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Electromagnetic energy momentum in dispersive media
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The standard derivations of electromagnetic energy and momentum in media take Maxwell’s equations as the
starting point. It is well known that for dispersive media this approach does not directly yield exact expressions
for the energy and momentum densities. Although Maxwell’s equations fully describe electromagnetic fields,
the general approach to conserved quantities in field theory is not based on the field equations, but rather on
the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to
derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin’s
simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic
fields corresponds to the familiar Minkowski expression D × B, but for general fields in dispersive media the
momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum
balance in light-matter interactions.
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I. INTRODUCTION

Momentum balance in light-matter interactions is a subtle
subject that has been debated for over a century. Discussions of
the issues involved, together with references to much of the rel-
evant literature, can be found in Refs. [1–5]. This paper makes
no attempt to contribute to the momentum-balance debate, in
that there will be no investigation of the transfer of momentum
(or energy) from light to matter or vice versa. Instead we isolate
a related problem, but one that is mathematically well posed
and therefore capable of an exact and unambiguous solution.
The problem solved here is: What is the conserved energy-
momentum tensor of light propagating in a homogeneous,
dispersive, lossless magnetodielectric medium? This is a
well-posed problem of macroscopic electromagnetism, but
it appears not to have been fully addressed in the existing
literature on electromagnetic energy momentum, where the
primary focus has been on momentum transfer between light
and matter. Although the solution is an example of Noether’s
theorem, the presence of dispersion means that the well-known
expression for the energy-momentum tensor of a field theory
in terms of its Lagrangian density is not valid in this case.
In fact, the result cannot be derived in any systematic way
from Maxwell’s equations or a Lagrangian density. Dispersive
macroscopic electromagnetism must be formulated in terms
of an action principle, and the Noether theorem for space-
time translation symmetry must be derived from the action,
leading to an exact conserved energy-momentum tensor. The
problem in fact presents a significant calculational challenge,
which may explain its absence from the momentum-balance
literature. By isolating this problem from the conundrum of
momentum transfer, we show that the issue of electromagnetic
energy momentum in dispersive media is amenable to some
mathematically exact and unambiguous statements.

The restriction to lossless media in this paper requires
comment on the physical significance of the results. A
complete treatment of macroscopic electromagnetism at all
frequencies must include the absorption in the materials that
is necessarily strong in some frequency ranges. Mathemati-
cally, this dissipation is a consequence of the restriction to
retarded solutions of Maxwell’s equations, which leads to

the Kramers-Kronig relations [6,7]. As is well known [7–9],
quantifying electromagnetic energy momentum in dissipative
media is problematic, and in any case such energy momentum
will of course not be conserved. In optics, on the other
hand, one often deals with limited frequency ranges where
losses are negligible, but where material dispersion cannot be
ignored. An example of the utmost experimental and practical
importance is fiber optics [10], where in many circumstances
absorption can be ignored not only in the entire visible
range, but also into the infrared and ultraviolet. In such a
large frequency range dispersion plays a crucial role in light
propagation and cannot be neglected [10]. The question of
how much conserved energy momentum is being transported
by light has an unambiguous answer in these circumstances,
and the result is experimentally significant. For example, a
light beam encountering an intense pulse can be frequency
shifted through nonlinearity of the medium, and the amount
of electromagnetic energy that is frequency shifted depends,
among other factors, on the energy-momentum tensor of the
light beam. One example of such an experiment is described in
Ref. [11], where the light beam encountering the intense pulse
was monochromatic; this represents the simplest case, but for a
light beam with a complicated spectrum the general expression
for the energy-momentum tensor is required to fully describe
the behavior of the beam. This exact energy-momentum tensor
is derived here.

The results obtained below generalize a well-known ap-
proximation for electromagnetic energy in dispersive media.
As is familiar from the textbook treatments [6,7], the Poynting
theorem that follows from Maxwell’s equations does not
directly lead to an expression for the electromagnetic energy
density in the case of lossless, dispersive media. The standard
procedure [6,7] is to make a restriction to quasimonochromatic
fields, in which case one can extract an approximate expression
for the time-averaged energy density, owing to Brillouin
[Eq. (21) below]. For general fields one is reduced to making
a formal time integration of the Poynting theorem [8]. But as
noted above, in the dispersive case one cannot derive Noether’s
theorem from a systematic manipulation of the dynamical
equations of the theory, as is done in the Poynting theorem;
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instead, one must start with the action that underlies the
equations. Noether’s theorem guarantees the existence of an
exact energy density for arbitrary fields in lossless dispersive
media and this energy density is derived here.

In the case of electromagnetic momentum density,
the dispersionless result is the familiar Minkowski
expression [1–5] D × B. We note again that this statement
refers to the conserved electromagnetic energy-momentum
tensor: The Minkowski momentum density D × B unam-
biguously gives the conserved electromagnetic momentum of
light propagating in a nondispersive, lossless, homogeneous
medium [1–5]. It is shown below that the Minkowski expres-
sion is also valid, in a time-averaged form, for monochromatic
fields in the dispersive case. For general fields in dispersive
media, however, the momentum density is more complicated,
and is not given by Minkowski’s formula.

II. THE ACTION

The results follow straightforwardly once an action prin-
ciple is written for electromagnetism in dispersive, lossless
media. For this purpose the dynamical variables must be taken
to be the scalar potential φ and vector potential A, defined by

E = −∇φ − ∂tA, B = ∇ × A. (1)

The relationship between fields in the time and frequency
domains (the latter denoted by a tilde) is, for the example
of the electric field,

E(r,t) = 1

2π

∫ ∞

0
dω[Ẽ(r,ω)e−iωt + c.c.]

(2)

= 1

2π

∫ ∞

−∞
dω Ẽ(r,ω)e−iωt ,

where the reality of E(r,t) implies Ẽ(r, − ω) = Ẽ∗(r,ω). In
the frequency domain we have

D̃ = ε0ε(r,ω)Ẽ, H̃ = κ0κ(r,ω)B̃, (3)

where ε(r,ω) is the relative permittivity of the (in general inho-
mogeneous) medium, κ0 = µ−1

0 , and the relative permeability
is µ(r,ω) = κ(r,ω)−1. As the medium can be assumed to be
lossless in the frequency range of interest, ε(r,ω) and κ(r,ω)
are real and even functions of ω [7], and so they have the series
expansions

ε(r,ω) =
∞∑

n=0

ε2n(r) ω2n, κ(r,ω) =
∞∑

n=0

κ2n(r) ω2n, (4)

where these equations define the coefficients ε2n(r) and κ2n(r).
In practice, the series (4) will represent a fit to the dispersion
data of the material for the frequency range of interest; we take
these series to be infinite, but the subsequent results also hold
when they are finite series. Equations (2)–(4) show that in the
time domain the Maxwell equations (with no free charges or
currents) are

ε0∇ · [ε(r,i∂t )E] = 0, (5)

κ0∇ × [κ(r,i∂t )B] = ε0ε(r,i∂t )∂tE, (6)

while the other two Maxwell equations are automatically
satisfied because of (1). Note that series expansions of the

form (4) are standard in treating dispersion in frequency
ranges where losses are negligible, for example, in linear and
nonlinear fiber optics [10]. Moreover, the transformation from
the frequency to the time domain apparent in (5) and (6), and
the reverse transformation, are a standard part of numerical
solution procedures for the propagation of wave packets with
spectra within the frequency range where expansions (4) are
valid, for example, in the split-step method [10,12]. The action
S[φ,A] for the potentials φ and A that gives the dynamical
Eqs. (5) and (6) is

S =
∫

d4x
κ0

2

{
1

c2
E · [ε(r,i∂t )E] − B · [κ(r,i∂t )B]

}
. (7)

Variation of φ in (7) gives the Maxwell equation (5), while
variation of A gives (6).

The fact that only even-order time derivatives occur in (5)
and (6) is essential to being able to write an action principle for
these equations. For dissipative media, terms with odd-order
time derivatives occur in (5) and (6), arising from the imaginary
parts of ε(r,ω) and κ(r,ω), which are odd functions of ω [7];
but the action (7) would not generate these terms. In the
action (7), terms of the form E · ∂2n+1

t E, for example, would
not contribute to the dynamical equations because their
variation gives zero after integrations by parts: δ(E · ∂2n+1

t E) =
(δE) · ∂2n+1

t E + E · ∂2n+1
t δE, and the second term becomes

minus the first upon integrations by parts. It must of course
be impossible to write an action in the dissipative case that
is a functional only of φ and A, because this would imply
the existence of a conserved electromagnetic energy in lossy
media (see below).

III. ENERGY

The action (7) is invariant under active time translations of
the dynamical fields φ and A, and this invariance implies,
through Noether’s theorem, the existence of a conserved
quantity, the energy. The extraction of the conservation law
from the action is a standard technique of field theory (see
Ref. [13], for example). Even if one is unfamiliar with
Noether’s theorem, one can of course verify using the field
Eqs. (5) and (6) that the resulting conservation law does
in fact hold. The theorem [13] shows that if we make an
active infinitesimal time translation φ(r,t) → φ(r,t + ζ (r,t)),
A(r,t) → A(r,t + ζ (r,t)), but take the translation ζ (r,t) to
vary in space and time, then the change in the action can be
reduced to the form

δS =
∫

d4x (ρ ∂tζ + S · ∇ζ ) , (8)

where ρ is the energy density and S is the energy flux, obeying
the conservation law

∂tρ + ∇ · S = 0. (9)

The variation δS will clearly be linear in the infinitesimal
translation ζ (r,t), but various numbers of integrations by parts
are required to achieve the form (8) (surface terms produced
by the integrations are to be dropped). Use must be made of
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the following identities, which hold for arbitrary functions Y

and Z, up to surface terms:∫
d4x Yε(r,i∂t )(ζZ)

=
∫

d4x

[
ζYε(r,i∂t )Z −

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)

× ∂m−1
t Y ∂2n−m

t Z∂tζ

]
, (10)

∫
d4x Yε(r,i∂t )∂t (ζZ)

=
∫

d4x

[
ζYε(r,i∂t )∂tZ +

∞∑
n=0

2n∑
m=0

(−1)n+mε2n(r)

× ∂m
t Y ∂2n−m

t Z∂tζ

]
. (11)

These identities were found by first working with small values
of n, where all the terms can be checked by hand, and
then verifying the general expressions (10) and (11) using
Mathematica. Identity (10) with ε(r,i∂t ) replaced by κ(r,i∂t )
must also be used. In this way one attains the form (8) with

ρ = κ0

2

{
1

c2
(∇φ − ∂tA) · [ε(r,i∂t )E] + B · [κ(r,i∂t )B]

− 1

c2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1
t E · ∂2n−m+1

t E

+
∞∑

n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1
t B · ∂2n−m+1

t B
}
, (12)

S = −ε0∂tφ ε(r,i∂t )E − κ0∂tA × [κ(r,i∂t )B]. (13)

It is straightforward to verify that (12) and (13) obey
the conservation law (9) when the fields satisfy Maxwell’s
Eqs. (5) and (6). As in the case of dispersionless media,
and indeed vacuum, the energy density (12) and flux (13)
that directly emerge from Noether’s theorem are not gauge
invariant [6,13]. They are, however, equivalent to gauge-
invariant quantities because they fail to be gauge invariant
up to terms that identically satisfy the conservation law (9).
Specifically, the quantities

f i t
t := −ε0φ ε(r,i∂t )Ei =: −f t i

t , (14)

f
j i
t := −κ0φ κ(r,i∂t )(∇ iAj − ∇jAi), (15)

identically satisfy

∂t∇if
i t
t + ∇i

(
∂tf

t i
t + ∇j f

j i
t

) = 0. (16)

Comparing (16) with (9), we see that if ∇if
i t
t is added to

ρ, and ∂tf
t i
t + ∇j f

j i
t is added to Si , then the conservation

law (9) will still hold. Moreover, with use of Maxwell’s
equations (5) and (6), the energy density and flux that result

from these additions are gauge invariant and are given by

ρ = κ0

2

{
1

c2
E · [ε(r,i∂t )E] + B · [κ(r,i∂t )B]

− 1

c2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1
t E · ∂2n−m+1

t E

+
∞∑

n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1
t B · ∂2n−m+1

t B
}
, (17)

S = κ0E × [κ(r,i∂t )B]. (18)

The conservation law (9) for the final expressions (17)
and (18) can also be verified using Maxwell’s Eqs. (5) and (6).
In (18) we see that the energy flux is given by the
Poynting vector E × H in the time domain, the obvi-
ous generalization of the nondispersive result. The energy
density (17), however, has no simple relation to the nondis-
persive result, which only contains the first two terms in (17).
It is a simple matter to express (17) and (18) in the frequency
domain.

We can use the exact energy density (17) to derive the
standard textbook result [6,7] for the time-averaged energy
density of a monochromatic wave in a dispersive medium.
Such a wave has an electric field

E(r,t) = 1
2 [E0(r)e−iω0t + c.c.], (19)

and the B field is of the same form. When the monochromatic
E and B fields are substituted into (17) and a time average
is taken, all t-dependent terms vanish. The series in (17)
containing the E field is then

ε0

4

∞∑
n=1

2n∑
m=1

ε2n(r)ω2n
0 |E0|2 = ε0

4

∞∑
n=1

2n ε2n(r)ω2n
0 |E0|2

= ε0

4
ω0

dε(r,ω0)

dω0
|E0|2 . (20)

The series in (17) containing the B field undergoes a similar
simplification and the time-averaged monochromatic energy
density ρ̄mono can be written

ρ̄mono = ε0

4

d[ω0ε(r,ω0)]

dω0
|E0|2 + µ0

4

d[ω0µ(r,ω0)]

dω0
|H0|2 ,

(21)

which is Brillouin’s formula [6,7]. For homogeneous media the
monochromatic wave is a plane wave and it is easy to show,
by dividing the time-averaged energy flow S̄ by ρ̄, that the
electromagnetic energy of the plane wave moves through the
medium at the group velocity c/{d[ω0

√
ε(ω0)µ(ω0)]/dω0}.

It is of course expected that the energy of a monochromatic
wave in a lossless, homogeneous medium should move at
the group velocity, but here we have derived this fact for
electromagnetism in lossless media with arbitrary dispersion.

In the case of fields that are nearly monochromatic,
Brillouin’s expression (21) can serve as an approximation
of the time-averaged energy density, but only if ε(r,ω) and
µ(r,ω) do not vary significantly over the range of frequency
components in the fields [6]. As was recently pointed out in
Ref. [9], Brillouin’s formula is also exact for time-averaged
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fields whose frequency components are uncorrelated, the
important example being thermal radiation. But the exact
energy density for all fields in dispersive, lossless media is
given by (17).

As mentioned in Sec. II, the series representations (4) on
which our results are based will in practice be numerical fits
to the measured dispersion data of the material in question,
in the frequency range of interest. Clearly, a finite number of
terms in the series will be sufficient for an accurate treatment
of the dispersion, and the foregoing results hold in this case
where all series terminate. As a theory exercise, however,
we now consider an example of an infinite series expansion
of the form (4) for the permittivity, and verify that the
expression (17) for the energy density is a well-defined
quantity. We take the standard, damped harmonic oscillator
model of a homogeneous permittivity [6]. At frequencies
well below the resonant frequency ω0 of the oscillator, the
imaginary part of the relative permittivity is negligible; the
real part is

ε(ω) = 1 − 

(
ω2 − ω2

0

)
(
ω2 − ω2

0

)2 + γ 2ω2

= 1 +
∞∑

n=0

C2nω
2n, ω < ω0, (22)

C2n = 


ω2
0ω

2n

n∑
m=0

(−1)m
(

n + m

2m

)(
γ 2

ω2
0

)m

. (23)

The series expansion (22) converges for ω < ω0 and we
consider a light beam in this material with a spectrum lying
far enough below ω0 for losses to be negligible. The evolution
of the light beam in this dispersive medium can of course only
be computed numerically, but we consider an initial, input
gaussian pulse with central frequency ω0/2 and calculate its
initial energy distribution. As is clear from (17), the effect of
dispersion on the initial energy density will be seen in the
temporal profile of the pulse, rather than the spatial profile,
so we consider a fixed point r = 0, which can be viewed as a
boundary through which the pulse enters the medium. We take
units with c = 1 and choose the values ω0 = 10, 
 = 30, and
γ = 1 in the relative permittivity (22). The input electric field
of the gaussian pulse centered on ω = ω0/2 at the boundary
r = 0 is taken as

E(t)|r=0 = e−t2/4 cos(ω0t/2) (24)

and is plotted in Fig. 1. We can numerically compute the
input magnetic field B(t)|r=0 by transforming to the frequency
domain and use of the dispersion relation k = √

εω/c and
the Maxwell equation iωB̃ = ∇ × Ẽ. To avoid inessential
complications we ignore the transverse spatial profile of the
pulse and consider a one-dimensional propagation [an actual
one-dimensional propagation in a waveguide such as an optical
fiber will involve an effective dispersion different from (22),
but our considerations here are purely for demonstration
purposes]. Using E(t)|r=0 and B(t)|r=0 we compute the input
temporal profile ρ(t)|r=0 of the energy density (17) (with
µ = 1/κ = 1) and the result is shown in Fig. 1. Note that
no cycle averaging has been performed; the exact energy
density (17) is not a cycle-averaged quantity. As well as

4 0 4
t

1

1
E

4 0 4 t

1

2

3
ρ

FIG. 1. The temporal profile of the electric field (top) and energy
density (bottom) of a gaussian pulse in a medium with relative
permittivity (22) and µ = 1. Note that the energy density is not zero
at all the local minima; this feature is owing solely to the complicated
electric-field series in (17).

the quantitative change in the energy density caused by the
dispersion, there is a qualitative difference, visible in Fig. 1,
compared to the same pulse in a nondispersve medium. The
local minima of the energy density in Fig. 1 occur at nodes
of the electric (and magnetic) field, but it is clearly seen that
the energy density does not drop to zero at many of these
local minima. This is purely an effect of the dispersion; in
a nondispersive medium these local minima are zeros of the
energy density. In fact, this effect of dispersion is owing solely
to the complicated electric-field series in (17). The familiar
E · D term in (17) does not contribute to this feature, which
can only be seen using the exact result (17).

IV. MOMENTUM

Turning to the electromagnetic momentum, we note that
momentum will be conserved only if the medium is homoge-
neous, so that Noether’s theorem applies to spatial translations.
It is instructive, however, to retain ε and κ as functions of
position and thereby see how the momentum conservation
law fails to hold in the inhomogeneous case. To extract the
conservation law associated with spatial translation invariance,
we make the active infinitesimal translation φ(r,t) → φ(r +
η(r,t),t), A(r,t) → A(r + η(r,t),t) in the action (7). Noether’s
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theorem [13] shows that when the resulting change in the action
is written in the form

δS = −
∫

d4x
(
Pi ∂tη

i + σ
j

i ∇j η
i
)
, (25)

then (in homogeneous media) Pi and σ
j

i obey the conservation
law

∂tPi + ∇j σ
j

i = 0. (26)

In this way we find the electromagnetic momentum density
P and stress tensor σ

j

i . We will carry out this procedure
with ε and κ varying in space; then (26) will fail to hold
because extra terms will appear in this equation that contain
spatial derivatives of ε and κ . Again, use must be made of the
identities (10) and (11) to achieve the form (25), and the
result is

Pi = κ0

2

[
2

c2
∇iA

j ε(r,i∂t )Ej

+ 1

c2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1
t Ej ∂

2n−m
t ∇iE

j

−
∞∑

n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1
t Bj ∂

2n−m
t ∇iB

j

]
, (27)

σ
j

i = L δ
j

i + ε0∇iφ ε(r,i∂t )E
j

+ κ0∇iAkκ(r,i∂t )[∇jAk − ∇kAj ], (28)

where L in (28) is the Lagrangian density, i.e., the integrand
in the action (7). To obtain gauge-invariant expressions for
the momentum density and stress tensor, we note that the
quantities

f
j t

i := −ε0Aiε(r,i∂t )Ej =: −f
t j

i , (29)

f
k j

i := −κ0Aiκ(r,i∂t )(∇jAk − ∇kAj ), (30)

identically satisfy

∂t∇j f
j t

i + ∇j

(
∂tf

t j

i + ∇kf
k j

i

) = 0. (31)

Thus, addition of ∇j f
j t

i to Pi , and of ∂tf
t j

i + ∇kf
k j

i to σ
j

i ,
does not affect the momentum conservation law (26). After
these additions and use of Maxwell’s Eqs. (5) and (6), the
momentum density and stress tensor are gauge invariant and
are given by

Pi = ε0εijk[ε(r,i∂t )E
j ]Bk

+ ε0

2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1
t Ej ∂

2n−m
t ∇iE

j

− κ0

2

∞∑
n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1
t Bj ∂

2n−m
t ∇iB

j , (32)

σ
j

i = −ε0Eiε(r,i∂t )E
j − κ0[κ(r,i∂t )Bi]B

j

+ 1

2
δ

j

i [ε0Ekε(r,i∂t )E
k + κ0Bkκ(r,i∂t )B

k], (33)

where εijk is the (completely antisymmetric) Levi-Civita
tensor. It is straightforward to verify that, when the

fields satisfy Maxwell’s Eqs. (5) and (6), the momentum
density (32) and stress tensor (33) satisfy

∂tPi + ∇j σ
j

i = ε0

2
Ej [∇iε(r,i∂t )]E

j

− κ0

2
Bj [∇iκ(r,i∂t )]B

j , (34)

so that the momentum conservation law (26) indeed holds
for homogeneous media. The derivation of (34) in the
nondispersive case is familiar from the textbooks [14].

Note that the electromagnetic stress tensor (33) is here
defined so that it is the spatial part of the electromagnetic
energy-momentum tensor; a widespread convention for the
stress tensor differs from this by a minus sign [6]. The stress
tensor (33) is the obvious generalization to the dispersive
case of the nondispersive result; the fact that this expression
describes the stress tensor in dispersive media is deduced in
Ref. [7] from completely different considerations.

For the monochromatic wave (19), the series in the
momentum density (32) containing the E field is, after a time
averaging,

−ε0

2

∞∑
n=1

2n∑
m=1

iε2nω
2n−1
0 ∇i |E0|2. (35)

In a homogeneous medium the monochromatic wave (19)
is a plane wave with E0(r) ∝ eik·r and the last factor
in (35) vanishes. The series in (32) containing the B field also
vanishes for a monochromatic wave. Thus the time average
of the monochromatic momentum density (32) has the value
given by the first term, D × B, which is associated with
Minkowskii [1–5]. But (32) shows that Minkowski’s expres-
sion is not the momentum density of general fields in dispersive
media.

At the end of Sec. III we showed an example of the electro-
magnetic energy density for a gaussian pulse in a dispersive
medium. For the same pulse and medium we use (32) to
compute the input temporal profile of the momentum density,
where the final series in the magnetic field in (32) is absent

4 0 4
t

0.5

1

1.5

P

FIG. 2. The temporal profile of the momentum density of a
gaussian pulse in a dispersive medium. The pulse and dispersion
are the same as those described at the end of Sec. III and used for
the energy density in Fig. 1. Note that the momentum density is not
zero at local minima; this feature is owing solely to the complicated
electric-field series in (32).
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for this example. The spatial derivative of the electric field
in (32) is computed by transforming to the frequency domain
and using the dispersion relation k = √

εω/c (as discussed in
Sec. III, we assume one-dimensional propagation). The profile
for the momentum density is shown in Fig. 2 and is seen to have
the same shape as the energy density in Fig. 1. Similar to what
was found for the energy density, the fact that the momentum
density does not fall to zero at local minima is owing solely
to the complicated electric-field series in (32); this feature can
only be seen with the exact expression (32) and is absent from
the Minkowski contribution D × B in (32).

Electromagnetic angular momentum in dispersive media
can be derived in a similar manner, though this will not be done
here. The angular momentum density is not to be constructed
from the energy-momentum tensor but rather derived from
the invariance of the action (7) under active rotations (for
rotationally symmetric media).

V. CONCLUSIONS

We have derived the exact conserved energy-momentum
tensor of light propagating in lossless, dispersive, homoge-
neous media. Electromagnetic energy is also conserved when

the medium is inhomogeneous and this case has been included.
The energy flux and stress tensor in dispersive media have the
same general form as in the non-dispersive case, with the
permittivity and permeability becoming derivative operators
in the time domain. In contrast, the energy density and mo-
mentum density for arbitrary fields have no simple relation to
the nondispersive results. For time-averaged monochromatic
waves the Brillouin energy density and Minkowski momentum
density are recovered. As stressed in the Introduction, the
results do not address the question of momentum balance
in light-matter interactions, which requires an analysis of
momentum transfer between light and matter [1–5]. The
conserved energy-momentum tensor of light in lossless me-
dia is a well-defined quantity with its own experimental
significance [11]; it has been derived here in com-
plete generality within the framework of macroscopic
electromagnetism.
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