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Université de Nice Sophia Antipolis, 1361 Route des Lucioles, F-06560 Valbonne, France

L. Columbo†

Consiglio Nazionale delle Ricerche–Istituto di Fotonica e Nanotecnologie,
Dipartimento Interuniversitario di Fisica, via Amendola, 173, 70126 Bari, Italy

(Received 11 October 2010; published 26 January 2011)

We theoretically describe the spontaneous formation of stable pulses in a GaAs bulk semiconductor microring
laser. These pulses are obtained without active or passive mode locking. We show that the parameter regime
associated with their existence is limited on one side by the phase instability of the continuous-wave solution,
and on the other side by the failure of Lamb’s mode-locking criterion. Bistability between the continuous-wave
solution and the spontaneous pulses is observed.

DOI: 10.1103/PhysRevA.83.013822 PACS number(s): 42.55.Px, 42.60.Fc, 42.65.Pc

I. INTRODUCTION

Laser mode locking is a technique that generates ultrashort
pulses for applications in metrology, optical communications,
etc. [1,2]. In most cases, mode locking is obtained either
by an external periodic modulation of a physical parameter
with a frequency equal to the inverse of the resonator round
trip time (active mode locking) or with the introduction of
a saturable absorption inside the resonator (passive mode
locking). Nonetheless, for certain applications it would be
extremely interesting to deal with compact, monolithic devices
emitting pulses via spontaneous (i.e., neither active nor
passive) mode locking.

Lamb, in his pioneering contribution [3], derived an
analytical criterion for a multimode laser to operate in the
mode-locking regime. Afterwards, in the prototypical case
of two level lasers but without any reference to Lamb’s
condition, Risken and Nummedal [4], Graham and Haken [5],
and Narducci et al. [6] reported both theoretically and/or
experimentally on the spontaneous formation of steady-state
pulses in the regime of parameters where the continuous-wave
(cw) solution is linearly unstable. More recently, Lamb’s
criterion has been extended to the more appealing case of
a semiconductor bulk laser in a Fabry-Perot configuration [7]
and used to demonstrate that this system also may exhibit stable
mode-locked pulses. The authors reduce the full multimode
dynamics to that of the three modes with the highest linear
growth rate, compute the stationary solutions, and evaluate
Lamb’s condition in order to identify the parametric domain
where the three modes are locked. After a careful reading
of Ref. [7], we find it important to observe that (i) usually,
taking into account additional modes strongly modifies the
values of the stationary amplitudes of the three main modes
and consequently Lamb’s mode-locking condition; (ii) as we
will show later in this paper, the accomplishment of Lamb’s
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condition is necessary, but not sufficient, to guarantee pulse
formation because it relates the phases of the competing modes
and not their amplitudes. It turns out that in Ref. [7] the
numerically measured amplitudes of the three phase locked
modes are almost the same such that the output intensity
presents the high contrast fluctuations characteristic of a
pulse.

In this paper we report on the existence of stable high
contrast, spontaneously formed, stable pulses in GaAs bulk
semiconductor microring laser [8]. Our results have been
obtained through an exact description of the multimode
character of the dynamics. In particular, we show that the
self-pulsing regime occurs in the parameters’ subspace where
both the continuous wave is linearly phase unstable and
Lamb’s condition is satisfied. Also, bistability between the
continuous wave and the self-pulsing regimes is numerically
observed.

We describe the longitudinal dynamics of a bulk semi-
conductor microring laser in the framework of the effective
Maxwell-Bloch equations (EMBEs) [9]. The EMBEs are
able to capture the essential features of the semiconduc-
tor gain and refractive index change with frequency and
carriers density in a range of ∼10 THz around the gain
peak. Furthermore, the application of the EMBEs to the
propagation of picosecond pulses gives results in very good
agreement with those of the full set of microscopic semicon-
ductor Maxwell-Bloch equations as proved, for example, in
Refs. [9–13]. For a larger interval of frequencies (which is
not the case here), more sophisticated theoretical models of
the semiconductor dynamics, including, for example, a more
accurate description of the asymmetry of the susceptibility, are
required [14,15].

The paper is organized as follows. In Sec. II, we derive
the analytical expression of the continuous-wave solutions of
the EMBEs and we perform their linear stability analysis,
identifying the regime of parameters associated with 2,4, . . .

unstable adjacent cavity modes. In Sec. III, we first report
on accurate numerical simulations in very good agreement
with the analytical results of Sec. II. Then we describe the
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spontaneous formation of picosecond pulses, with repetition
rates of up to ∼1 THz, in the regime in which the phase
instability [16] of the continuous waves is triggered by the
first two unstable side modes. The self-starting pulses satisfy
Lamb’s condition and unavoidably lose stability when the
number of unstable modes increases. Before concluding in
Sec. V, we discuss in Sec. IV the possible consequences on
self-starting pulses of some physical effects neglected in the
EMBE model, and we mention some experimental evidences
of spontaneous pulse formation in semiconductor lasers.

II. EFFECTIVE MAXWELL-BLOCH EQUATIONS

We consider a microring semiconductor laser in which the
active medium, which is assumed to fill all of the cavity, is
represented by a bulk GaAs sample. Transverse effects will be
ignored in this paper.

We adopt the following notation for the slowly varying
amplitudes of the electric field and the medium polarizations:

E = 1
2 (E+ei(kr z−ωr t) + E−ei(−kr z−ωr t) + c.c.),

P = 1
2 (P +ei(kr z−ωr t) + P −ei(−kr z−ωr t) + c.c.),

where z denotes the longitudinal coordinate, kr = ωrnb

c
, nb

is the background refractive index, and ωr is a reference
frequency chosen arbitrarily. The effective Maxwell-Bloch
equations read [9]

∂E+

∂t
= iωr�c

2ε0ngnb

P + + iωr�cχ0(N )nb

2ng

E+ − c

ng

∂E+

∂z
, (1)

∂E−

∂t
= iωr�c

2ε0ngnb

P − + iωr�cχ0(N )nb

2ng

E− + c

ng

∂E−

∂z
, (2)

∂P +

∂t
= {−�0(N ) + i[δ0 − δ(N )]}P + − iε0εbA(N )E+, (3)

∂P −

∂t
= {−�0(N ) + i[δ0 − δ(N )]}P − − iε0εbA(N )E−, (4)

∂N

∂t
= D

∂2N

∂z2
− γ (N − Np) + i

4h̄
{ε0εb[χ0(N ) − χ0(N )]

× (|E+|2 + |E−|2) + P +E+ − P +E+

+P −E− − P −E−}, (5)

where we introduced the confinement factor �c = 0.2376,
ng is the so-called group index, εb = n2

b, δ0 represents the
difference between the reference frequency and ωa = Eg/h̄,
where Eg is the energy gap. The complex quantities χ0 and the
real ones �0, δ, and A are functions of the carrier density N .
Their detailed expressions depend on the semiconductor
material and can be either computed from the microscopic
theory or fitted from some experimental measurements [9].
In the equation for N , the parameter D represents the carrier
diffusion coefficient and γ represents the carrier nonradiative
decay time, while Np is the pump parameter. The details about
the derivation and the limitations of this model have been
extensively discussed in Refs. [9,11,12].

Let us introduce 〈χ0r〉 = 0.13 and 〈N〉 � 1024m−3 as the
characteristic values of Re(χ0) and of N . With the following

scalings,

ν = ωr�c〈χ0r〉nb

ng

, E2
r = 4h̄〈N〉γ

ε0εb

, N = 〈N〉N ′,

∂t = ν∂t ′ , E+ = ErF, Dzz = Dν2n2
g

c2γ
,

∂z = νng

c
∂z′ , E− = ErB, (6)

∂x =
√

2ωrnbngν

c2
∂x ′ , P + = ε0εbErPF , Ip = Np

〈N〉 ,

�0(N ) = ν�′
0(N ′), P − = ε0εbErPB, γ|| = γ

ν
,

δ0 = νδ′
0, δ(N ) = νδ′(N ′), A(N ) = νA′(N ′),

the equations (1)–(5) take the adimensional form

∂tF = i

〈χ0r〉PF + iχ0(N )

〈χ0r〉 F − ∂zF, (7)

∂tB = i

〈χ0r〉PB + iχ0(N )

〈χ0r〉 B + ∂zB, (8)

∂tPF = {−�0(N ) + i[δ0 − δ(N )]}PF − iA(N )F, (9)

∂tPB = {−�0(N ) + i[δ0 − δ(N )]}PB − iA(N )B, (10)

∂tN = −γ||{N − Ip − Dzz∂zzN − 2 Im[χ0(N)](|F|2 + |B|2)

− i(PF F − PF F + PBB − PBB)}, (11)

where we dropped the primes on the new variables and we
simplified the symbol of partial derivation.

Assuming a ring cavity configuration with z ∈ [0,L], the
boundary conditions are expressed as

F (0) = F (L)ρeiθ , B(L) = B(0)ρeiθ , (12)

where θ = krL and ρ is the reflection coefficient linked to
the transmission coefficient T by the relation ρ = 1 − T .
Equations (7)–(11) , together with the boundary condition (12),
form the set of equations that have been precisely numerically
integrated.

A. Continuous-wave solutions and their linear stability analysis

In order to obtain a few analytical insights, some manipula-
tions and assumptions are required. First, it is more convenient
to work with periodic boundary conditions. We introduce the
following change of variables:

F (t,z) = F(t,z)e−az, PF (t,z) = PF (t,z)e−az,
(13)

B(t,z) = B(t,z)e+az, PB(t,z) = PB(t,z)e+az,

with a = 1
L

[ln(ρ) + iθ ]. Equations (7)–(11) then become

∂tF = i

〈χ0r〉PF +
(

iχ0(N )

〈χ0r〉 + a

)
F − ∂zF , (14)

∂tB = i

〈χ0r〉PB +
(

iχ0(N )

〈χ0r〉 + a

)
B + ∂zB, (15)

∂tPF = {−�0(N ) + i[δ0 − δ(N )]}PF − iA(N )F , (16)

∂tPB = {−�0(N ) + i[δ0 − δ(N )]}PB − iA(N )B, (17)
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∂tN = −γ||{N − Ip − Dzz∂zzN − 2 Im[χ0(N )]

× (e−2 ln(ρ)z|F |2 + e+2 ln(ρ)z|B|2)

− ie−2 ln(ρ)z(PFF − PFF)

− ie+2 ln(ρ)z(PBB − PBB)}, (18)

where F and B now satisfy the relations

F(0) = F(L), B(L) = B(0).

Furthermore, in the good cavity approximation (ρ −→ 1), we
can greatly simplify the study of (14)–(18) by eliminating the
explicit z dependences in the equation for N . This approxi-
mation is expected to be very well verified, for example, in
the case of semiconductor resonators with Bragg mirrors. We
finally obtain

∂tF = i

〈χ0r〉PF +
(

iχ0(N )

〈χ0r〉 + a

)
F − ∂zF , (19)

∂tB = i

〈χ0r〉PB +
(

iχ0(N )

〈χ0r〉 + a

)
B + ∂zB, (20)

∂tPF = {−�0(N ) + i[δ0 − δ(N )]}PF − iA(N )F , (21)

∂tPB = {−�0(N ) + i[δ0 − δ(N )]}PB − iA(N )B, (22)

∂tN = −γ||{N − Ip − Dzz∂zzN − 2 Im[χ0(N)]

× (|F |2 + |B|2) − i(PFF − PFF + PBB − PBB)},
(23)

with the boundary conditions

F(0) = F(L), B(L) = B(0).

We search for continuous-wave solutions of (19)–(23) in the
form

F = F0e
i(Kz−�t), PF = PF0e

i(Kz−�t),

B = B0e
i(−Kz−�t), PB = PB0e

i(−Kz−�t), (24)

N = N0,

where F0, PF0 , B0, and PB0 are complex, while N0, �, and K

are real constants. After some trivial but long algebra,

K = 2πn

L
, n ∈ Z, I0 = |F0|2 + |B0|2 = Lρ(Ip − N0)

〈χ0r〉(1 − ρ2)
,

PF0 = −iA(N0)F0

i� + �0(N0) + i[δ(N0) − δ0]
, � = �(N0,K),

PB0 = −iA(N0)B0

i� + �0(N0) + i[δ(N0) − δ0]
, E(N0,K) = 0,

(25)

where E (N0,K) = 0 indicates a nonlinear equation in N0

parametrized by K; its long and complex expression is given
in the Appendix, together with that of �. For a given value
of K , this equation implicitly defines the stationary carrier
density value N0 from which the corresponding values of I0,
PF0 , PB0 , and � can be computed. The set of cw solutions is
infinite and is parametrized by three continuous variables and
one discrete variable. Among the three continuous variables,
two are associated with the translation invariance of the

EMBE with respect to time and space and are represented
by the phases of the forward F0 and backward B0 electric
field envelopes; the third is associated with the continuous
distribution of the energy between forward and backward
waves, with only the total intensity (I0) being fixed. Finally,
the discrete index (n) comes out from the constraint onto the
wave vector K imposed by the periodic boundary conditions.

Figure 1 concerns the comparison between the cw an-
alytical computations and the results of the numerical in-
tegration of (7)–(11). In particular, for a given value of
n and for different values of the physical parameters L,
θ , and Ip, we compare the total intensity I0 given by
(25) with the numerically computed spatially averaged in-
tensity Iav = [

∫ L

0 (|F (z)|2 + |B(z)|2)dz]/L � [
∫ L

0 (|F(z)|2 +
|B(z)|2) dz]/L. The very good quantitative agreement between
the analytical predictions and the numerical observations
justifies a posteriori the use of the good cavity approximation.
It also gives us confidence in the study of the linear stability
of the cw through the approximations (19)–(23).

We studied at this point the linear stability of the cw
solutions with respect to spatially modulated perturbations by
searching for solutions of Eqs (19)–(23) in the form

F = (F0 + δFeikzeλt )ei(Kz−�t),

PF = (PF0 + δPFeikzeλt )ei(Kz−�t),

B = (B0 + δBe−ikzeλt )ei(−Kz−�t), (26)

PB = (PB0 + δPBe−ikzeλt )ei(−Kz−�t),

N = N0 + δNeikzeλt ,

and by numerically solving the nonlinear characteristic equa-
tion for the complex eigenvalues λ(k). We show in Fig. 2
typical plots of the highest growth rate [Re(λ)] of the
perturbation versus its associated spatial Fourier component
k. The shape of the curves is a clear signature of the phase
instability regime [16]. The different curves correspond to
different values of the ratio between the forward and the
backward field amplitudes. Even if, as we already pointed out,
the energy repartition is continuous between pure traveling
cw (|F | = 0 or |B| = 0, top curve) and pure standing cw
(|F | = |B|, bottom curve), only a finite number of curves has
been plotted. In addition, we note that the standing wave is
always the most stable. Finally, in order to be able to plot
the continuous lines in Fig. 2, we consider k as a continuous
variable, but only the discrete values kj = 2πj/L, j ∈ Z are
consistent with the boundary conditions. In the following, a
cw solution will be defined as unstable when it corresponds to
unstable traveling and standing waves.

We make the following observations: (i) A modulational
instability can affect the cw solution only for values of the
cavity length L higher than Lc = 2π/kc, where kc is the critical
key vector shown in Fig. 2. (ii) By keeping fixed the other
parameters, we can increase the number of unstable modes kj

and then the complexity of the system spatiotemporal behavior,
by simply considering longer cavities [even if, according
to (25), by changing L we also slightly change the cw solution
that we are considering]. The usual experimental accessible
parameter Ip also controls the number of unstable modes,
but it also modifies some intrinsic laser characteristics such
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FIG. 1. Quantities I0 (continuous line) and Iav (square symbols) calculated, respectively, from relations (25) and by numerical integration
of Eqs (7)–(11) plotted for different values of (a) the cavity length L (n = −1, Ip = 1.44, and θ = −3.47), (b) the cavity detuning θ (Ip = 1.44
and L = 97.5), and (c) the pump Ip (n = −1, θ = −3.47, and L = 39). The other parameters are ρ = 0.99, γ‖ = 2 × 10−5, Dzz = 0.0, and
δ0 = 0.

as the central frequency or the full width at half maximum
(FWHM) of the gain curve through �0(N ) and δ(N ). For these
reasons, we decided to use L (instead of Ip) as our main control
parameter.

III. SPONTANEOUS FORMATION OF PULSES

In order to study the dynamics in the parametric regimes
in which the cw solutions are unstable, we performed a set
of simulations by numerically integrating Eqs (7)–(11) and
the boundary conditions (12) for an increasing number of
unstable side modes. Even if we mainly used an efficient
and accurate split-step scheme based on a combination of
Runge-Kutta and fast Fourier transform algorithms, we also
adopted a completely different numerical scheme, based on
finite differences, to check the most relevant results of our
simulations and to investigate the effect of more complex
boundary conditions.

We started to consider the situation in which only the two
side modes K + k±1 are unstable (Lc< L< 2Lc). Depending
on the parameters, we observed the following.

(i) Low amplitude modulations of the uniform cw solution
(we call this solution acw for almost cw). In this case, the

amplitude in the Fourier spectrum of the side modes K +
k±1 is orders of magnitude smaller than that of the spatial
frequency K .

(ii) Steady-state pulses in both the forward and the
backward field, which propagate in the cavity with constant
velocity, constant shape, and high contrast (Fig. 3). In this case
the three adjacent modes have almost the same amplitude.

(iii) Irregular oscillations in the field intensity.
As emphasized in Ref. [8], the pulse formation in case (ii)

is due to a spontaneous mode-locking phenomenon: It results
neither from a modulation of the cavity losses (or of some
other parameter) by means of an external forcing, nor from
a coupling between the active medium and a saturable
absorber inside the cavity. The spontaneously formed pulses
are characterized by a temporal resolution of ∼1 ps and a
repetition rate of up to ∼1 THz. Although the first value
is quite far from the frontier (∼10 fs) [1], the very high
pulse repetition rate makes the compact device we considered
very appealing for the realization of optical interconnections,
optical clocks, and also new devices for biological metrology,
etc. [1,2]. On the basis of this remarkable result, the Centre
National de la Recherche Scientifique (France) applied for a
patent [17].
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FIG. 2. Linear stability analysis of the cw solutions. We focus on the most unstable cw solution that corresponds to n = −1. The plot
displays the highest growth rate [Re(λ)] versus the wave number k. kc denotes the critical key vector. The different curves correspond to
different values of the ratio |F0|/|B0|. The most stable solution corresponds to the pure standing wave (|F0| = |B0|), while the most unstable
solution corresponds to the pure traveling wave (|F | = 0 or |B| = 0). By varying the cavity length, we pass from zero unstable modes (vertical
dashed lines) for L = 97.5 (a), to two and then four unstable modes, respectively, for L = 136.5 (b) and L = 195 (c). The other parameters
are θ = −3.47, Ip = 1.44, ρ = 0.99, γ‖ = 2 × 10−5, Dzz = 0.0, and δ0 = 0.

When L > 2Lc, the next two side modes K + k±2 become
linearly unstable. This leads, in all of the considered cases,
to the destabilization of the pulse solution. In particular, for
increasing values of L, we observed a transition between a
field intensity profile characterized by one or two irregular
pulses (not constant shape and velocity) (see Fig. 4) and a
more complex spatiotemporal behavior.

In the (θ,L) plane of Fig. 5, we summarize the whole set
of our numerical results. The dashed and the continuous lines
represent, respectively, the analytically computed functions
L = Lc(θ ) and L = 2Lc(θ ). Despite its not-so-high resolution,
due to the very time-consuming character of the numerical
simulations, Fig. 5 gives a reasonable sketch of the system
phase diagram.

In all of the cases reported in Fig. 5, the transitions
between the cw or acw solutions and the self-starting pulses
are undoubtedly second order. However, this is not always
the case, and subcritical transitions giving rise to bistability
between pulses and cw (or acw) solutions can be obtained for
smaller values of L and higher values of Ip [8] (see Fig. 6).

This bistable behavior, together with the compactness and
simplicity of the semiconductor device, could turn out to have
possible applications to all optical information storage and
processing.

The last part of this section concerns Lamb’s mode-locking
criterion. In the neighborhood of a cw solution, in the case
in which only the adjacent modes K + k±1 are unstable, we
obtain for the forward field

F(t,z) � [A0(t) + A+(t)ei(k1z) + A−(t)ei(k−1z)]

× ei(Kz−�t),

where A0 is the complex amplitude of the K mode, and A+,−
are those of the two adjacent modes. By writing A0,+,−(t) =
|A0,+,−(t)|eiφ0,+,−(t), it turns out that the moduli |A0,+,−| and
the relative phase difference � = φ+ + φ− − 2φ0 form an
invariant subspace for the dynamics. The equation for � is [3]

∂t� = α[β − sin(� − �0)], (27)

where α, β, and �0, depending on |A0,+,−|, are in general
functions of time. When Lamb’s condition (|β| < 1) is
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FIG. 3. L = 136.5, regular pulsing regime: (a) Temporal evolution in the (Nav,Iav) plane. Iav is defined in the text, and Nav stands for the
average along z of the carrier density. t0 is the starting point, and the arrow indicates the temporal evolution direction. The inset is a closeup
of the asymptotic regime. (b) Longitudinal profile of the forward and backward field intensities corresponding to a stable pulse. The contrast
is remarkably high. (c) Intensity of the forward field for z = L vs time. The optical pulse travels in the resonator with a constant width and a
constant velocity slightly smaller than the velocity of light in the medium (=1 in scaled units). The other parameters are θ = −3.47, Ip = 1.44,
ρ = 0.99, γ‖ = 2 × 10−5, Dzz = 0.0, and δ0 = 0.

verified, Eq. (27) admits two fixed points, one stable and one
unstable; the former corresponds to a phase-locked solution.

We numerically computed the quantity ζ = A−A+Ā0
2

|A−||A+||Ā0|2 = ei�

and plotted its real part versus time for different parametric
regimes. Note that, differently from what was done in Ref. [7],
the quantity ζ is computed from the full set of equations (7)–
(11). The results obtained for three different cases are shown in
Fig. 7. One temporal trace strongly fluctuates between −1 and
+1 and then is clearly associated with an unlocked regime.
It corresponds to an irregular oscillations regime similar to
that in Fig. 4. The other two curves, being almost constant
in time, satisfy Lamb’s criterion. The more regular one is
associated with a self-starting pulse, while the other one is
associated with an acw solution. This latter evidence reveals
that (i) the accomplishment of Lamb’s mode-locking condition
is necessary, but not sufficient, for the observation of pulses in
the intensity field profile; (ii) the parameter regime associated
with the existence of pulses is limited on one side by the phase

instability of the continuous-wave solutions, and on the other
side by the failure of Lamb’s mode-locking criterion.

IV. DISCUSSION

A. Grating effect in a bidirectional ring resonator

In the EMBE (7)–(11) description of a bidirectional res-
onator, the carrier density spatial grating due to the interference
between the two counterpropagating fields has been neglected.
This approximation is usual for semiconductors. Physically, it
can be considered valid because typical carrier diffusion rates
for conduction-band electrons wash out such a “fast” (half the
optical wavelength) grating. In any case, we want to emphasize
that the existence of two counterpropagating waves is not a
necessary condition for the observation of stable pulses. To
check this, we run some simulations in a unidirectional ring
cavity and we still observed the spontaneous formation of
pulses in the resonator.
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FIG. 4. L = 195, irregular pulsing regime: (a) Temporal evolution in the (Nav,Iav) plane. (b) Longitudinal profile of the forward and
backward field intensities after ∼106 time units (∼5 × 103 cavity round trips) showing irregular intensity oscillations. The other parameters
are θ = −3.47, Ip = 1.44, ρ = 0.99, γ‖ = 2 × 10−5, Dzz = 0.0, and δ0 = 0.

B. Effect of the use of a more realistic resonator configuration
on the pulse formation and stability

Usually the ring configuration allows for a deeper analytical
investigation than the Fabry-Perot (FP) configuration, which
is in turn more relevant from a practical point of view.
Our case does not represent an exception: We succeeded in
obtaining analytical and accurate expressions of the continuous
waves in both configurations, but we managed to perform
the linear stability analysis only in the ring configuration
and we resorted to numerical simulations for the FP case.
In particular, we found stable cw solutions, but surprisingly
we did not observe any kind of stable pulse solution. For
long enough cavities (or for high enough values of the pump),
the cw solution becomes unstable and gives rise to strong
modulation of the electric field amplitude. Throughout the
temporal evolution, it often happens that the intensity profile
approaches the pulse shape for a few round trips. However,
due to the nonvanishing reflection, several secondary pulses
are emitted from the boundaries, interact with the main pulse,
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Irregular pulsing
ACW

FIG. 5. Phase diagram of Eqs (7)–(11) in the (θ,L) plane for Ip =
1.44. The other parameters are Ip = 1.44, ρ = 0.99, γ‖ = 2 × 10−5,
Dzz = 0.0, and δ0 = 0.

and always prevent the field intensity from converging to a
stationary configuration.

Even if, in the FP configuration, we did not run so
huge a series of simulations as in the ring resonator case,
and consequently our numerical investigations may not be
considered exhaustive, the results we obtained somehow
suggest an unwanted destabilization mechanism associated
with the existence of back reflections. Because the boundary
conditions (12) are only an idealization, one may wonder if
the pulse in the ring configuration will persist in the presence
of a small back reflection such as, for example, at the interface
between the nonlinear active medium and the dielectric region
that fills the rest of the cavity. To answer such a question, we
numerically investigated the geometry sketched in Fig. 8. The
region with length L1 corresponds to the semiconductor. In
this nonlinear region, the density of carriers, the polarization,
and the electric fields obey Eqs (7)–(11). In the linear dielectric
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FIG. 6. Normalized amplitudes of the side modes K + k±1 vs
L. Ip = 2.06, θ = −3.47, ρ = 0.99, γ‖ = 2 × 10−5, Dzz = 1.2, and
δ0 = 0. The upper branch corresponds to the pulse solution, while the
lower branch corresponds to the cw (or acw) solution.
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region (with length L2), the electric field obeys

n2
2
∂2E2

∂t2
= −σ2

ε0

∂E2

∂t
+ c2 ∂2E2

∂z2
, (28)

where n2 is the real refractive index and σ2 stands for linear
losses. Around the reference frequency ωr , we may write E2

in the form

E2 = 1
2

(
E+

2 ei(k2z−ωr t) + E−
2 ei(−k2z−ωr t)

) + c.c., (29)

where k2 = n2ωr/c. In the slowly varying envelope approxi-
mation, the amplitudes E±

2 obey

∂E+
2

∂t
= −σ2

2ε0n
2
2

E+
2 − c

n2

∂E+
2

∂z
,

∂E−
2

∂t
= −σ2

2ε0n
2
2

E−
2 + c

n2

∂E−
2

∂z
.

z

0 L1

L2

FIG. 8. Schematic description of a ring cavity partially filled
by the active medium. The semiconductor is placed in the region
with length L1, while L2 corresponds to a linear dielectric with no
dispersion and with a n2 refraction index.

With the scalings (6), we are then left with

∂F2

∂t
= − µ

n2
2

F2 − ng

n2

∂F2

∂z
, (30)

(31)
∂B2

∂t
= − µ

n2
2

B2 + ng

n2

∂B2

∂z
,

with µ= σ2
2ε0ν

.
At z = 0 and z = L1, the continuity of the electric field

(E) and its first-order spatial derivative ( ∂E
∂z

) must be imposed.
In computing ( ∂E

∂z
), we neglected the spatial variation of the

amplitudes in front of that of the electric-field phase, in such a
way that the boundary conditions can be expressed, as usual,
in terms of reflection and transmission coefficients. These
complex coefficients depend on kr and k2 and therefore on
ωr , whose choice is arbitrary. This may lead to the following
systematic mistake: Let us assume that, in order to start
the simulation, we use ωr = ωa to compute the numerical
values of the coefficients in Eqs (7)–(11) and the reflection
and transmission coefficients in z = 0 and z = L1. Then if
the electric field frequencies ωs , which are selected by the
system during its evolution, are not equal to ωa , there is an
error associated with the computation of the reflection and
transmission coefficients. This error depends on the difference
ωs − ωr and is expected to be small because ωs−ωr

ωr
	 1. We

note, also, that there exist some numerical techniques to deal
with this problem in an exact way, but they are unfortunately
associated with a very high computational load. Here, we tried
to minimize the error by choosing the transparency frequency
as the reference frequency. We checked that the results of
the simulations are consistent with this assumption. Figure 9
summarizes our main numerical results. The simulation
running times are expressed in rescaled units and correspond to
�103 round trips. When the amplitude of the forward electric
wave at z = L1 reaches a maximum or a minimum, the values
of these extrema together with their time of occurrence are
recorded. In the figure we plot the values of these extrema
versus time. The curves appear to be continuous because of
the long running time of the observation but are in fact discrete.
We also observed a well-defined time periodicity (relative
fluctuations are <0.1%) associated with the time needed for the
pulse to perform a round trip. Figure 9(b), where the maximum
and minimum converge to the same value, corresponds to the
cw regime, while Figs. 9(a) and 9(c), showing a steady high
contrast between maximum and minimum, are associated with
the pulsing regime. Several remarks are in order:

(i) The behavior of the backward electric field is strictly
analogous to that of the forward one. In the case of the cw
regime, the spatial average amplitudes are the same, and in
the pulsing regime, the forward and backward pulses have the
same amplitude and width.

(ii) The pulse is self-starting.
(iii) Small white noise fluctuations around vanishing polar-

ization and electric fields have been used as initial conditions.
For the carrier density, we start with small fluctuations
around the transparency value. Also, for each given regime
of parameters, the time evolution was investigated with five
distinct initial conditions. In this way we checked that the
asymptotic regimes (cw solution or self-pulsing) do not depend
on the initial conditions.
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FIG. 9. (Color online) Numerical simulation of Eqs (7)–(11)
and (30) with the geometrical configuration described in Fig. 8. The
plots display the successive local maximum (upper red curve) and
minimum (lower blue curve) of the amplitude of the forward electric
field at z = L1 versus time (see description in the text). The curves
are discontinuous but may look like continuos when the value of the
extremum slowly changes with time. Fig. 9(a) and Fig. 9(c) are clearly
associated with the pulsing regime while Fig. 9(b) corresponds to the
cw regime. Parametric regime: nb = 3.6, ng = 4.6, µ = 0.05, Ip =
1.6, Dzz = 1.2, γ‖ = 2 × 10−5, σ = 0, δ0 = 0.35247, L1 = 102.3,
and n2 = 3.0. L2 is, respectively, equal to 15.548 (a) 15.563 (b) and
15.579 (c).

(iv) The only difference among the three plots in Fig. 9 is
the value L2 used in the simulation. Even if we are not able to
give an exact explication of the huge sensitivity to the length
L2, we can mention that such a sensitivity can be proved in
the quite similar case of the propagation of a gap soliton in a
nonlinear periodic medium.

C. Experimental evidences of self-pulsing in semiconductor
lasers and their theoretical interpretations

From an experimental point of view, the existence of
self-starting pulses in semiconductor lasers has been re-
ported in Refs. [7,18–20]. Apart, perhaps, from the case
already discussed of Ref. [7], there is not, so far, a
robust theoretical interpretation of these results. In Ref.
[18] the authors give an interpretation of their results in
terms of Kerr-Lens self-mode locking and part of their
motivation is that “there is no evidence of any alter-
native self-mode locking mechanism”. In Refs. [19,20],
the authors simply suggest the four-wave mixing in the gain
section, whose efficiency is enhanced in discrete level systems,
as the major phenomenon leading to mode locking.

Although there are some differences in the type of semi-
conductor active medium (bulk instead of quantum dots,
quantum dashes, or quantum cascade) as well as in the

geometrical configurations (ring instead of FP), we think that
the understanding of the previous experimental observations
might benefit from our theoretical results. At least now, another
self-mode-locking mechanism is conceivable.

V. CONCLUSION

We identified the regime of existence of steady-state
self-starting pulses in a semiconductor microring laser. To
address this issue, we studied the longitudinal multimode
system dynamics in the theoretical framework of the effective
semiconductor Maxwell-Bloch equations. In the regime of
parameters in which only two resonant side modes drive the
continuous-wave solution phase instability, we observed the
spontaneous formation of stable picosecond pulses traveling
in the resonator with constant speed, constant shape, and
a repetition rate of up to ∼1 THz. We verified that these
solutions satisfy Lamb’s mode-locking criterion, exist in a
sizable interval of the control parameter represented in our case
by the cavity length, and can be bistable with the continuous
waves. When the number of phase unstable modes increases,
the pulse solutions lose their stability and the system evolves
toward a regime of irregular pulsations.

Finally, we think that our results could help to interpret
some recent experimental observations of self-mode locking
in semiconductor lasers and to stimulate new experimental
investigations of this phenomenon.
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APPENDIX

We report the explicit expressions of the frequency � and
of the nonlinear equation that defines the stationary values of
the carrier density N0 in (25):

� = �(N0,K)

= {�0(N0)[KL〈χ0r〉 + 〈χ0r〉θ + Lχ0r (N0)]

+[〈χ0r〉ln(ρ) − Lχ0i(N0)][δ(N0) − δ0]}
/L〈χ0r〉�0(N0) − 〈χ0r〉 ln(ρ) + Lχ0i(N0),

where χ0r and χ0i denote, respectively, the real and the
imaginary part of χ ,

E (N0,K) = 0 ⇐⇒
(c32K

2 + c31K + c30)L3 + (c22K
2 + c21K + c20)L2

+(c11K + c10)L + c00 = 0,

with

c32 = 〈χ0r〉2�0(N0)χ0i(N0),

c31 = −2 〈χ0r〉�0(N0)χ0i(N0)[〈χ0r〉 δ0 − 〈χ0r〉 δ(N0) − χ0r (N0)],
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c30 = 〈χ0r〉2δ(N0)2χ0i(N0)�0(N0) + χ0i(N0)3�0(N0) + 〈χ0r〉2δ0
2χ0i(N0)�0(N0) − A(N0)〈χ0r〉2�0(N0)2

− 2 〈χ0r〉2δ(N0)χ0i(N0)δ0 �0(N0) − 2 χ0r (N0)χ0i(N0)δ0 〈χ0r〉�0(N0) + 2 χ0i(N0)2�0(N0)2〈χ0r〉
− 2 A(N0)〈χ0r〉�0(N0)χ0i(N0) − A(N0)χ0i(N0)2 + 2 χ0r (N0)χ0i(N0)δ(N0)〈χ0r〉�0(N0)

+χ0r (N0)2�0(N0)χ0i(N0) + χ0i(N0)�0(N0)3〈χ0r〉2,

c22 = −〈χ0r〉3�0(N0) ln(ρ),

c21 = 2 〈χ0r〉2�0(N0)[−χ0r (N0) ln(ρ) + 〈χ0r〉 ln(ρ)δ0 − 〈χ0r〉 ln(ρ)δ(N0) + θ χ0i(N0)],

c20 = −〈χ0r〉[4 〈χ0r〉 ln(ρ)�0(N0)2χ0i(N0) + 〈χ0r〉2δ0
2ln(ρ)�0(N0) + 2 〈χ0r〉 θ �0(N0)χ0i(N0)δ0

+〈χ0r〉2δ(N0)2ln(ρ)�0(N0) + 2 χ0r (N0)〈χ0r〉 ln(ρ)δ(N0)�0(N0) − 2 〈χ0r〉2δ(N0)ln(ρ)δ0 �0(N0)

− 2 χ0r (N0)θ �0(N0)χ0i(N0) + 3 ln(ρ)�0(N0)χ0i(N0)2 − 2 A(N0)〈χ0r〉�0(N0)ln(ρ) + χ0r (N0)2�0(N0)ln(ρ)

− 2χ0r (N0)〈χ0r〉 ln(ρ)δ0 �0(N0) − 2 〈χ0r〉 θ δ(N0)�0(N0)χ0i(N0) + 〈χ0r〉2ln(ρ)�0(N0)3 − 2 A(N0)ln(ρ)χ0i(N0)],

c11 = −2 〈χ0r〉3θ �0(N0)ln(ρ),

c10 = 〈χ0r〉2[2 〈χ0r〉 ln(ρ)2�0(N0)2 + 2 〈χ0r〉 θ �0(N0)ln(ρ)δ0 − A(N0)ln(ρ)2

+ 3 ln(ρ)2�0(N0)χ0i(N0) + θ2�0(N0)χ0i(N0) − 2 〈χ0r〉 θ δ(N0)�0(N0)ln(ρ)],

c00 = −〈χ0r〉3�0(N0)ln(ρ)[ln(ρ)2 + θ2].
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