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We present a numerical scheme to study the dynamics of slow light and light storage in an electromagnetically-
induced-transparency (EIT) medium at finite temperatures. Allowing for the motional coupling, we derive a set
of coupled Schrödinger equations describing a boosted closed three-level EIT system according to the principle
of Galilean relativity. The dynamics of a uniformly moving EIT medium can thus be determined by numerically
integrating the coupled Schrödinger equations for atoms plus one ancillary Maxwell-Schrödinger equation for
the probe pulse. The central idea of this work rests on the assumption that the loss of ground-state coherence
at finite temperatures can be ascribed to the incoherent superposition of density matrices representing the EIT
systems with various velocities. Close agreements are demonstrated in comparing the numerical results with the
experimental data for both slow light and light storage. In particular, the distinct characters featuring the decay
of ground-state coherence can be well verified for slow light and light storage. This warrants that the current
scheme can be applied to determine the decaying profile of the ground-state coherence as well as the temperature
of the EIT medium.
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I. INTRODUCTION

The effect of electromagnetically induced transparency
(EIT) is a nonlinear optical phenomenon which renders an
opaque medium transparent at a certain frequency by exciting
it with an electromagnetic field [1]. This effect can occur
generally in a three-level atomic system, where the atomic
states are coherently prepared by external laser fields. For
example, in a �-type system (see Fig. 1), there are two
dipole-allowed transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 which
are excited by a weak probing field and a strong coupling
field, respectively. When EIT occurs, destructive interference
among different transition pathways suppresses the transition
probability between |1〉 ↔ |3〉, leading to a spectrally sharp
dip in the absorption spectrum. The corresponding steep
dispersion within the transparency window results in a large
reduction in the group velocity of light. Because the steepness
depends on the intensity of the coupling field, EIT thus
provides an effective and convenient mechanism for slowing
down the light in a controllable fashion. The slow light (SL)
arising from the EIT effect greatly enhances the nonlinear
susceptibility and makes the low-light level nonlinear optics
possible [2]. The first experimental demonstration of SL
produced by EIT was made with high-power pulsed lasers
interacting with a Sr vapor [3,4]. In 1999, a dramatic reduction
of the group velocity down to 17 m/s was demonstrated by Hau
et al. by using a Bose-Einstein condensate of Na atoms [5].
An ultraslow group velocity of 8 m/s was later observed in a
buffer-gas cell of hot Rb atoms by Budker et al. [6].

In a lossless, passive sample, the reduction of the propaga-
tion velocity implies a temporary transfer of electromagnetic
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excitations into the medium. With EIT, the light pulse can
even be completely stopped and stored in the medium by
adiabatically switching off the coupling field and subsequently
retrieved from the medium by the reverse process while
the probe pulse is entirely within the sample making its
way through [1,6–8]. Such storage and retrieval of photonic
information are essentially reversible, since they result from
the coherent transfer of the quantum state of light into the
quantum coherence of the two ground states |1〉 and |2〉. Light
storage (LS) was experimentally demonstrated by several
groups with various schemes [8–11], which promises to be
applied in the processing of quantum information, especially
in the implementation of quantum storage devices and logic
gates and the generation of photonic qubits [12–14].

So far, except for a few experiments that were demonstrated
in atomic Bose-Einstein condensates at nearly zero tempera-
ture [5,9], most experimental studies for EIT have been carried
out at finite temperatures, using either hot atoms at room
temperatures [6,15] or laser-cooled atoms at temperatures
about a few hundreds of microKelvin [1]. It is well-known
that at finite temperatures, the Doppler-broadened medium
inevitably imposes a serious limit, since the Doppler shifts
caused by the atomic motion introduce a randomization in
the effective laser detunings over the ensemble of atoms in
the sample [16]. Experimental evidence indicates that even
in the laser-cooled atoms, the decoherence due to the atomic
motion still cannot be ignored readily, especially when the
applied external fields are in a counterpropagating geometry
[17,18]. Phenomenologically, the effect of Doppler broadening
can be addressed by including in the motion equation a
relaxation term ρ12. Here ρ12 denotes the off-diagonal element
of the density operator which describes the quantum coherence
of the two ground states |1〉and |2〉. Accordingly, a decay
constant γ is thus introduced to account for the relaxation of
ground-state coherence. It should be noted that γ is by no
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FIG. 1. Energy levels of a three-level atom of � type. The
transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are driven by laser fields with
Rabi frequencies �p and �c, correspondingly.

means a universal constant; it depends on the temperature as
well as on the experimental parameters such as the amplitudes
of the driving fields and the particle density of the medium.
Normally, γ can only be determined by numerically fitting
upon the experimental data. Thus one has to recompute the
numerical value of γ once the experimental parameters are
altered in the new runs of experiment. In order to determine
the dynamical properties of the system without introducing γ ,
it is desirable to develop a numerical scheme which is tractable
and accessible to both theorists and experimentalists, and in
this paper we address such an issue.

In general, the atomic dynamics of the EIT medium can be
approached by employing the formalism of the master equation
in the Linblad form,

dρ̂(t)

dt
= 1

ih̄
[H,ρ̂(t)] + D(ρ̂(t)), (1)

where ρ̂(t) is the density matrix of the three-level atom,
H is the total Hamiltonian, and D(ρ̂(t)) is the dissipator
of the master equation through which the relevant decaying
processes such as the spontaneous emission and absorption
can be specified. Essentially, the medium is envisaged as a
single, huge, and stationary, three-level “atom,”so that only
the internal atomic degrees of freedom are considered in
the last equation. A plausible way to include the effects of
nonrelativistic thermal random motion of atoms is to add a
Doppler energy term h̄k · v directly to the Hamiltonian in
Eq. (1), where k is the wave vector of the applied laser field, and
v is the relative velocity between the atom and the light source.
On account of the thermal motion of atoms, v is randomized,
and therefore the final solution of Eq. (1) has to be determined
statistically. Denoting ρ̂(v) as the solution of Eq. (1) with
a given v, then the desired density matrix can be obtained
by taking the average over all possible velocities which
are typically described by a Maxwell-Boltzmann distribution
when the gas is at thermal equilibrium. It is expected that such
an averaging process smears the atomic coherence and thus
contributes to the overall effect of decoherence [16].

We note that for taking the effect of Doppler shift into
account, the above formula is valid only when the atom
is stationary or, equivalently, when the frame of reference
is fixed on the atom. As we aim to obtain the statistically
averaged density matrix over an ensemble of identical EIT

systems moving with different velocities, a particular frame
of reference must be specified in which each ρ̂(v) can be
solved and properly weighted on the common ground. This
would involve the transformation of motion equations under
the principle of Galilean relativity. However, in the presence of
driving fields, the atoms are by no means in constant motion,
since they do exchange momenta with the light fields by
absorbing or emitting photons from time to time. Furthermore,
the atoms are liable to couple to vacuum via spontaneous
emission of photons to all directions, giving rise to the random
recoil of the atoms. These circumstances suggest that the
moving atoms do not serve as an ideal frame of reference
in our scheme. Alternatively, we may seek to solve the matrix
elements of all ρ̂(v)(t) and carry out the ensemble average
in the laboratory frame [19]. In doing so, we might have to
consider the sample gas as a lump of medium rather than
as a single atom. Accordingly, it is more convenient to work
in the framework of the Schrödinger equation instead of the
master equation for two reasons: (i) the gauge invariance of the
Schrödinger equation under the Galilean transformation is well
understood and (ii) the kinetic energy can be naturally included
in the Schrödinger equation, so that the motional coupling,
namely, the coupling between the external degrees of freedom
and the internal degrees of freedom, can be restored and
properly dealt with, although they are normally overwhelmed
by the light-atom interaction. The details of the derivation of
the motion equations will be described later.

The organization of this paper is as follows. In Sec. II, we
derive the general forms of the motion equations of the atomic
medium under arbitrary Galilean transformation boosted along
the z direction. The numerical results are presented in Sec. III.
Comparison with experimental data are made. Finally, some
concluding remarks are given in Sec. IV.

II. FORMALISM

We consider a medium consisting of �-type three-level
atoms with two metastable ground states as shown in Fig. 1.
The atoms in this medium are all noninteracting and excited
by two laser fields. The probe pulse, which drives the |1〉 ↔
|3〉 transition, is characterized by a central frequency ωp and a
wave vector kp. On the other hand, the |2〉 ↔ |3〉 transition is
driven by another laser field with frequency ωc and wave vector
kc. For all practical purposes, the probe and couple fields can
be applied with different relative orientation, depending on
the experimental applications. For simplicity, we shall assume
in the following derivations that the probe field propagates
along the z direction, and the coupling field propagates with
an angle θ with respect to the z axis, and the three-level atoms
are in a cigar-shaped trap which can be considered as an one-
dimensional system. Now the Hamiltonian of the system can
be given by

H = H0 + HI , (2)

where

H0 =

⎡
⎢⎢⎣

p2

2m
+ E1 0 0

0 p2

2m
+ E2 0

0 0 p2

2m
+ E3

⎤
⎥⎥⎦ , (3)
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is the unperturbed part, and

HI = h̄

2

⎡
⎢⎣

0 0 �∗
pe−i(kpz−ωpt)

0 0 �∗
ce

−i(k̃cz−ωct)

�pei(kpz−ωpt) �ce
i(k̃cz−ωct) 0

⎤
⎥⎦ ,

(4)

describes the interaction between the EM field and the atom
in the dipole approximation and rotating-wave approximation.
Here, Ej is the energy of the electronic level |j 〉, k̃c = kc cos θ ,
and �c and �p denote the Rabi frequencies for the transitions
|2〉 ↔ |3〉 and |1〉 ↔ |3〉, respectively. In the current problem,
we assume that �p = �p(z,t) and �c = �c(t).

In the continuum limit, a three-level atomic medium can be
described by a three-component spinor field,

�(r,t) =

⎛
⎜⎝

ψ1(r,t)

ψ2(r,t)

ψ3(r,t)

⎞
⎟⎠ , (5)

where ψj (r,t) is the atomic field operator which annihilates an
atom in the internal state |j 〉 that is positioned at z. In terms of
the atomic field operators, the energy functional of the above
EIT system is given by

E[�†,�] =
∫

d3r�†(r,t)H�(r,t). (6)

The motion equations for all ψj (r,t) can be derived from the
Hartree variational principle, namely,

ih̄
∂ψj

∂t
= δE[�†,�]

δψ∗
j

(j = 1,2,3), (7)

and consequently, we obtain

ih̄
∂ψ1

∂t
=

[
− h̄2

2m

∂2

∂z2
+ E1

]
ψ1 + h̄

2
�∗

pe−i(kpz−ωpt)ψ3, (8)

ih̄
∂ψ2

∂t
=

[
− h̄2

2m

∂2

∂z2
+ E2

]
ψ2 + h̄

2
�∗

ce
−i(k̃cz−ωct)ψ3, (9)

ih̄
∂ψ3

∂t
=

[
− h̄2

2m

∂2

∂z2
+ E3

]
ψ3 + h̄

2
�pei(kpz−ωpt)ψ1

+ h̄

2
�ce

i(k̃cz−ωct)ψ2. (10)

Here we have ignored the transverse motion of the atoms in
the xy plane since the Gaussian probe pulse propagates along
the z direction only.

It is convenient to describe the atomic properties by means
of the local density operator ρ̂ whose matrix elements are
defined as bilinear products of atomic fields, i.e., ρij = ψiψ

∗
j .

Accordingly, the ith diagonal matrix element corresponds to
the density of atoms in the state |j 〉. In the absence of any
decaying process, the total density may be normalized to∫

dz
∑

j |ψj |2 = NL, where N is total particle number and L

is the length of the system. The quantum coherence between
the states |i〉 and |j 〉 is represented by the off-diagonal matrix
element ρij . In particular, the matrix element ρ12 is of central
importance in the current problem, which dominates the
dynamics of the storage and retrieval of the probe light pulse.
Additionally, the coherence between |1〉 and |3〉 determines

the propagation of the probe field inside the medium. In the
slowly varying envelope approximation [20], the dynamics
of the probe field is governed by the Maxwell-Schrödinger
equation (

∂

∂z
+ 1

c

∂

∂t

)
�p = −iηρ31, (11)

where η = 3λ2
LNa�/4π , with N being the number per unit

length of the medium, � the spontaneous decay rate of |3〉,
a the branch ratio of the decay from |3〉 to |1〉, and λL the
wavelength of the laser field.

Note that Eqs. (8)–(10) can be interpreted as the governing
equations of a moving continuous medium seen by a comoving
observer, although they take the form of coupled Schrödinger
equations. In nonrelativistic quantum mechanics, the Galilean
relativity ensures that the Schrödinger equation is form-
invariant under the Galilean transformation, r → r − vt , t →
t , for any two frames of reference that are in relative uniform
translational motion with a velocity v [21]. To be specific, let us
assume that the boosted system moves with a velocity v = vẑ
relative to the laboratory frame. Accordingly, the Galilean
principle of relativity demands the gauge dependence of two
different but equivalent quantum-mechanical states

�(z,t) = �(v)(z′,t ′) e−i(mv2t/2−mvz)/h̄, (12)

where (z,t) and (z′,t ′) denote the space-time coordinates in the
laboratory frame and the boosted frame, respectively, which
are transformed by z′ = z − vt , t ′ = t . Moreover, we require
that the pulse profiles in different frames are related by

�p(z,t) = �′
p(z′,t ′) = �′

p(z − vt,t), (13)

and thus Eqs. (8)–(10) become

ih̄
∂

∂t
ψ

(v)
1 (z − vt,t)

=
[
− h̄2

2m

∂2

∂z2
− ivh̄

∂

∂z
+ h̄ω1

]
ψ

(v)
1 (z − vt,t)

+h̄

2
�∗

p(z,t)e−i(kpz−ωpt)ψ
(v)
3 (z − vt,t), (14)

ih̄
∂ψ

(v)
2 (z − vt,t)

∂t

=
[
− h̄2

2m

∂2

∂z2
− ivh̄

∂

∂z
+ h̄ω2

]
ψ

(v)
2 (z − vt,t)

+ h̄

2
�∗

c (t) e−i(k̃cz−ωct)ψ
(v)
3 (z − vt,t), (15)

ih̄
∂ψ

(v)
3 (z − vt,t)

∂t

=
[
− h̄2

2m

∂2

∂z2
− ivh̄

∂

∂z
+ h̄ω3

]
ψ

(v)
3 (z − vt,t)

+ h̄

2
�p(z,t) ei(kpz−ωpt)ψ

(v)
1 (z − vt,t)

+ h̄

2
�c(t) ei(k̃cz−ωct)ψ

(v)
2 (z − vt,t), (16)

where ψ
(v)
j (j = 1,2,3) denote the atomic fields in the medium

boosted with velocity v and ωj = Ej/h̄.
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To solve Eqs. (14)–(16) in a more efficient manner (less grid
points and higher accuracy), we extract a fast oscillating phase
(both spatially and temporarily) from each ψ

(v)
j by writing

⎛
⎜⎝

ψ
(v)
1

ψ
(v)
2

ψ
(v)
3

⎞
⎟⎠ =

⎛
⎜⎝

φ
(v)
1 (z,t) e−iω1t

φ
(v)
2 (z,t) e−i(ωp−ωc+ω1)t+i(kp−k̃c)z

φ
(v)
3 (z,t) e−i(ωp+ω1)t+ikpz

⎞
⎟⎠ , (17)

where φ
(v)
j represents the slowly varying part for ψ

(v)
j .

Substituting Eq. (17) into Eqs. (14)–(16) and taking the
spontaneous decay of the excited level |3〉 into account, we
then obtain the following motion equations for φ

(v)
j in the

laboratory frame:

ih̄
∂φ

(v)
1 (z,t)

∂t

=
[
− h̄2

2m

∂2

∂z2
− ivh̄

∂

∂z

]
φ

(v)
1 (z,t) + h̄

2
�∗

pφ
(v)
3 (z,t), (18)

ih̄
∂φ

(v)
2 (z,t)

∂t

=
[
− h̄2

2m

∂2

∂z2
− ivh̄

∂

∂z
− i(kp − k̃c)h̄2

m

∂

∂z

]
φ

(v)
2 (z,t)

+ h̄(�p − �c + �v) φ
(v)
2 (z,t) + h̄

2
�∗

cφ
(v)
3 (z,t), (19)

ih̄
∂φ

(v)
3 (z,t)

∂t

=
[
− h̄2

2m

∂2

∂z2
− ivh̄

∂

∂z
− ikph̄

2

m

∂

∂z

]
φ

(v)
3 (z,t)

+
[
h̄(�p + kpv) − ih̄

�

2
+ h̄2k2

p

2m

]
φ

(v)
3 (z,t)

+ h̄

2
�pφ

(v)
1 (z,t) + h̄

2
�cφ

(v)
2 (z,t), (20)

where �p = ω3 − ω1 − ωp and �c = ω3 − ω2 − ωc are
the detunings of probe and coupling lasers, respectively,
and �v = (kp − k̃c)v + h̄(kp − k̃c)2/2m denotes the motion-
induced frequency shift. In Eq. (20), the spontaneous decay
of the excited level |3〉 occurring with a rate � is included
phenomenologically. Note that the terms kpv and k̃cv entering
the right-hand sides of Eqs. (19) and (20) are the nonrelativistic
Doppler shifts which turn out to be the detunings for the probe
and coupling laser, respectively, in the laboratory frame. In
addition, it is noteworthy to point out that h̄(kp − k̃c)2/2m

represents the frequency shift caused by the recoil of the atom.
The dephasing owing to the thermal motion of atoms is

incorporated in the system dynamics by replacing ρ31 with
〈ρ31〉T in the right-hand side of Eq. (11), namely,(

∂

∂z
+ 1

c

∂

∂t

)
�p = −iη〈ρ31(z,t)〉T , (21)

where

〈ρ31(z,t)〉T =
√

m

2kBT π

∫
dvφ

(v)
3 (z,t)φ(v)∗

1 (z,t)e−mv2/2kBT

is the thermally averaged atomic coherence between |1〉 and
|3〉, which is taken over the Maxwell-Boltzmann distribution
of velocity at a given temperature T .

Finally, we give a brief account of the numerical method
which we have employed to integrate Eqs. (18)–(21). Since we
have used very high resolution to resolve the fine structures
of the wave functions and the light pulse during their time
evolutions, the commonly used second-order Crank-Nicolson
method turns out to be inefficient in the current problem even
though it is unconditionally stable. Owing to its implicitness
in time, the Crank-Nicolson method would require an exceed-
ingly large resultant matrix for the four coupled equations,
Eqs. (18)–(21), when a high spatial resolution is demanded.
In this regard, explicit methods are more efficient for the
current problem. Here we use the method of lines with spatial
discretization by the highly accurate Fourier pseudospectral
method and time integration by the adaptive Runge-Kutta
method of orders 2 and 3 (RK23), such that the accuracy in
time is at least of second order, and the accuracy in space is of
exponential order. In the following numerical computations,
we will first determine φ

(v)
j (z,t) by numerical integration.

Having obtained all φ
(v)
j (z,t), we then calculate 〈ρ31(z,t)〉T

to determine the profile of �p at the instant t .

III. RESULTS AND DISCUSSIONS

In this section, we apply the aforementioned scheme to
simulate the effect of Doppler broadening for both SL and LS,
and compare the numerical results with the experimental data.
Before we present the results, some remarks are given. To
begin with, let us consider the limiting case with kp = kc and
θ = 0, where the shift �v in the right-hand side of Eq. (19)
can be exactly canceled out, indicating that the EIT dynamics
can be robust against the effect of Doppler broadening when
probe and couple are copropagating. However, we note that in
most experiments, kp differs from kc in the transition scheme,
or a small θ is required to separate the weak probe and strong
coupling fields in the detection scheme. This suggests that
the effects of Doppler broadening are inevitable in practical
applications, even though they are essentially small in the
copropagating situation. In contrast, in the counterpropagating
geometry, setting kp = kc and θ = π , �v is maximized for all
v and cannot be eliminated in any case, and thus a substantial
loss of ground-state coherence is expected. Regarding the fact
that decoherence is much pronounced in the latter case and
that the counterpropagating EIT is the central mechanism for
generating stationary light pulses [17], here we restrict our
attention to the counterpropagating EIT. As a matter of fact, in
our copropagating EIT experiment in which the effect of the
thermal motion of the cold atoms is minimized, the decoher-
ence rate is found to be less than 10−3� (� = 2π × 5.9 MHz),
indicating that the relaxation effects caused by some intrinsic
factors, such as the stray magnetic field, collisions, and
linewidth and frequency fluctuation of the laser fields, are very
small and add up to give a decoherence rate of less than10−3�.
Such a small decoherence rate suggests that the decay of the
output probe fields in our counterpropagating experiment are
mainly from thermal motion. In fact, adding such a small
decoherence rate in our calculation changes the numerical
outcome very little, and therefore we shall not consider the
intrinsic decoherence in the numerical simulations.

The comparisons between experimental data and numerical
results of SL are made in Fig. 2 for three different experiments.
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FIG. 2. (Color online) Best fitting of the numerical simulation
with (a) �c = 0.825�, dopt = 30, T = 290 µK; (b) �c = 0.665�,
dopt = 41.3, T = 305 µK; (c) �c = 0.75�, dopt = 48, T = 280 µK
for SL. The squares and circles represent the intensities of the
experimentally measured input probe pulse and output probe pulse,
respectively. The input probe pulse is scaled down by a factor of 0.2
in (a), 0.01 in (b), and 0.04 in (c). The dashed and solid lines represent
the numerical simulations for the intensities of the input probe pulse
and the output probe pulse, respectively.

We carried out the measurements in a cigar-shaped cloud of
laser-cooled Rb atoms [22] in which the probe pulse and
coupling field were counterpropagating along the major axis
of the cloud. The Rabi frequency �c and the optical density
dopt(= 2Lη/�) for the three samples are estimated to be �c =
0.85�, dopt = 30; �c = 0.69�, dopt = 41; and �c = 0.77�,
dopt = 48, respectively. Both �c and dopt are estimated by the
method described in [17] and have an uncertainty of about
±5%. The probe pulses used in the experiment are sufficiently
weak such that the corresponding Rabi frequency in the calcu-
lation does not affect the prediction of the output probe pulse.
In the numerical simulations with 128 velocity groups, we set
�c = 0.825�, dopt = 30, T = 290 µK; �c = 0.665�, dopt =
41.3, T = 305 µK; and �c = 0.75�, dopt = 48, and T =
280 µK to get the best fit for the three experiments of SL shown
in Figs. 2(a)–2(c), respectively. It should be mentioned that the
temperature of the SL experiment in Fig. 2(a) was determined
by another different numerical method to give the value of
T = 296 µK [23], which is very close to our prediction.

The experimental data and numerical results of storage and
retrieval of a light pulse are shown in Fig. 3. In the simulations
of Fig. 3, we only adjust the temperature to T = 240 µK while
keeping the values of �c and dopt in Fig. 2(a) unchanged to
get the best fit. The discrepancies in the temperatures obtained
from the numerical simulations in Figs. 2(a) and 3 are very
reasonable when compared with the expected temperature
and fluctuations of the laser-cooled Rb atoms, yet �c and
dopt so obtained are in good agreement with the experimental
parameters. Therefore, we have quantitatively demonstrated
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FIG. 3. (Color online) Best fitting of the numerical simulation
with �c = 0.825�, dopt = 30, T = 240 µK for LS. The squares and
circles are the experimentally measured intensities of the input probe
pulse and output probe pulse, respectively. The dashed line and solid
line represent the the numerical simulations for the intensities of the
input probe pulse and output probe pulse, respectively. The input
probe pulse is scaled down by a factor of 0.05.

the validity and accuracy of the numerical method presented
in this work. In addition, we find this method can be used
to determine the temperature along the major axis of the
cigar-shaped atom cloud which we were not able to measure
previously.

The influence of the thermal effect is readily revealed by the
considerably diminished intensity of the output probe beam.
Fig. 4(a), the intensity profiles of the output probe pulse
at various temperatures are shown for SL. As expected, the
output intensity decreases when the temperature increases. A
simple explanation for this is that the higher the temperature,
the broader the velocity distribution is. Thus the effective
two-photon detuning (the averaged Doppler shift) becomes
larger and the output probe pulse is significantly suppressed.
Figure 4(b) shows that the peak of the output probe decays
exponentially as a function of temperature.

For all practical purposes, it is more instructive to examine
the ground-state coherence 〈ρ21〉T rather than the output
intensity of the probe beam, since there are no light fields
during the process of storage, and once the stored pulse is
retrieved, it restores SL again. Although 〈ρ21〉T cannot be
measured directly, its magnitude determines the intensity of
the retrieved probe pulse when the coupling field is turned off.
Very recently, in analyzing the feasibility of measuring the
ground-state coherence in an EIT, Zhao et al. [19] suggested
that 〈ρ21〉T decays like a Gaussian function during LS. On this
basis, it can be further shown that

〈ρ21(z,t)〉T = 〈ρ21(z,t = 0)〉T e−(kvs )2t2
e2ikz, (22)

where vs = √
2kBT /m is the one-dimensional root-mean-

square velocity, and k = c−1(ω3 − ω1). Now let us consider
the case of the storage time of 1.4 µs for various temperatures
T = 100, 300, 500 µK. In the calculation, the probe pulse
enters the medium under �c = 0.75� and dopt = 32 both of
which do not affect the decay behavior during the storage;
the input probe pulse and the timing of switching off the
coupling field are the same as those shown in Fig. 3. For
such a storage time and atom temperatures, the atomic thermal
motion is expected to well smear the quantum memory of the
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FIG. 4. (Color online) (a) Output probe field at various tem-
peratures as shown in the inset, with �c = 0.75� and dopt = 32.
(b) Circles are the peak of the output probe pulse at different
temperatures in the numerical simulations, red line is the fitting curve,
and the peak intensity of the output probe field decays exponentially
with temperature.

probe pulse which is stored as the ground-state coherence.
Because Eq. (22) is a function of z and t and the time depen-
dence only comes from the Gaussian function, to eliminate
the z dependence of the ground-state coherence, we plot
the function R21(t,T ) = |∫ 〈ρ21(z,t)〉T dz| in Fig. 5. We see
that the R21(t,T ) indeed decays Gaussian-like with time as
predicted in [19]. Now let us denote τ as the 1/e width of
the Gaussian function. Accordingly, τ of the fitted Gaussian
function of the ground-state coherence in the simulation
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FIG. 5. (Color online) Triangles, squares, and circles are the
numerical results of the normalized R21(t,T ) during the storage at
T = 100, 300, and 500 µK, respectively; the dashed-dotted, dotted,
and dashed lines are the predictions by Eq. (22).

is found to be close to the value predicted by Eq. (22).
Furthermore, we have verified that τ ∝ T −1/2, and the close
agreement with the theoretical predictions of Eq. (22) are also
shown in Fig. 5. Since the thermal motion would randomize
the spatial profile of the ground-state coherence during the
storage, the intensity of the retrieved probe pulse is thus much
smaller than the stored one as shown in Fig. 3.

The ground-state coherence for SL can be studied in a
similar manner. It is expected that the ground-state coherence
decays more slowly in SL than in LS, since the continuous
optical excitations from the coupling field can retard the loss
of atomic coherence led by the randomization of the atom’s
thermal motion. We simulate the process of SL with �c =
0.75�, and dopt = 400 at various temperatures. Here we have
chosen a very large optical density dopt = 400 to ensure that
the probe pulse can stay in the medium for a sufficiently long
period. We plot R21(t,T ) as a function of time for various
temperatures after the probe pulse has entirely merged into
the medium, and the numerical results suggest that R21(t,T )
decays exponentially with a rate κ . In the following, we apply
some previous theoretical results based on the steady-state
solution of the optical-Bloch equation to derive an analytic
estimate of κ . For simplicity, we shall assume that the EIT
transparency bandwidth is much larger than the frequency
bandwidth of the probe pulse, such that the decay of the probe
pulse or the ground-state coherence is mainly determined by
the absorption in the center of the transparency window of
the EIT spectrum. Because all decoherence mechanisms other
than the atomic thermal motion are neglected, the steady-state
solution of ρ31 of a rest EIT medium is given by [24]

ρ31

�p

= �c − �p

�2
c/2 + 2[�p − i�/2][�c − �p]

. (23)

Given that the probe and coupling fields are both resonant with
the atomic transition frequencies in the laboratory frame, thus
for an atom moving with a velocity v, we have �p = kv and
�c = −kv in the above equation. In the presence of a strong
coupling field, �c 	 kvs , the imaginary part of Eq. (23) can
be approximated by

Im

[
ρ31(v)

�p

]
≈ 4k2v2�

�4
c

, (24)

which is related to the absorption coefficient α of a Doppler-
broadened medium by

α = η

〈
Im

[
ρ31(v)

�p

]〉
T

= 4ηk2v2
s �

�4
c

. (25)

The absorption gives rise to the attenuation of the propagating
light pulse, which is described by the Beer’s law, namely,

R21(t,T )

R21(0,T )
= e−2αl = e−2αvgt , (26)

where l is the propagation distance and vg = �2
c/2η is

the group velocity. It is straightforward to obtain κ =
4(kvs/�c)2� with Eq. (26). In contrast to the Gaussian
decay in Eq. (22), which depends on temperature only,
the decay of ground-state coherence in SL depends on the
temperature, coupling field, and spontaneous decay rate of
level |3〉. The numerical simulations of R21(t,T ) and the
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FIG. 6. (Color online) The normalized R21(t,T ) with �c =
0.75�, dopt = 400; the triangles, squares, and circles are the numerical
results at T = 100, 300, and 500 µK, respectively; the dashed-dotted,
dotted, and dashed lines are the predictions of Eq. (26).

analytic predictions are plotted for various temperatures in
Fig. 6, where good agreements are demonstrated. It is not
unexpected that our numerical simulations closely agree with
those obtained by averaging the solutions of optical-Bloch
equations subjected to the Maxwell-Boltzmann distribution at
a particular temperature, since in our numerical calculations
so far, the effect of recoil is negligible, i.e., (kp − k̃c)vs 	
h̄(kp − k̃c)2/2m [see the definition of �v below Eq. (20)].
However, we note that the above criterion is no longer valid
if the mass of atom is made small and the coupling and probe
beams are counterpropagating. The resultant dephasing can
significantly reduce the output level of the probe pulse, and
our scheme appears applicable to this kind of problem.

Finally, it should be noted that simply by adjusting the
temperature (or equivalently, the velocity distribution), we can
simulate the decaying behavior of the ground-state coherence,
provided that the explicit time dependence of the coupling field
is given. This cannot be achieved via solving the optical-Bloch
equation by imposing a phenomenological decay rate γ on the
metastable ground state |2〉 (which is accurate only at �c 	
kvs in SL and not valid at all in LS), and thus features the major

decoherence between our formalism and the optical-Bloch
equation. For this reason, it is expected that the current scheme
can be applied to investigate the dynamics of stationary light
pulse (SLP) which basically consists of four SL processes:
two copropagating and two counterpropagating. Owing to the
inherent complexity, specifying the high-order γ ’s in the SLP
turns out to be tricky when solving the usual optical-Bloch
equations [25]. Under the circumstances, without doubt, our
scheme appears to be an easier and more natural way to
approach the problem.

IV. CONCLUDING REMARKS

We have presented a numerical scheme to study the dy-
namics of SL and LS in an EIT medium at finite temperatures.
Based on the gauge invariance of the Schrödinger equation
under Galilean transformation, we derive a set of coupled
equations for a boosted closed three-level EIT systems.
The loss of ground-state coherence at finite temperatures is
then treated as a consequence of superposition of density
matrices representing the EIT systems moving at different
velocities. Unlike other theoretical treatments in which atoms
are assumed immobile, our scheme takes both the atom’s
external and internal degrees of freedom into full account.
The feasibility of this scheme is shown by comparing the
numerical results to the experimental data for both SL and LS.
Last but not least, this scheme also enables us to study the
dynamical properties of a Doppler-broadened EIT medium in
the nonperturbative regime of probe and coupling pulses with
comparable intensities, in which new effects are expected to
arise.
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