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Simulation of noise-assisted transport via optical cavity networks
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Recently, the presence of noise has been found to play a key role in assisting the transport of energy and
information in complex quantum networks and even in biomolecular systems. Here we propose an experimentally
realizable optical network scheme for the demonstration of the basic mechanisms underlying noise-assisted
transport. The proposed system consists of a network of coupled quantum-optical cavities, injected with a single
photon, whose transmission efficiency can be measured. Introducing dephasing in the photon path, this system
exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available
technology.
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I. INTRODUCTION

The presence of noise in quantum transmission networks is
generally considered to be deleterious for the efficient transfer
of energy or classical or quantum information encoded in
quantum states. Quantum networks, used for the transmission,
are unavoidably interacting with an external noisy environ-
ment, and this interaction significantly affects the quantum
coherence of the system evolution. It is indeed commonly
accepted that the presence of decoherence [1] is responsible for
the undesired and uncontrolled transfer of information from the
system to the environment, which in turn reduces the coherence
in quantum systems. However, recently noise has been found
to play a positive role in creating quantum coherence and
entanglement [2,3]. Motivated by fascinating experiments
showing the presence of quantum beating in photosynthetic
systems [4–6], subsequent theoretical work pointed to the idea
that the remarkable efficiency of the excitation energy transfer
in light-harvesting complexes during photosynthesis benefits
from the presence of environmental noise [7,8]. Indeed, the
intricate interplay between dephasing and quantum coherence
as well as the entanglement behavior during the noise-assisted
transport dynamics have been elucidated in more detail in
Refs. [9–12]. Perhaps even more surprisingly, the dephasing
was recently found to assist the transfer of classical and
quantum information in communication complex quantum
networks [13].

Recently, quantum optical systems have been exploited as
a promising platform to simulate quantum processes [14–16].
For example, several implementations of systems simulating
quantum random walks have been reported with linear optical
resonators [17,18], linear optical elements [19,20], fiber
networks [21], and optical waveguides [22–25]. Motivated
by these results, here we propose a quantum optical scheme
to investigate the noise-assisted excitation transfer process
through a set of coupled optical cavities. We discuss a four-site
optical network and derive the set of relevant parameters that
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rule the time evolution of the system. A detailed numerical
simulation of this dynamics, when one cavity is injected with
a single photon, is performed employing realistic experimental
parameters, showing that the presence of a suitable dephasing
process in each site of the network allows for a characteristic
increase of the excitation transfer efficiency. Furthermore, we
consider aspects such as phase stabilization of the cavities
and the implementation of dephasing, which are necessary to
observe a clear enhancement of the photon transfer rate from
one cavity to an external detector, mimicking the so-called
reaction center of the light-harvesting complexes. Finally,
we investigate how entanglement degrades during the time
evolution of the optical network.

The paper is organized as follows: In Sec. II we define
the model that describes the dynamics of the four-site optical
network analyzed in this paper, including the master equation
for the two relevant noise processes. Then in Sec. III we
perform a detailed derivation of a realistic set of parameters
for the system. In Sec. IV we report the results of a numerical
simulation of the dynamics of the network. Finally, the
conclusions and final remarks are presented in Sec. V.

II. MODEL OF THE NETWORK

In this section we describe in detail the model underlying
the dynamics of the proposed network of optical cavities. A
schematic view of this system in relation to the light-harvesting
complexes is shown in Fig. 1. Starting from the Hamiltonian
describing noninteracting cavities, one has

Ĥcav =
∑

i

h̄ωâ
†
i âi , (1)

where âi and â
†
i are the usual bosonic field operators, which

annihilate and create a photon in cavity i, and ω is the
resonance frequency, which we assume for simplicity to be
equal for all cavities. The transfer of photons between the
optical cavities is described by the following Hamiltonian
term:

Ĥint =
∑
(i,j )

h̄gij (â†
i âj + âi â

†
j ), (2)
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FIG. 1. (Color online) Analogy between a network of coupled
optical cavities and a physical network where the excitation is carried
by electrons, such as light-harvesting complexes. (a) The single
site of the network is analogous to a single optical cavity. (b) The
electronic excitation is represented by the presence of a single photon
in the corresponding optical cavity. (c) The transfer of the excitation
between two interacting sites is analogous to the transfer of the
single-photon between two adjacent coupled cavities.

where the sum on (i,j ) extends over all the connected cavities,
and gij are the coupling constants. Moreover, we assume that
this dynamics is subject simultaneously to two distinct noise
processes acting on each optical cavity i:

(1) a dissipation process that leads to photon loss with rate
�i , described by the following Lindblad superoperator:

Ldiss(ρ̂) =
∑

i

�i(−{â†
i âi ,ρ̂} + 2âi ρ̂â

†
i ), (3)

(2) a pure dephasing process that randomizes the photon
phase with rate γi given by a Lindbladian term which has the
form

Ldeph(ρ̂) =
∑

i

γi(−{â†
i âi â

†
i âi ,ρ̂} + 2â

†
i âi ρ̂â

†
i âi). (4)

In addition, the total transfer of the single photon is
measured in terms of photons detected on the right-hand side
output of cavity 2, which represents the so-called sink or
reaction center of the biological systems (here, a single-photon
detector), described by the Lindblad operator

Ldet(ρ) = �det[2â
†
detâ2ρâ

†
2âdet − {â†

2âdetâ
†
detâ2,ρ}], (5)

where â
†
det describes the effective photon creation operator in

the detector and �det is the rate at which the photon irreversibly
gets the detector on the right side of optical cavity 2; see
Figs. 2, 3, and 4. Hence, the photon transfer efficiency is
measured by the quantity

psink(t) = 2�det

∫ t

0
Tr[ρ(t ′)â†

2â2] dt ′. (6)

In the following numerical simulation, we will assume that
there is a single photon initially in cavity 1. Notice that, since

FIG. 2. (Color online) Quantum simulation of noise-assisted
excitation transfer through a network of coupled optical cavities.
(a) Simplified scheme of a four-site fully connected network. The
excitation is injected at site 1, and exits from the network by coupling
of site 2 with the output sink. (b) Equivalent network of four coupled
cavities. The excitation is given by a single-photon pulse injected into
cavity 1. The right output mode of cavity 2 is the output sink channel
for the excitation.

our scheme does not involve any nonlinear process, a single-
photon experiment repeated many times exhibits the same
statistics obtained with an injected coherent state [26].

III. PARAMETERS OF THE NETWORK

In this section we discuss the experimental details of the
optical cavity network setup sketched in Fig. 2, in order
to simulate the mechanisms underlying the noise-assisted
transport phenomena. The excitation of the network, i.e., a
single photon at wavelength λ = 800 nm, is generated through
a heralded single-photon source, based on the spontaneous
parametric down-conversion process. We consider the case of
a network of dk = 1 cm long cavities. The distance between
each cavity and the central beam-splitter (BS), chosen with
transmittivity η = 0.5, is taken to be lk = 20 cm. More
specifically, cavity 1 has mirror reflectivities Rin

1 = 0.9 (for
the internal mirror pointing toward the BS) and Rout

1 = 0.99
(for the external mirror), cavity 2 has Rin

2 = Rout
2 = 0.9, while

cavities 3 and 4 have Rin
j = 0.9 and Rout

j = 0.999. The loss
parameter of each cavity j is given by

ξj =
√

Rin
j Rout

j e−2dj αj , (7)

where αj = 0.35 m−1, while the average number of round
trips for a photon in the cavity is given by mj = (1 − ξj )−1.
The parameters adopted for the numerical simulation are, re-
spectively, the set of coupling coefficients between the cavities
of the network, the dissipation rate, and the transmission rate
from site 2 to the output mode kdet (i.e., the detector).

A. Dissipation rate

The dissipation rate in each cavity j can be evaluated by
considering the amount of losses in mj round trips, i.e., the
average flight time of the photon in the cavity. Such a parameter
can be evaluated according to the following expression:

�j ∼ D

mj tj

mj∑
i=0

ξ 2i
j = D

1 − ξ
2(mj +1)
j(

1 − ξ 2
j

)
mj tj

, (8)
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FIG. 3. (Color online) Scheme of all coupling, dissipation, and
dephasing processes of the network. All sites are coupled with the
network with gkj couplings, and undergo both a dephasing process,
with rate γ , and internal losses, with rate �j . Site 1: external losses
are reduced with a feedback system. Site 2: external coupling with
the sink. Sites 3 and 4: external losses are negligible with respect to
internal losses (�j

out � �j ).

where ξ 2
j represents the fraction of optical power which

remains confined in the cavity after each round trip, tj is
the photon flight time in one round trip, mj is the average
number of round trips for the photon in cavity j , and D is the
dissipation in one round trip only due to diffraction or coupling
with other optical modes, i.e., D = 1 − e−2αj dj . Equation (8)
evaluates the fraction of optical power lost in mj round trips,
divided by the average flight time tcav = mj tj = 2dmj/c, with
c being the speed of light. In our setup, one has �j � 50 MHz
and D ∼ 0.007. We consider the losses between the cavities
and the beam-splitter to be negligible due to the adoption
of antireflection coating optics. Notice that the average flight
time of the photon in the cavity, i.e., tcav, is of the order of
nanoseconds and defines the time scale of the process. Hence,
the corresponding linewidth of the cavity alone, evaluated from
the spectral properties of the intracavity field, is ∼2 GHz. The
linewidth of the injected photon must be much smaller than
this value, hence a narrow-band parametric down-conversion
source, such as one obtained through periodically poled
nonlinear crystals, is necessary for an efficient cavity-photon
coupling. Let us note that the presence of external mirrors
with reflectivities Rout

1,2,4 < 1 introduces additive channels �out

for losing the photon from the network in spatial modes
kout

1,2,4—see Fig. 3. The dissipation rate due to such a process is
given by the fraction of optical power lost through the external
mirror in time tcav = mj tj , and can be evaluated as

�
j
out ∼

(
1 − Rout

j

)
mj tj

mj∑
i=0

(
Rout

j

)i = 1 − (
Rout

j

)mj +1

mj tj
. (9)

For cavities 3 and 4, such an additive dissipation channel is
of the order of �

3,4
out ∼ 10 MHz, thus being negligible with

respect to the dissipation due to intracavity losses. For cavity 1,
we can introduce a feedback system to discard those events
which correspond to losing the photon through this channel.
This system is shown in Fig. 4 and exploits the polarization
state of the photon by inserting a Faraday rotator (FR). More
specifically, the photon with |H 〉 polarization state, after
the polarization beam-splitter (PBS), is rotated by the λ/2
waveplate and by the Faraday rotator in the polarization state
|V 〉. When the photon exits the network from the external
mirror of site 1, propagation through the λ/2 waveplate and

FIG. 4. (Color online) Experimental setup for the four-cavities
optical network. The single photon in the input mode kin is injected
into the network at site 1. The successful transfer of the excitation in
the network is given by the detection of the single photon on mode
kdet. The coupling coefficients between cavities can be changed by
varying the transmittivity and the reflectivity of the beam-splitter
(BS). The feedback system to reduce the dissipation rate �1

out from
site 1 exploits the polarization degree of freedom of the photon as
described in the text. Inset (a): Sketch of an active phase stabilization
apparatus. An auxiliary laser is injected and extracted into the network
by two dichroic mirrors (DM). The measurement on the auxiliary laser
is used to drive a piezoelectric system which stabilizes the cavity
length. Inset (b): Introduction of dephasing rate by modulation of the
index of refraction through an electro-optical crystal.

the Faraday rotator in the opposite direction maintains its
polarization state |V 〉 unaltered. Finally, the photon is reflected
by the polarization beam-splitter and then detected. This allows
us to discard those events when the detector clicks, thus
reducing the effective dissipation term �1

out. We notice that
recent papers have reported the realization of high detection
efficiency (∼75%) silicon avalanche photodiodes and super-
conducting transition edge detectors, with the perspective of
reaching a value of ηdet ∼ 90% [27,28]. The adoption of these
devices would reduce the effective dissipation �1

out due to the
external mirror by a factor of 0.2, and hence in our case from
∼100 MHz without post-selection to �1

out ∼ 20 MHz.

B. Coupling rate

The cross-coupling coefficients have been evaluated fol-
lowing the theory of Marcuse [29,30]. The time evolution of
the intracavity field amplitude is described by the following
set of first-order differential equations:

dAν
j

dt
= i

(

ν

j − 

)
Aν

j + i
∑

σ

sνσ
j Aσ

j + i
∑
k �=j

∑
σ

gνσ
jk Aσ

k ,

(10)

where j is the cavity index, (ν,σ ) are the mode indices, sνσ
j

and gνσ
kj are respectively the self-coupling and cross-coupling

coefficients, 
ν
j is the optical frequency corresponding to the

eigenvalue of the propagation equation for the optical mode ν

in cavity j , 
 is a reference frequency corresponding to
the center of the spectrum for 
ν

j , and Aν
j are the field

amplitudes. In our case, we consider only a single mode of
the electromagnetic field, and the mode indexes (ν,σ ) can be
neglected. An approximate expression for the evaluation of the
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cross-coupling coefficients is derived in Ref. [29] and reduces
here to the expression

gkj � 1

2i

(
vkvj

dkdj

)1/2

tkj , (11)

where vj are the intracavity group velocities, dj are the
cavity lengths, and tkj is the amplitude transmission coefficient
between the fields Aj and Ak in the two sites. The amplitude
transmission coefficient can be directly evaluated by analyzing
the fields in the classical limit. The calculation of this
parameter can be divided into three intermediate steps. In the
following we specify these calculations for our setup in Fig. 2.

1. Output field from cavity k. As a first step, we evaluate
the ratio between the intracavity field and the field at the output
of cavity k, given by

A
(k)
out

A
(k)
cav

=
√(

1 − Rin
k

)
(e−iδφk e−αkdk ), (12)

where δφk is the phase term due to propagation inside
cavity k.

2. Intercavity field at the input face of cavity j . The field
at the input face of cavity j can be evaluated as the coherent
superposition of all possible paths of the output field from
site k, i.e., A

(k)
out. Such a quantity strongly depends on

interference effects between all possible paths that the photons
can take in the network. We restrict our treatment only
to the first-order path. The ratio between the intercavity field
and the field at the output of cavity k, i.e., Ikj = A

(k→j )
inter /A

(k)
out,

has the following form:

Ikj = inr
1√
2
ei(φk+φj )Kkj , (13)

where nr is the number of times the photon has been reflected
by the beam-splitter, φk = 2π lk

c
νL is the phase shift due to

spatial propagation between the cavity k and the BS, νL being
the field optical frequency and lk being the distance between
the cavity k and the central BS; the form of Kkj is different
depending on whether the cavities k and j are directly linked
by the beam-splitter or not, i.e.,

Kkj =
{

1 for direct link,
1√
2

(√
Rin

q ei2φq + √
Rin

p ei2φp
)

for indirect link,

(14)

where p and q are cavity indices satisfying k �= j �= p �= q.
In order to generalize the expressions of Ikj and Kkj to the
case of a BS with transmittivity η �= 0.5, each factor 1√

2
has

to be replaced with
√

η or
√

1 − η depending on whether the
photon has been reflected or transmitted by the beam-splitter.

3. Intracavity field in cavity j . The intracavity field in site
j is related to the intranetwork field at its input face according
to

E
(j )
cav

E
(k→j )
intra

=
√(

1 − Rin
j

)
1 − mj

, (15)

hence the coupling coefficients can be finally written as

gkj = Ikj

2i

(
vkvj

dkdj

)1/2

√(
1 − Rin

k

)(
1 − Rin

j

)
e−iδφk

1 − mj

e−αkdk .

(16)

Following these calculations, the absolute values of the
coupling rates are found to be g12 = 4.3 GHz, g13 = 5.7 GHz,
g14 = 7.6 GHz, g23 = 6.1 GHz, g24 = 4.5 GHz and g34 = 5.9
GHz. To take into account the fluctuations in the coupling
coefficients (induced by the phase fluctuations) between
experiments, we analyze also the case in which there is a
static disorder of ∼20% in the coupling rates.

C. Transmission rate

Finally, the transmission rate from cavity 2 to the output
mode kout is evaluated as above for �j , by considering the
amount of field which is transmitted through the mirror Rout

2 in
the output mode in m2 round trips. In other words, the rate at
which the photon is transferred to the detector can be evaluated
with the same expression for the external mirror dissipation
rate of Eq. (9). The numerical evaluation of this parameter
gives

�det = 1 − (
Rout

2

)m2+1

m22d/c
∼ 1 GHz. (17)

D. Experimental tasks

The two main challenges for the proposed experimental
realization, shown in Fig. 4, regard the phase stability of
the cavities and the implementation of a suitable device to
introduce the necessary amount of dephasing rate. An accurate
control on the cavity length is necessary in order to maintain the
cavities at resonance with the photon wavelength and to keep
the coupling rates constant. This phase stabilization can be
achieved by an active feedback system working on an auxiliary
laser superimposed with the single photon by means of a
dichroic mirror, and then measured after its passage through
the cavity [Fig. 4, inset (a)]. The parameters of this network
correspond to a low-finesse optical cavity. Hence, a length
stability of the order of few nanometers is necessary, which is
a requirement fully achievable with the current technology.

The dephasing rate inside the cavity can be introduced
by acting on the beam path, through the propagation factor
eikz. This can be done by modifying the propagation length
z or by varying the wave vector k, for instance by acting on
the index of refraction inside cavity n. The phase modulation
can then be achieved by different methods, depending on the
desired modulation rate. For a dephasing rate of the order of
1 GHz, such as the one used in the numerical simulation in
the following, an electro-optic or acousto-optic modulator can
be inserted in the cavity to shift the frequency of light [Fig. 4,
inset (b)].

IV. RESULTS OF THE NUMERICAL SIMULATION

In this section we investigate the dynamics of the optical
cavity network by using our model with the coupling rates
gij as estimated earlier, a dissipation rate set at �j = 70 MHz
for all the sites by taking into account the different dissipative
processes, and a transfer rate to the detector of �det = 1 GHz.
In particular, in Fig. 5 we show the cavity photonic population
as a function of time in both cases of local dephasing (with
rate 1 GHz) and no dephasing. The introduction of dephasing
reduces the destructive interference between all the possible
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FIG. 5. (Color online) Site 1 population behavior and transfer
efficiency vs time (in ns) for the optical cavity network for the
noiseless (continuous line) and noisy (dashed line) case. The photon
transmission is significantly enhanced by the presence of dephasing.
The error bars are calculated considering a 20% static disorder
(103 samples).

photon pathways and increases remarkably the overall transfer
efficiency from about 40% to more than 70%. In the absence
of dephasing, the photon is trapped in some superposition
(dark) states which are not coupled to site 2, and this explains
the lower transfer efficiency—see Ref. [10] for more details.
Moreover, we consider also the case in which the coupling rates
suffer a static disorder of 20% and plot the transfer efficiency as
a function of the dephasing rate in Fig. 6. These results further
support the prediction that noise-assisted transport could be
experimentally observed by the present optical setup.

Finally, to quantify the entanglement dynamics, we study
logarithmic negativity [31], i.e., E(A|B) = log2 ‖ρ�A‖1, mea-
suring the entanglement across a bipartition A|B of a com-
posite system, where �A is the partial transpose operation of
the density operator ρ with respect to the subsystem A and
‖·‖1 denotes the trace norm. In Refs. [10,11], in the context
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FIG. 6. Dependence of psink at a fixed time t = 20 ns as a
function of the dephasing rate γ . These results show the remarkable
robustness of this process, supporting the possibility that it could be
experimentally observed.
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FIG. 7. (Color online) Degradation of entanglement between two
photons (initially in a maximally entangled state), in which only one
photon is sent to the network through cavity 1. It is measured in terms
of log-negativity between the ancilla photon and the photon leaving
cavity 2 (no detector).

of light-harvesting systems, it was found that the increase in
the transfer efficiency is not strictly related to the presence of
entanglement between the sites of the network, and a similar
behavior has been found here. However, to further explore the
capabilities of this optical cavity network as a conduit for not
just energy (or classical information) but quantum information,
we show in Fig. 7 how another form of entanglement (in this
context more relevant, as it is measureable more directly)
degrades through it. To that end, we introduce an ancillary
photon, which initially shares a maximally entangled state
with the single photon injected into optical cavity 1, i.e.,
in the EPR state 1/

√
2(|0〉anc|0〉1 + |1〉anc|1〉1), with |0〉 and

|1〉 representing, respectively, the absence and presence of
a photon [32,33]. As the system evolves, the entanglement
between the ancillary photon and the photon leaving cavity
2 oscillates in time and almost vanishes in the presence of
dephasing.

V. CONCLUSIONS AND OUTLOOK

We proposed a quantum optical network based on a set
of coupled cavities, in order to investigate the effects of
noise in excitation transfer. A detailed numerical simulation
for experimentally realistic values shows the presence of a
substantial enhancement in the photon transport efficiency
when dephasing noise is introduced in the cavity. Finally,
we note that a similar scheme can also be implemented
by using a network of atoms in suitable ion traps [34].
The results reported here may open interesting perspectives
for a deeper investigation of the fundamental mechanisms
that underly the very highly efficient excitation transfer in
light-harvesting complexes and for possible applications in
solar-cell technology. Finally, this type of experiment can also
trigger significant activity in two different areas, namely the
modeling of complex environments via controlled interactions
and the development of noise-assisted protocols for quantum
communication [13].
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