impinging on the interface at θni = 25o. As the inset
of Fig. 3(a) shows, only the gray soliton undergoes internal
refraction.

Even when additional solitons appear, Snell’s law predicts
accurately the refraction of the primary black or gray soliton.
Conditions for multiple soliton generation during refraction of
black solitons are the subject of a forthcoming paper, where
both bright and black soliton breakup at nonlinear interfaces
is studied within the framework of Helmholtz theory.

III. ROLE OF THE GRAYNESS PARAMETER

Analysis of gray soliton refraction clearly must focus on
the role of the intrinsic angular terms associated with the
soliton grayness parameter, i.e., θ0t and θ0i . For the sake of
simplicity, we will assume that F > 0, so that both θ0t and
θ0i are positive. Within the framework of Helmholtz theory,
analysis of broad beams (when compared to the wavelength)
of moderate intensity implies that κ = 1/(kw0)2 � 1 and
4κu2

0 � 1. Then, considering a regime in which both linear
and nonlinear terms are of the same order of magnitude, i.e.,
� ∼ 4κu2

0, one obtains from Eqs. (9) and (10)

tan θ0i ∼
√

2κFu0
[
1 + (2 + F 2)κu2

0

]
(14)

and

tan θ0t ∼
√

2καFu0

[
1 + �

2
+ α(2 + F 2)κu2

0

]
, (15)

respectively. Equation (15) reveals that θ0t depends strongly on
α1/2. This is shown in Fig. 4(a), where the difference θ0t − θ0i

is plotted as a function of α for two values of F .
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FIG. 4. (Color online) (a) The difference θ0t − θ0i as a function
of α. Generalized Snell’s law for dark solitons at interfaces with
(b) α = 1, (c) α > 1, and (d) α < 1. In all cases, κ = 2.5 × 10−3 and
u0 = 1.

One can then identify three distinct regimes of gray soliton
refraction, which are distinguished solely by the value of α.
These are illustrated in Figs. 4(b), 4(c), and 4(d).

First, for linear step interfaces (α = 1), one finds that
θ0t � θ0i . The predictions of Eq. (13) are plotted in Fig. 4(b)
for different values of F in this regime. It is revealed that
gray solitons propagating at significant angles refract in a
manner that closely matches black soliton refraction. Second,
for interfaces with a larger Kerr coefficient in the second
medium (α > 1), one obtains θ0t > θ0i . A larger value for
θ0t entails a reduction in the net angle of refraction θnt , as
dictated by Eqs. (7) and (13). Such dependency is mapped
out in Fig. 4(c) for the same values of F as in Fig. 4(b),
and shows the trend of decreasing θnt with increasing F .
Figure 4(c) also reveals a further feature that has not previously
been reported (in accounts of either bright or black soliton
refraction). It is found that a gray soliton may undergo either
external or internal refraction, depending solely on the angle of
incidence and provided that both interface and soliton grayness
parameters are properly chosen. Finally, a different trend with
respect to F variation is obtained in the third regime, where
α < 1. Predictions are shown in Fig. 4(d). Here, nonparaxial
net angles of refraction are found to increase with increasing
F , which is consistent with θ0t < θ0i , as shown in Fig. 4(a). In
this case, angular corrections are not as large as those shown
in Fig. 4(c) as a result of the α1/2 dependency of Eq. (15).

IV. LINEAR STEP INTERFACES

Theoretical predictions for the various parameter regimes
have been tested against an extensive series of simulations
involving full numerical integration of the NLH equation. Our
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FIG. 5. (Color online) Dark soliton refraction for a linear step
interface (α = 1) with � = −0.015 and κ = 10−3. (a) Theory
(curves) and numerical data (diamonds, squares, and circles). Sim-
ulation snapshots for the same interface considered in part (a),
when θni = 40o and soliton grayness is (b) F = 0, (c) F = 0.6, and
(d) F = 0.8.

account of this comparison starts with an analysis of linear
step interfaces.

Net angles of incidence θni and refraction θnt are displayed
in Fig. 5(a) for a linear step interface with � = −0.015 and for
three different values of soliton grayness. Lines are analytical
predictions, while diamonds, squares, and circles represent
results from numerical integration of the NLH equation for
F = 0, F = 0.6, and F = 0.8, respectively. The agreement
found between theory and numerics extends to all angles
of incidence and values of F considered. The two insets of
Fig. 5(a) highlight results for low (left) and moderate (right)
angles of incidence. The predicted small differences (between
black and gray soliton refraction) at low angles are verified,
and these differences are confirmed to decrease as the angle of
incidence grows, whereby all solitons undergo approximately
the same angle of refraction. The detail in the right inset
of Fig. 5(a) confirms this, showing diamonds, squares, and
circles superimposed. Typical results from full simulations are
shown in Figs. 5(b), 5(c), and 5(d). Here, soliton refractions
for F = 0, F = 0.6, and F = 0.8, respectively, and a net
incidence angle of θni = 40o are shown. Hence, solitons in
this regime mostly undergo an angle of refraction that is
independent of the precise value of F .

V. TOTAL NONREFRACTION ANGLE

Refraction properties of bright and black solitons at nonlin-
ear interfaces are determined by an overall mismatch parameter
involving both linear and nonlinear contributions [76]

δ± = � + 4κβ±(1 − α). (16)

For bright and black solitons, only the sign of δ± distinguishes
three different scenarios: external refraction (δ± < 0), internal
refraction (δ± > 0), and total transparency (δ± = 0) [75,76].
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FIG. 6. (Color online) (a) Black and gray soliton refraction
characteristics when the total transparency condition (δ− = 0) is
met. Simulation snapshots for the same interface considered in part
(a), when θni = 40o and soliton grayness is (b) F = 0, (c) F = 0.3,
and (d) F = 0.8.

In the case of gray solitons, this criterion is no longer valid
since intrinsic gray velocity components also affect net angles
of incidence and refraction.

This feature is illustrated in Fig. 6(a), where interface
parameters α = 3 and � = −0.008 have been chosen to
provide total transparency for a black soliton. Here, u0 = 1
and κ = 10−3, thus giving δ− = 0 in Eq. (16). The dotted
black straight line charts the refraction of black solitons
according to Eq. (13). The blue (black) solid line displays gray
soliton refraction for F = 0.3, while the case of F = 0.8 is
represented by the red (gray) solid line. The results show that,
for fixed F , gray solitons incident under the total transparency
condition for the corresponding black solitons undergo the
same angular deflection (θnt − θni), regardless of the angle
of incidence. The magnitude of this deflection depends on
F , and can be either positive (α < 1) or negative (α > 1).
Theoretical predictions show excellent agreement with results
extracted from full numerical simulations. Diamonds, squares,
and circles represent numerical data for F = 0, F = 0.3, and
F = 0.8, respectively. The inset of Fig. 6(a) highlights such
agreement when larger net angles of incidence are considered.
For this interface, α > 1 and the net angle of refraction is
reduced for gray solitons; the extent of internal refraction
becomes greater as F increases. This trend is mapped out
in Figs. 6(b), 6(c), and 6(d), where refractions of black and
gray solitons are illustrated for θni = 40o.

To quantify gray soliton behavior, instead of the former total
transparency condition, we define a total nonrefraction angle.
A substantial difference is that, for example, total nonrefraction
(if possible) can only be achieved for a single angle of
incidence. This is shown in Fig. 7(a), where the refraction
of a gray soliton with F = 0.7 is considered for two different
nonlinear interfaces. The intersection of Snell’s-law curves
and the straight line θni = θnt provides the total nonrefraction
angle in each case.

)b()a(

0 5 10 15 20 25 30

5 

10

15

20

25

30

Net angle of incidence (deg)

N
et

 a
ng

le
 o

f r
ef

ra
ct

io
n 

(d
eg

) α=2×10−1, ∆=8×10−3

α=4, ∆=−2.5×10−2

θ
n,nr

θ
n,nr

F=7×10−1

0 2 4 6 8 10

30

60

90

F

To
ta

l n
on

−
re

fr
ac

tio
n 

an
gl

e 
(d

eg
)

α=2×10−1, ∆=8×10−3

α=4, ∆=−2.5×10−2

(×10−1)

7 10
9

15 θ
n,th

θ
n,th

FIG. 7. (Color online) (a) Determination of total nonrefraction
angles θn,nr for two nonlinear interfaces. (b) Nonrefraction angles
as a function of F , for the same interfaces considered in part (a).
κ = 5 × 10−4 in both figures.

An analytical expression for the total nonrefraction angle
θn,nr is thus obtained when the condition θni = θnt is met in
Eq. (13):

γ−n01 cos(θn,nr + θ0i) = n02 cos(θn,nr + θ0t ), (17)

which leads to

tan(θn,nr ) = n01n
−1
02 γ− cos(θ0i) − cos(θ0t )

n01n
−1
02 γ− sin(θ0i) − sin(θ0t )

. (18)

Figure 7(b) plots Eq. (18) as a function of F for the same
two nonlinear interfaces considered in Fig. 7(a). As F → 0,
the gray soliton trajectories are seen to converge to those of
the reference black soliton at normal incidence. Moreover, the
inset of Fig. 7(b) also reveals that, for each nonlinear interface,
there is a total threshold angle θn,th that presents a minimum
angle of incidence necessary to obtain this phenomenon. Any
paraxial analysis, with its validity restricted to vanishingly
small angles of incidence, is thus not expected to accurately
capture total nonrefraction behavior.

Numerical evidence of total nonrefraction is shown within
the series of frames of Fig. 8. The behavior of a gray
soliton with F = 0.4, impinging on a nonlinear interface with
α = 2 and � = −0.013, is examined. These parameters give
θn,nr = 30.35o. The predictions of Eq. (13) are plotted for three
different ranges of angle of incidence: θni < θn,nr ; θni ≈ θn,nr ;
and θni > θn,nr . The results are shown in Figs. 8(a), 8(b),
and 8(c), where external refraction, total nonrefraction, and
internal refraction are demonstrated, respectively (depending
solely on the angle of incidence). In all cases, there is excellent
agreement between numerical data (points) and analytical
results (solid curves). In Fig. 8(b), both points and solid
lines are superimposed upon the dashed line representing
the θni = θnt condition. Individual simulations, illustrating
external refraction, total nonrefraction, and internal refraction,
are presented in Figs. 8(d), 8(e), and 8(f), respectively.

The total nonrefraction angle can play an analogous
role to that of the critical angle in the context of bright
solitons. Nonlinear interfaces have been proposed as switching
elements, in which a bright soliton is either reflected or
transmitted depending on the angle of incidence. For the case
of gray solitons, nonlinear interfaces can also be proposed as
a basis for designing further nonlinear devices. Operational
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Simulation snapshots, corresponding to these three scenarios, are
presented in (d), (e), and (f).

principles, in which an interface can act as either a focusing
or a defocusing lens in the manipulation of arrays of soliton
beams, are sketched in Fig. 9.

In Fig. 9(a), two arrows represent two gray solitons incident
at different angles to the interface. One soliton has θni < θn,nr ,
and thus undergoes external refraction, while the other soliton
has θni > θn,nr , and hence experiences internal refraction. The
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FIG. 9. (Color online) (a) Narrowing or focusing of soliton
trajectory angle range in the vicinity of θn,nr for an α > 1 and � < 0
interface. (b) Broadening or divergence of the angular range of soliton
paths around θn,nr for an α < 1 and � > 0 interface.

action of the interface is therefore quite similar to that of a
converging (positive) lens, in which dark soliton trajectories
play the role of optical rays. For this type of interface, an
array of soliton beams that are diverging at an angle �φi

undergo angles of refraction that tend to θn,nr , so that the
angular spread of trajectories is reduced (�φo < �φi). The
interface thus gathers soliton paths to within the proximity
of θn,nr . The possibility of complementary (i.e., dispersive)
operation is sketched in Fig. 9(b). For example, this could
correspond to the α = 0.2 interface characterized in Fig. 7(a),
for which external refraction occurs when θni > θn,nr , and
vice versa. In this case, the interface acts as the equivalent of a
diverging (negative) lens, as it increases the divergence of the
soliton paths (�φo > �φi).

VI. NUMERICAL CONSIDERATIONS

An extensive series of large-scale numerical simulations
has played a fundamental role in this work, and has enabled a
thorough investigation of analytical predictions. Simulations
employed a nonparaxial beam propagation method [81],
which has been crucial in the development and validation of
Helmholtz soliton theory [68–71,74–76]. All of the numerical
results presented have exploited the rotational symmetry that a
Helmholtz framework allows [66]. Instead of propagating each
soliton with a nonzero transverse velocity toward an interface
at ξ = 0, the interface was itself rotated. This scheme, which
was used for both black and gray soliton refraction studies,
greatly reduced computational requirements in terms of the
need to sample sufficiently (potentially, rapidly varying) trans-
verse phase variations. Even with this computational efficiency
introduced, each simulation still involved a relatively huge
number of transverse points. Typically, 115 200 = 29 × 152

sampling points were used, which facilitated parallel code
implementation among 15 processor cores [82].

The requirement of a very broad background beam to
support the evolving solitons dictated the need for such
large resources. The beam shape used was a raised cosine:
h(ξ ) = cos2[π/rL(|ξ | − L1)], if L1 < |ξ | < L2; h(ξ ) = 1, if
|ξ | � L1; and h(ξ ) = 0, if |ξ | � L2, where roll-off factor
r = 0.5, grid length L = 160, L1 = (1 − r)L/4, and L2 =
(1 + r)L/4. Incident and refracted solitons needed to evolve
on a flat, but finite, central portion of this background. This
was assured by avoiding any role of the progressive spreading
and evolution of the edges of the background field profile. To
minimize evolution of this supporting beam prior to soliton
refraction, each simulation was initiated at a point such that
the background field encountered the interface in the early
stages.

VII. CONCLUSIONS

In this work, we have presented analyses of dark soliton
refraction at planar boundaries that separate two defocusing
Kerr media. The study has been performed in the framework
of Helmholtz theory, which permits valid results for arbitrary
angles of incidence. A key finding is a generalized Snell’s
law that describes not only bright and black soliton refraction,
but also the complexities involved in the refraction of gray
solitons. The matching of exact soliton solutions at each side
of the interface also yields expressions for the transverse
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velocities and component angles of soliton trajectories, along
with the general result that soliton grayness is conserved during
refraction. Particular attention has been paid to parameter
regimes in which linear and nonlinear effects have comparable
magnitude. This allowed identification of distinct scenarios
and regimes of behavior, where either all beam and interface
effects come into play or when particular effects become
dominant (such as in predominantly linear step interfaces).
This focus on the relative importance of contributing effects
should allow results to be applied to wider parameter regimes
that share the same balance, or domination, of particular
effects. All of the main theoretical predictions for these
regimes have been thoroughly tested through comparison with
full numerical solutions.

The refraction of gray solitons has been found to differ
from bright or black soliton refraction at a fundamental
level, since both external and internal refraction can be
obtained at a single nonlinear interface (depending solely
on the angle of incidence). This result followed from our
introduction of the total nonrefraction angle (a unique angle of
incidence under which a dark soliton refracts without trajectory

deviation). Analytical expressions for nonrefraction angles
have been provided, and these show that nonlinear interfaces
can accommodate such a phenomenon provided one works
over a certain (nonparaxial) angular threshold. Nonrefraction
characteristics also led to a proposal that different types of
planar interfaces may be employed for converging or diverging
lens operations on dark soliton arrays.

Work is currently underway to analyze nonlinear surface
waves, soliton breakup, and the Goos-Hänchen shift for
Kerr-focusing interfaces, and also to quantify various gener-
alizations of Helmholtz-nonparaxial soliton refraction arising
from considerations of different classes of nonlinear materials.
However, an account of these extended considerations is
deferred until future publications.
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