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The conventional orientation-averaging procedure developed in the framework of the superposition T-matrix
approach is generalized to include the case of illumination by a Gaussian beam (GB). The resulting computer
code is parallelized and used to perform extensive numerically exact calculations of electromagnetic scattering
by volumes of discrete random medium consisting of monodisperse spherical particles. The size parameters
of the scattering volumes are 40, 50, and 60, while their packing density is fixed at 5%. We demonstrate
that all scattering patterns observed in the far-field zone of a random multisphere target and their evolution
with decreasing width of the incident GB can be interpreted in terms of idealized theoretical concepts such as
forward-scattering interference, coherent backscattering (CB), and diffuse multiple scattering. It is shown that
the increasing violation of electromagnetic reciprocity with decreasing GB width suppresses and eventually
eradicates all observable manifestations of CB. This result supplements the previous demonstration of the
effects of broken reciprocity in the case of magneto-optically active particles subjected to an external magnetic
field.
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I. BACKGROUND AND MOTIVATION

In a wide range of scientific and engineering fields,
the advancement of modern computational machinery and
techniques has enabled the direct simulation of physical
processes that, previously, could be predicted only by approx-
imate or phenomenological methods. By direct simulation,
we refer to a computation that accurately represents, at the
smallest length and time scales that describe the system,
the fundamental physical principles that govern the process.
Some examples of such computations are the transient and
three-dimensional numerical solution of the Navier-Stokes
equations to a spatial resolution smaller than the Kolmogorov
length scale (i.e., direct simulation of turbulent flows), the
modeling of rarefied gas flows by Monte Carlo molecular
dynamics methods, and the prediction of electromagnetic
(EM) energy transport in discretely inhomogeneous media by
a microlevel solution to the time-harmonic Maxwell equations.
In all cases, the direct simulation can be viewed as a numerical
experiment, in that the macroscopic-level properties generated
from the simulations—which are typically obtained by time
and/or spatial averaging over the microscopic-level calculation
variables—can be viewed as an exact representation of the
natural event.

The purpose of this paper is to present direct simulation
results pertaining to the last example mentioned above: the
transport of EM waves in particulate media. Specifically,
we use the numerically exact superposition T-matrix method
(STMM) to examine the scattering behavior of a macroscopic
volume of discrete random medium. Our primary motivation
in performing these calculations is to investigate phenomena
that are inherently owing to multiple—as opposed to single—
scattering, namely, diffuse radiative transfer (RT) and the
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effect of coherent backscattering (CB; otherwise known as
weak localization of electromagnetic waves) [1–6]. These
phenomena are of significant interest to a number of research
fields, including biomedical and chemical diagnostics [7–10],
Earth and planetary remote sensing [2], [11–14], heat transfer
[15,16], and nanophotonics [17]. Therefore, a precise method
of simulating these optical effects, for a set medium com-
position and type of illumination, will be an obvious benefit
in solving inverse problems of predicting medium properties
(particle size, composition, and concentration) from scattering
measurement data.

Our previous simulations [18–20] (see also Refs. [21–23])
employed a computational model in which a set of spheres,
randomly positioned within a spherical target volume, was
excited with a monochromatic plane wave or a quasimonochro-
matic parallel beam of light of infinite lateral extent. For
a sufficiently large number of spheres in the set, it was
shown that configuration-averaged results, i.e., averaged over
a large number of random realizations of the particle positions
within the target volume, could be accurately represented
by calculating the T matrix for a single realization and
then performing an analytical orientation averaging of the
scattering matrix values. It has been found that the numerically
exact modeling of EM scattering by volumes of discrete
random medium with packing densities exceeding 10% does
reproduce—at least qualitatively—all basic RT and CB pre-
dictions, even though the asymptotic RT and CB theories
refer to situations with negligibly small particle concentrations
[5].

In the present work we employ the same basic strategy,
except now the spherical target volume is excited with a
Gaussian beam (GB) of varying width. Our practical rationale
in adopting this approach is that the GB more accurately
models the collimated sources (e.g., laser beams) that are used
in many applications. On a more fundamental level, the GB
provides an easily manipulated lateral length scale—the beam
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width—which can be used to test the microscopic theory of
CB and, in particular, its interference premise rooted in the
electromagnetic principle of reciprocity [24] coupled with the
notion of cyclical diagrams [25,26]. It is well known that
subjecting magneto-optically active particles to an external
magnetic field is an efficient means of breaking reciprocity and
suppressing the effect of CB [27,28]. In this respect, the use
of GB can be envisioned as an alternative means of breaking
reciprocity provided that the beam width is smaller than the
size of the scattering volume or of the transport mean free
path.

II. METHODS

A. Superposition T-matrix method with a Gaussian beam

We will describe briefly the key elements of the STMM
solution procedure and the extension of analytical orientation
averaging to Gaussian incident beams. The reader is referred
to Refs. [29–31] for a detailed treatment of this numerically
exact solver of the macroscopic Maxwell equations and the
actual algorithm.

The solution procedure can be best described as an
extension of the Lorenz-Mie theory to an ensemble of NS

neighboring spheres (Fig. 1). It is based upon the represen-
tation of the external (“ext”) field as a superposition of the
incident (“inc”) and scattered (“sca”) components, except in

RT/a = 20
NS = 384

RT/a = 30
NS = 1301

RT/a = 25
NS = 752

FIG. 1. (Color online) Multisphere targets.

this case the scattered field consists of separate contributions
radiated from each sphere, i.e.,

Eext(r) = Einc(r) + Esca(r) = Einc(r) +
NS∑
i=1

Esca,i(r), (1)

where E is the electric field and r is the position vector.
The scattered field contribution for each sphere is represented
by an expansion of outgoing vector spherical wave functions
(VSWFs), centered about the origin of the sphere. Likewise,
the exciting field at each sphere, which will consist of the
incident field plus the fields scattered from all other spheres in
the ensemble, can be represented by an expansion of regular
VSWF centered about the sphere origin. The transformation
of an outgoing VSWF about one origin into an expansion of
regular VSWF about a different origin—which is needed to
formulate the scattering contribution to the exciting field—is
accomplished by application of the addition theorem for
VSWF [2]. Finally, the Lorenz-Mie theory provides the
relation between the scattered and exciting field coefficients
for each sphere. If each scattered field expansion is limited to L
orders, the procedure results in a system of 2NSL(L + 2) linear
interaction equations for the set of scattering coefficients, and
the solution will be a function of the size parameters, refractive
indices, and positions of all the spheres, and the characteristics
of the incident field.

By application of the addition theorem to the individual
sphere expansions, the scattered field from the ensemble can
be described by a single outgoing VSWF expansion, centered
about the common origin of the ensemble. The coefficients in
this expansion will be linearly related to those for the incident
field expansion, again centered about the ensemble origin, by
the T-matrix relationship, i.e.,

amnp =
Lc∑
l=1

l∑
k=−l

2∑
q=1

Tmnp klqfklq . (2)

In the above, a and f denote the scattered and incident field
expansion coefficients, respectively, while the triplet {m,n,p}
or {k,l,q} denotes degree, order, and mode (1 for TM and 2 for
TE) of the VSWF. The convergence order limit Lc for the T
matrix will typically scale with the size parameter based on the
smallest circumscribing sphere for the ensemble. The T matrix
is most efficiently calculated from a sequence of solutions to
the multiple-sphere interaction equations, with each solution
corresponding to the degree–order–mode contribution to a
unified VSWF expansion, centered about the cluster origin,
of the incident field.

In the far-field zone of the multisphere group, one can
define such useful quantities as the amplitude scattering
matrix, the Stokes extinction matrix, the Stokes phase and
scattering matrices, and the optical cross sections [32]. The
random-orientation Stokes scattering matrix and optical cross
sections can be obtained from analytical operations on the
T matrix [30,31]. They are equally applicable to the cases of
illumination with linearly and circularly polarized plane waves
as well as quasimonochromatic parallel beams of infinite
lateral extent.

Although the algorithm and code to perform the orien-
tation averaging manipulations was originally developed for
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plane-wave excitation [33], it turns out that it is relatively sim-
ple to modify the formulation to enable T-matrix orientation
averaging for GB excitation, providing the focal point of the
beam coincides with the origin of the ensemble. Taking for
now a monochromatic GB [34,35], which propagates in the
+z direction and is polarized linearly in the x direction, the
electric field distribution in the z = 0 plane is given by

Einc(x,y,0) = x̂A exp

(
−x2 + y2

ω2
0

)
, (3)

in which A is a constant and ω0 is the non-negative beam width
parameter, i.e., the distance from the beam axis, in the z = 0
plane, required for the amplitude to decrease by a factor of
1/e. As usual, we omit the time-harmonic factor exp(−iωt),
where ω is the angular frequency, t is time, and i = (−1)1/2.

The present application is concerned primarily with the
propagation of a focused beam into a particulate medium.
Accordingly, conditions are sought that minimize the spread-
ing of the beam waist as a function of z. Such conditions
will correspond to a relatively large kω0, which is equiv-
alent to a large diffraction-length/spot-size ratio kω2

0/ω0 =
(2πω2

0/λ)/ω0, where k is the wave number in the host
medium and λ is the respective wavelength. Such conditions
also provide a simplified method for calculating the VSWF
expansion coefficients for the GB: the localized approximation
[36,37]. Specifically, if fmnp denotes the expansion coefficients
for a linearly polarized plane wave propagating in the direction
(θ,ϕ) (defined with respect to the conventional right-handed
spherical coordinate system) then the coefficients for the
GB having the same polarization and propagation direction,
denoted as f ′

mnp, can be approximated for kω0 > 5 by

f ′
mnp(θ,ϕ,kω0) = fmnp(θ,ϕ)ḡn(kω0), (4)

in which

ḡn(kω0) = exp

[
−

(
n + 1/2

kω0

)2]
. (5)

Say now that T denotes the T matrix calculated for the
multiparticle group. This matrix is independent of the incident
field, but all random-orientation formulas of Refs. [30] and
[31] have been derived by assuming a plane-wave illumination.
Equation (4) then suggests that formulas for certain scaled
quantities appearing in Ref. [31] are equally applicable to the
case of GB, provided that T is replaced by the GB matrix T ′
calculated by the simple transformation of

T ′
mnp klq(kω0) = Tmnp klq ḡl(kω0). (6)

In other words, the scaled orientation-averaged properties
of the ensemble, corresponding to a width kω0 GB excitation,
can then be obtained by substituting T ′ in the orientation-
averaging formulas derived for plane-wave excitation. It is
fundamentally important in this regard that the matrix T ′
defined by Eq. (6) satisfies the same rotation transformation
rule as the original matrix T [2], [32]; this condition is
met because the GB coefficients in Eq. (5) are azimuthal
degree independent. The key point of this approach is that the
calculation of the T matrix for a particular ensemble—which
is the most time-consuming computational task—needs to
be performed only once for a given cluster, and results for

different kω0 can be generated relatively quickly via the above
transformation.

Examples of suitable scaled scattering characteristics in-
volving elements of the Stokes scattering matrix S will be
given below. The definition of other optical characteristics
(e.g., the amplitude scattering matrix and the optical cross
sections) is not unique, given the fact that the intensity of
a GB is not uniform across the beam. We will avoid this
uncertainty by displaying only appropriate scaled scattering
characteristics. Note also that the concept of the Stokes
scattering matrix is applicable to circularly as well as linearly
polarized monochromatic GBs. It is also applicable to a
quasimonochromatic GB having a phase rapidly fluctuating in
the z direction. In this case one can think of partially polarized
and even unpolarized GBs.

Calculations were performed by using an updated version
of the multisphere T-matrix code described in Ref. [38]. The
revised code is written in FORTRAN-90 in conjunction with
message passing interface (MPI) instructions, and is designed
to perform on distributed memory computer clusters. To test
the code, we checked numerical convergence to the plane-
wave results by selecting a large kω0 value exceeding the size
parameter of the multisphere target as well as by checking the
equality of extinction and scattering efficiency factors in the
case of nonabsorbing particles. In the latter case, the efficiency
factors were found to agree to better than 10−12.

B. Sphere target generation

The multisphere targets that were used in the calculations
were generated by using a Monte Carlo algorithm designed
to sequentially add spherical particles to a growing, enclosing
spherical volume, in such a way so that (a) the spheres do
not overlap, and (b) the distribution of spheres throughout the
volume, at any point in the simulation, is statistically random
with a uniform, set volume fraction.

The procedure is straightforward and is described as
follows. Consider the simulation at a step N in the sequence,
for which N spheres, each of radius a, are randomly distributed
within a spherical volume of radius RN . The sphere is
considered to be inside the volume when its origin is enclosed
by the volume. For a set volume fraction (packing density) f,
the parameters RN , a, and N are related by

N = f

(
RN

a

)3

. (7)

At the next step N + 1 in the simulation the algorithm
randomly samples a point rN+1 located within the annular
volume formed between the RN+1 and RN surfaces. The
sampled point is accepted if a sphere placed at the point does
not overlap with any of the N existing spheres. The maximum
volume fraction that can be accommodated by this method is
∼0.5; in principle, the method would work in the limit of close
packing (f → ∼0.74), yet the number of samples required to
find this condition would become computationally prohibitive.
In addition, the method can break down for the initial values
of N (i.e., 2–4) for sufficiently large f. In this case f is lowered
until the method can start up, and f is raised to the set point
once the algorithm becomes stable.
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FIG. 2. (Color online) Scattering geometry.

Three multisphere targets were used in this study, corre-
sponding to RT /a ratios of 20, 25, and 30, where RT is the
radius of the enclosing sphere of the entire target. The sphere
volume fraction was f = 0.05 for all three, and the associated
NS values for the targets were 384, 752, and 1301. Images of
the clusters are shown in Fig. 1.

III. COMPUTER CALCULATIONS

The basic far-field scattering geometry is shown in Fig. 2.
The incident light propagates along the positive z axis and is
scattered in the direction of the unit vector n̂sca. The Stokes
parameters I, Q, U, and V [32] of the incident and scattered
light are specified with respect to the meridional plane of
the scattering direction, and the transformation of the Stokes
parameters upon scattering is described by the respective
real-valued 4 × 4 Stokes scattering matrix S. Because the
multisphere configurations shown in Fig. 1 are sufficiently
“random” to begin with, averaging over all orientations of
these configurations yields an azimuth-independent scattering
matrix that is a function of only the scattering angle � = θ sca

and has only six independent significant elements:
⎡
⎢⎢⎢⎣

I sca

Qsca

U sca

V sca

⎤
⎥⎥⎥⎦ ∝

⎡
⎢⎢⎢⎣

S11(�) S21(�) 0 0

S21(�) S22(�) 0 0

0 0 S33(�) S34(�)

0 0 −S34(�) S44(�)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

I inc

Qinc

U inc

V inc

⎤
⎥⎥⎥⎦ .

(8)

In theory, the off-block diagonal terms are not identically
zero; they would only be so if the multisphere configurations
had a plane of symmetry [32]. We found, however, that in
the cases considered, the maximum magnitude of the minor
matrix elements is 0.001 that of the major elements.

The elements of the scattering matrix can be used to
define specific optical observables corresponding to different
types of polarization state of the incoming light [18,20]. For

example, if the incident radiation is unpolarized, then the
(1,1) element characterizes the angular distribution of the
scattered intensity in the far-field zone of the target, while
the ratio −S21(�)/S11(�) gives the corresponding angular
distribution of the degree of linear polarization. If the incident
radiation is polarized linearly in the scattering plane, then the
angular distribution of the cross-polarized scattered intensity
is given by 1

2 [S11(�) − S22(�)]. Finally, if the incident
radiation is polarized circularly in the counterclockwise
direction when looking in the direction of propagation, then
the circular polarization ratio is defined as the ratio of the
same-helicity to the opposite-helicity scattered intensities:
µC = [S11(�) + S44(�)]/[S11(�) − S44(�)].

All calculations used a fixed sphere size parameter of xS =
ka = 2 and relative refractive indices m = 1.31 or m = 1.31 +
i0.2; this particular condition was chosen because the single-
sphere polarization has an extended “shelf” of near-zero values
at backscattering angles, thereby making it straightforward
to isolate the polarization opposition effect (POE) caused by
CB [20], [39].

The size parameters of the 384, 752, and 1301 sphere
target volumes were xT = kRT = 40, 50, and 60. Four Lorenz-
Mie orders were used to represent the individual-sphere
scattered fields. For the NS = 1301 target, the multiple-sphere
interaction equations contained 62 448 unknowns, and the
computation of the T matrix, to a converged order of Lc = 67,
required solution of the interaction equations for 9246 right-
hand sides. The code was parallel executed on 60 processors,
and computation of the NS = 1301 T matrix required over 5
days of run time. Once the T matrix was calculated and stored
on file, computation of the random-orientation scattering
matrix required 1 or 2 min for each incident beam state.

We performed computations for the three cluster targets
(Fig. 1) and six incident beam conditions for each target,
corresponding to a plane electromagnetic wave as well as GBs
with kω0 = 10, 20, 35, 50, and 100. The results of our com-
putations are presented and discussed in the following section.
The curves for kω0 = 100 are virtually indistinguishable from
those for plane-wave excitation and are not displayed.

IV. DISCUSSION

All data discussed in this section are the output of a direct
numerically exact computer solution of the frequency-domain
macroscopic Maxwell equations. As such, they include all
the relevant physics by definition and require no physical
explanation. However, it would be quite instructive to interpret
them in terms of idealized, qualitative physical concepts such
as forward-scattering interference, diffuse multiple scattering,
and CB [18,19,40–42]. Doing so would accomplish two
important objectives [43,44]. First, one would gain additional
confidence in these numerical data by verifying whether
they are generally consistent with the existing qualitative
understanding of the underlying physics. Second, the above
idealized physical concepts are valid, strictly speaking, only
in the limit of vanishingly small packing density. Therefore,
by analyzing numerically exact solutions of the Maxwell
equations, one can gain further insight into the qualitative and
even quantitative applicability of these concepts to discrete
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FIG. 3. (Color online) Scaled forward-scattering phase function
vs (a) scattering angle and (b) scattering vector for plane-wave (PW)
and Gaussian-beam (GB) illumination. Target size parameter xT = 60
(solid curves) and 40 (dashed curves).

random media with packing densities deviating from zero
significantly.

Shown in Fig. 3 are values of the scaled phase function
S11(�)/S11(0) as a function of the scattering angle � (upper
panel) and the dimensionless so-called scattering vector q =
xT sin � (bottom panel) for scattering near the forward direc-
tion. The upper panel shows that the forward-scattering pattern
is, as expected, controlled by forward-scattering interference
[18], with the characteristic interference base length being the
smaller of xT or kω0.

The nature of this effect in the case of plane-wave
illumination is explained in Fig. 4(a), which demonstrates that
the phases and amplitudes of the wavelets single scattered
by different particles in the exact forward direction are the

n
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incn̂ incn̂scan̂

scan̂
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(a)

1

2
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1

2

1

2

n − 1

n

FIG. 4. (Color online) (a) Forward-scattering interference. (b) In-
terference origin of coherent backscattering. (c) Interference origin
of the diffuse background.

same, irrespective of the particle positions. Therefore, all
the wavelets interfere constructively, thereby resulting in a
pronounced and narrow intensity peak centered at � = 0.
According to Ref. [45], the angular profiles of the forward-
scattering peaks for all three targets should be almost the same
if plotted versus the scattering vector q. Figure 3(b) shows that
this theoretical prediction works very well up to q ≈ 6.5.

In the case of GBs with widths smaller than the target
size parameter, the phases and amplitudes of the forward-
scattered wavelets change with particle positions because
both the amplitude and the phase of the GB vary across
the beam. As a consequence, the amplitude of the forward-
scattering intensity peak can be expected to decrease and
its angular width can be expected to increase. Indeed, let
us consider for simplicity a two-sphere target and assume
that the resulting “scalar” electric fields of the two forward-
scattered wavelets at the far-field observation point are
E1 cos ωt and E2 cos(ωt + δ), respectively. Then the time-
averaged total intensity in the exact forward direction is given
by (E2

1 + E2
2)〈cos2 ωt〉t + 〈2E1E2 cos ωt cos(ωt + δ)〉t =

(E2
1 + E2

2)/2 + E1E2 cos δ. If E1 = E2 and δ = 0, which
implies a plane incident wave, then the forward-scattering
interference doubles the intensity. If, on the other hand,
E1 �= E2 owing to amplitude nonuniformity across the incident
GB and/or δ �= 0 owing to phase nonuniformity across the
beam, then E1E2 cos δ < (E2

1 + E2
2)/2, which implies a

reduced amplitude of the forward-scattering intensity peak.
This suppression is especially pronounced for widely sepa-
rated particles with longer interference bases. Therefore, the
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FIG. 5. (Color online) Scaled backscattering phase function vs
(a) scattering angle and (b) scattering vector for plane-wave (PW)
and Gaussian-beam (GB) illumination. Target size parameter xT = 60
(solid curves), 50 (long-dashed curves), and 40 (short-dashed curves).

angular width of the forward-scattering intensity peak for a
multiparticle target should increase with decreasing GB width
and eventually become independent of the target size.

These qualitative predictions are fully corroborated by the
results shown in Fig. 3. Indeed, one can easily recognize the
strong suppressing effect of decreasing beam width on the
amplitude of the forward-scattering intensity peak. Further-
more, the beams with widths kω0 = 10 and 20 are intercepted
entirely by the three multisphere targets; the forward-scattering
pattern for these two widths is nearly independent of the target
size and depends only on the beam width (upper panel).
Likewise, all three clusters are entirely illuminated by the
kω0 = 100 GB (not shown) and the plane wave; the resulting
scattering patterns are mostly independent of the beam width

and depend solely on the cluster size parameter and, thus, on
q (bottom panel).

Similar behavior is observed for the backscattering intensity
peak in the case of unpolarized incident light. Shown in Fig. 5
are plots of S11(�)/S11(180◦) as a function of � (upper panel)
and q ′ = xT sin(180◦ − �) (bottom panel) for angles near the
backward direction. These results can be interpreted in terms of
the CB effect caused by constructive interference of conjugate
wavelets propagating along the same multiparticle sequence
but in opposite directions [Fig. 4(b)] [2–6]. Now, however,
there can be an intricate convolution of three interference
length scales: xT , kω0, and the transport mean free path.

The CB peak diminishes and widens for GBs with decreas-
ing kω0, which is an expected consequence of broken reci-
procity. Indeed, let us consider two conjugate n-particle scatter-
ing paths, such as those in Fig. 4(b), with the resulting “scalar”
electric fields at the observation point E1 cos ωt for the path
starting at particle 1 and E2 cos(ωt + δ) for the path starting
at particle n. Their time-averaged contribution to the total
diffuse intensity in the exact backscattering direction is ID =
(E2

1 + E2
2)〈cos2 ωt〉t = (E2

1 + E2
2)/2, while their contribution

to the coherent intensity is 〈2E1E2 cos ωt cos(ωt + δ)〉t =
E1E2 cos δ � ID . The inequality occurs if E1 �= E2 (as a
consequence of amplitude nonuniformity across the incident
GB) and/or if δ �= 0 (owing to phase nonuniformity across
the incident beam). The equality occurs only if E1 = E2 and
δ = 0, implying a plane electromagnetic wave and, thus, full
reciprocity. Again, the suppression of the CB maximum is
especially pronounced for multiparticle sequences with widely
separated end members and, thus, with long interference bases.
Therefore, the angular width of the CB intensity peak increases
with decreasing GB width.

Because the likely effects of absorption on CB via the
suppression of multiple scattering and reduction of the
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m = 1.31
m = 1.31 + i0.2
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FIG. 6. (Color online) Scaled backscattering phase function vs
scattering angle for plane-wave (PW) and Gaussian-beam (GB)
illumination. Target size parameter xT = 50. Particle refractive
indices m = 1.31 (solid curves) and 1.31 + i0.2 (dashed curves).
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FIG. 7. (Color online) (a) Linear polarization, (b) scaled cross-
polarized scattered intensity, and (c) circular polarization ratio vs
scattering angle. Target size parameter xT = 60 (solid curves) and 40
(dashed curves).

transport mean free path are well documented [46], it is
interesting to compare the results of T-matrix computations
for nonabsorbing and absorbing particles (Fig. 6). As expected,
nonzero absorption serves to decrease the amplitudes of the
CB intensity peaks and make them wider. Not surprisingly,

however, the differences between the respective solid and
dashed curves in Fig. 6 decrease with decreasing kω0 and
become negligibly small for kω0 = 10, i.e., when the beam
width is small enough to eradicate the CB peak entirely.

The effects of decreasing kω0 on the POE caused by CB
in the case of unpolarized incident light [20,39] are also quite
consistent with the above discussion. With decreasing beam
width, the depth of the POE decreases and its width increases
[see Fig. 7(a)]. Other backscattering features observable with
linearly and circularly polarized incident light also evolve with
increasing kω0, as expected and in agreement with their CB
origin [see Figs. 7(b) and 7(c)].

Unlike the cyclical diagrams exemplified by Fig. 4(b), the
ladder diagrams, such as the one shown in Fig. 4(c), can be
expected to be much less affected by the lateral nonuniformity
of a GB because in this case the entrance points for both
interfering wavelets are the same. Figure 8 is fully consistent
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FIG. 8. (Color online) Scaled phase function and linear polar-
ization vs scattering angle for plane-wave (PW) and Gaussian-beam
(GB) illumination. Target size parameter xT = 60.
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with this assessment. In fact, it is quite remarkable that
decreasing kω0 eventually eradicates all manifestations of CB
and strongly suppresses the forward-scattering interference
while doing virtually nothing to the angular profiles of intensity
and polarization at intermediate scattering angles.

V. CONCLUDING REMARKS

The important advantages of the direct computer simulation
of electromagnetic scattering by a volume of discrete random
media are that it (a) includes by definition all the relevant
physics, (b) yields numerical results with known and guaran-
teed accuracy, (c) does not require the asymptotic assumption
of a very small volume fraction, and (d) allows one to vary all
physical parameters of the scattering target one at a time.

As we have demonstrated above, this approach can be used
also to simulate a variety of illumination conditions differing
from the standard plane-wave incidence, the objectives being
an improved modeling of existing light sources and the
verification of expected consequences of broken reciprocity.

Based on our numerical data and discussion, we can con-
clude that all scattering patterns observed in the far-field zone
of a volume of discrete random medium and their evolution
with decreasing width of the incident Gaussian beam can be
interpreted in terms of such simplified concepts as forward-
scattering interference, CB, and diffuse multiple scattering.

In particular, the increasing violation of electromagnetic
reciprocity with decreasing beam width serves to suppress
and eventually eradicate all observable manifestations of
CB. This result is an important supplement to the previous
demonstration of the effects of broken reciprocity in the case
of magneto-optically active particles subjected to an external
magnetic field [27,28].

Our numerically exact data demonstrate again the quali-
tative (if not semiquantitative) applicability of the idealized
notions of forward-scattering interference, CB, and diffuse
multiple scattering in situations when particles forming the
scattering volume are not always in the far-field zones
of each other (cf. [18–20,23,47]). An important corollary
of this result is that the domain of practical applicability
of the classical theories of RT and CB may be wider
than that implied by the formal microphysical derivation
of these theories from the macroscopic Maxwell equations
[5]. Should this corollary be further substantiated and quan-
tified, its importance to the various applied-science and
engineering disciplines would be impossible to overstate
(cf. Refs. [7–16,48–51]).
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