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Optically levitating dielectrics in the quantum regime: Theory and protocols
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We provide a general quantum theory to describe the coupling of light with the motion of a dielectric object
inside a high-finesse optical cavity. In particular, we derive the total Hamiltonian of the system as well as a master
equation describing the state of the center-of-mass mode of the dielectric and the cavity-field mode. In addition,
a quantum theory of elasticity is used to study the coupling of the center-of-mass motion with internal vibrational
excitations of the dielectric. This general theory is applied to the recent proposal of using an optically levitating
nanodielectric as a cavity optomechanical system [see Romero-Isart et al., New J. Phys. 12, 033015 (2010);
Chang et al., Proc. Natl. Acad. Sci. USA 107, 1005 (2010)]. On this basis, we also design a light-mechanics
interface to prepare non-Gaussian states of the mechanical motion, such as quantum superpositions of Fock
states. Finally, we introduce a direct mechanical tomography scheme to probe these genuine quantum states by
time-of- flight experiments.
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I. INTRODUCTION

The field of optical trapping and manipulation of small
neutral particles using the radiation pressure force of lasers
was originated in 1970 by the seminal experiments of Ashkin
[1]. Over the course of the next 40 years, the techniques
of optical trapping and manipulation have stimulated rev-
olutionary developments in the fields of atomic physics,
biological sciences, and chemistry [2]. In physics, the progress
in optical cooling and manipulation of single atoms opened
up a plethora of novel perspectives. The precise control
over the atomic degrees of freedom has created applications
ranging from atom interferometry [3], quantum simulations
of condensed-matter systems with ultracold gases [4], and the
implementation of quantum gates for quantum-computation
purposes [5].

More recently, the possibility to apply the techniques of
optical cooling and manipulation to the mechanical degree of
freedom of larger objects, such as micromirrors or cantilevers,
has established a very active research field, called cavity
quantum optomechanics [6–12]. Future applications range
from ultrahigh sensitivity detectors of mass or force [13,14]
and quantum transducers for quantum-computation purposes
[15–18], to their potential for being an ideal testbed for the
investigation of fundamental aspects of quantum mechanics,
such as the quantum-to-classical transition [19,20]. In most
optomechanical systems, the mechanical oscillator is unavoid-
ably attached to its suspension, providing a thermal contact that
limits the isolation of the mechanical motion—thus preventing
longer coherence times. A potential improvement to better
isolate the system is to use optically levitating nanodielectrics
as a cavity quantum optomechanical system [21,22] (see also
[23,24]). This consists in optically trapping a nanodielectric by
means of optical tweezers inside a high-finesse optical cavity;
see Fig. 1 for an illustration. Using standard optomechanical
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techniques [25–29], the center-of-mass (c.m.) motion could be
cooled to its quantum ground state in the harmonic potential
created by the optical tweezers. Due to the fact that it is
levitating, the dielectric is not attached to any mechanical
object, allowing for a very good thermal isolation, even at room
temperature. More recently, both theoretical and experimental
research along this direction has been reported. In [14] (see
also [30]), levitating nanospheres placed close to a surface have
been proposed to test forces at very small scales to explore
corrections to the Newtonian force. Remarkably, an experi-
ment measuring the instantaneous velocity of the Brownian
motion of a particle, a glass bead levitated in air, has been
reported in [31]. Other aspects have also been investigated,
such as the possibility of Doppler cooling a microsphere [32],
a scheme to measure the impact of air molecules into the
nanodielectric [33], and the possibility to use a ring cavity or
several cavity modes to cool and trap polarizable particles
[34,35]. It can thus be foreseen that a new generation of
exciting experiments, aimed at bringing levitating dielectrics
into the quantum regime, will take place in the near future.
Indeed, from a broad perspective, this project aims at extending
the techniques developed during the past decades of optical
cooling and manipulation of atoms [e.g., as in cavity quantum
electrodynamics (QED) with single atoms and molecules
[36–39] back to the nanodielectrics that were first used at
the beginning of optical trapping [40–42]. This experimental
challenge, if successful, would allow us to test quantum
mechanics at unprecedented scales. On this basis, a general
quantum theory to describe and predict the phenomena that
will be encountered in these potential experiments is timely.

In this paper, we aim at contributing to this goal by devel-
oping a general quantum theory to describe the coupling of
light with the mechanical motion of dielectrics in high-finesse
optical cavities. Starting from the total Hamiltonian of the
system, we derive a master equation which takes into account
the effects caused by the scattering of light: decoherence
of the mechanical motion, decrease of the cavity finesse,
and a non-negligible renormalization of the scattering force.
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FIG. 1. (Color online) Schematic representation of the setup. A
nanodielectric is confined by optical tweezers, providing a trapping
frequency of ωt . The nanodielectric is placed inside an optical cavity
with resonance frequency ωc, decay rate κ , and is driven by a laser at
a frequency ωL.

Additionally, we utilize a quantum elasticity theory to describe
the effect of elastic deformations of the dielectric object. This
provides us with a quantitative expression of the coupling
between the c.m. motion and the internal vibrational modes.
This theory is applied to the particular proposal of cavity
optomechanics with levitating nanodielectrics [21,22]. We
then focus on “post-ground-state”1 optomechanics, and design
a light-mechanics interface to prepare non-Gaussian states
of the mechanical system, such as a quantum superposition
of Fock states. In particular, we develop three different
protocols with different features, together with a formalism
which is required to describe these input-output problems in
the Schrödinger picture. The non-Gaussian light-mechanics
interface can be interpreted as an effective way to have
nonlinear effects in optomechanical systems [43]. Finally,
we introduce a scheme to perform direct full tomography
of the mechanical state by imaging the nanodielectric after
some time of flight.

The paper is organized as follows. In Sec. II, we provide
a detailed summary of the results. The derivation of the total
Hamiltonian as well as the master equation of the theory are
addressed in Sec. III (some details regarding light scattering
are left to Appendix A). The derivation of the trapping using
optical tweezers and the optomechanical coupling can be
found in Appendix B. The theory part is completed by the
introduction of the quantum theory of elasticity in Sec. IV. We
briefly discuss ground-state cooling in Appendix C, and the
typical experimental parameters in Appendix E. The second
part of the paper, the description of the protocols, can be found
in Sec. V (and in Appendix D), where three different ways
to interface light with the c.m. motion of the nanodielectric
are introduced. The paper is rounded off with a proposal to
perform full tomography of the mechanical state in Sec. VI,
and we finish by stating the conclusions and discussing further
directions in Sec. VII.

1By post-ground-state optomechanics, we mean the eventual experi-
mental situation in which the ground state of the mechanical oscillator
has been achieved by laser cooling (see the recent experiment
reporting the preparation of the ground state in a high-frequency
mechanical oscillator [61]). In this situation, one can think about
applications and protocols starting from the ground state of the
mechanical oscillator.

II. SUMMARY OF RESULTS

This section aims at providing a general road map, summa-
rizing the results presented in this paper without providing the
proofs or mathematical derivations.

A. Theory

Here we develop a quantum theory to describe the coupling
of light with the mechanical motion of dielectric objects in
high-finesse optical cavities; see Fig. 1. The assumptions that
are made in the theory are the following:

(1) The dielectric object has a constant relative dielectric
constant εr as well as a homogeneous density ρ.

(2) The electric fields are assumed to be scalar, that is, we
do not consider polarizations. We assume a three-dimensional
field for the free electric field outside the cavity, and a one-
dimensional field along the cavity axis for the output field of
the cavity.

(3) The object is assumed to be absorption-free and there-
fore only elastic-scattering processes are considered. The
effects of light absorption are thus neglected [21,22].

These assumptions are made to ease the derivation of the
theory, and they do not imply any fundamental simplification.
Indeed, nonhomogeneity and polarizations can be incorporated
easily. Moreover, as is shown in the quantum theory of
elasticity, the c.m. mode is decoupled from the internal
vibrations for sufficiently small objects, and therefore can be
treated independently.

Thus, the total Hamiltonian of the system can be written as
a sum of free (interacting) terms, labeled with the superscript
f (i),

H tot = Hf
m + Hf

c + H
f
out + H

f

free + H i
cav−out + Hi

diel. (1)

The first term H
f
m = p2/2M is the kinetic energy of the

c.m. position along the cavity axis. The motion along the
transverse direction of the cavity is not relevant in the
theory.2 The energy of the cavity mode a is given by
H

f
c = ωca

†a (we assume h̄ = 1), where ωc is its resonance
frequency. The energy of the free modes is given by H

f

free =∫
dk|k|a†(k)a(k), and the energy of the output modes of

the cavity by H
f
out = ∫ ∞

0 dω ωa
†
0(ω)a0(ω).3 The interaction

between the cavity mode and the output modes is described
by the usual term H i

cav−out = i
∫ ∞

0 dω γ (ω)[a†a0(ω) − H.c.],
where the coupling strength is approximated by γ (ω) ≈ κ/π ,
around the resonance frequency, where κ , is the decay rate of
the cavity [44].

The last term H i
diel is the crucial one describing the

interaction between the electric field and the dielectric object.
In the most general form, it can be written as

H i
diel = −1

2

∫
V (r)

dxP (x)E(x), (2)

2For experimental purposes, the motion along the transverse
direction should be cooled by external means (e.g., feedback cooling)
in order to keep the trap stable.

3As is usually done in cavity QED, we are indeed double counting
the output modes by writing them separately from the free modes,
which is correct since they have zero measure.
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where P (x) is the polarization of the object and the integration
is performed over the volume of the dielectric object V with
c.m. coordinate r. This Hamiltonian is the starting point for the
theoretical discussion. Assuming P (x) = αpE(x), one obtains

H i
diel = −εcε0

2

∫
V (r)

dx[E(x)]2, (3)

where εc = 3(εr − 1)/(εr + 2), εr being the relative dielectric
constant of the nanodielectric. This can be obtained by
connecting the quantum expression of the polarization field
in the object with the classical relation. This part of the
Hamiltonian is the key ingredient of the theory, and applies
for any size and shape of the object. The total electric field
inside the object can be now written as a sum of three parts:
E(x) = Ecav(x) + Efree(x) + Etw(x), where Ecav(x) contains
the cavity modes, Efree(x) the free modes, and Etw(x) is
the classical part of the electric field describing the optical
tweezers. By plugging E(x) into Eq. (3), the following terms
are obtained:

(i) [Etw(x)]2 creates a harmonic trap with a frequency

ω2
t = 4εc

ρc

I

W 2
t

, (4)

where I is the laser intensity, ρ is the density of the dielectric
object, c is the speed of light, and Wt is the laser waist. For
the typical experimental parameters discussed in Appendix E,
it is of the order of MHz. This field provides the harmonic
trap of the mechanical oscillator with the Hamiltonian ωtb

†b,
where b (b†) is the annihilation (creation) operator of the c.m.
phonon mode along the cavity axis.

(ii) The cavity field [Ecav(x)]2 gives rise to the optome-
chanical coupling g0a

†a(b† + b), where the coupling strength
is given by

g0 = −z0
εcω

2
c

4c

V

Vc

. (5)

Here z0 = (2Mωt )−1/2 is the zero-point motion of the ground
state, Vc = LπW 2

c /4 is the cavity volume, L is the cavity
length, and Wc is the laser waist of the cavity. For the
experimental parameters discussed in Appendix E, g0 is of
the order of tens of Hertz.

(iii) The contribution 2Efree(x)[Ecav(x) + Etw(x)] is respon-
sible for scattering processes. This term describes the process
of elastic scattering of cavity photons, as well as photons of
the tweezers, into free modes. The term 2Etw(x)Ecav(x) leads to
scattering events already taken into account in 2Efree(x)Etw(x)
as well as a shift in both the trapping frequency and the
equilibrium position of the object.

(iv) The term [Efree(x)]2 yields a negligible coupling be-
tween the c.m. mode and the vacuum fluctuations of the
electromagnetic field.

Starting from the total Hamiltonian Htot and the terms given
by the total electric field E(x), one can derive a master equation
describing the state of the cavity mode a and the mechanical
mode b, given by the density matrix ρ, by tracing out the free
modes a(k) and the output modes a0(ω). The master equation
is given by

ρ̇(t) = i[ρ,H ′
OM + Hrn] + Lcav[ρ] + Lsc[ρ] + Dm[ρ], (6)

with the following contributions:

(a) The optomechanical Hamiltonian in the nondisplaced
frame4 is given by

HOM = ωtb
†b + ωca

†a + g0a
†a(b† + b), (7)

describing the coherent coupling between the cavity mode and
the mechanical mode.

(b) The dissipation term

Lcav[ρ] = κ(2aρa† − a†aρ − ρa†a), (8)

describing the photon losses, at a rate κ , due to the imperfection
of the cavity mirrors.

(c) The new cavity-field dissipation term

Lsc[ρ] = κsc(2aρa† − a†aρ − ρa†a), (9)

due to losses, at a rate κsc caused by the scattering of cavity
photons out of the cavity. Although the theory is valid for
objects of any size, in this paper we provide the expression
of κsc for objects smaller than the optical wavelength. Indeed,
to keep the high finesse of the cavity, that is, κsc/κ < 1, the
objects have to be of the order of 100 nm in the case of spherical
objects [22].

(d) The mechanical diffusion term

Dm[ρ] = �sc[b + b†,[b + b†,ρ]], (10)

which, although it does not yield mechanical damping, does
generate decoherence of the motional mechanical state due to
light scattering. We also provide in this paper the expression of
�sc for subwavelength objects, which contains the contribution
of both the optical tweezers and the cavity field. For spherical
objects of the order of 100 nm, 1/�sc ∼ 0.1 ms.

(e) Finally, an additional coherent term Hrn is obtained.
Apart from describing scattering forces, it renormalizes the
optomechanical Hamiltonian due to quantum electrodynamics
effects. The effects of this term are discussed in more detail
in [45].

This theory is complemented by a quantum theory of elas-
ticity. Starting from the classical expression of the Lagrangian
density of an elastic object, the deformable field is expressed
in terms of normal modes for the case of a vanishing external
potential. Then, by plugging in the external potential given
by the light-matter interaction, one obtains an expression
describing coupling between the normal modes. This can be
quantized canonically and provides a quantum description of
the coupling of the c.m. mode with the internal vibrational
modes, as well as the coupling of the light with the internal
modes. This theory can be applied to objects at the micron
scale, where the internal modes have frequencies of the order
of 1011 Hz, and thus are decoupled from the 106 Hz c.m. mode.
This allows us to adiabatically eliminate the internal modes,
merely leading to a renormalization of the trapping frequency.
This correction is many orders of magnitude smaller than ωt

and consequently represents a negligible effect. This justifies
the separate treatment of the c.m. degree of freedom in the

4As shown later in the paper, the derivation of the master equation
is done by extracting the classical part of the cavity field and by
displacing the cavity operators a → a + α. Note, however, that the
cavity operators appearing in HOM are not displaced.
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developed theory, which is applicable to objects at the micron
scale.

B. Protocols

In the second part of the paper, we focus on how to bring
these systems into the quantum regime. In particular, we
design a light-mechanics interface that consists in injecting
non-Gaussian states of light, such as a superposition of Fock
states, to the mechanical oscillator.

First of all, as is usually done in optomechanics, we describe
the effect of driving the cavity with a strong driving field at
frequency ωL [26,28,46]. We transform the total Hamiltonian
of the system into a displaced frame that describes the states on
top of the steady state of the cavity field, the mechanical state,
as well as the output modes of the cavity. We emphasize in
particular the displacement that one needs to do in the output
modes to be able to describe input-output problems in the
Schrödinger picture. The main change in the Hamiltonian is in
the optomechanical coupling. In particular, when the driving
is red-detuned � = ωc − ωL = ωt , the coupling term, in the
resolved sideband regime and after the rotating-wave approx-
imation, has the beam-splitter interaction form g(a†b + ab†).
Here, g = √

nphg0 is an effective optomechanical coupling,
which is enhanced by the square root of steady-state cavity
photons. This allows one to reach the strong-coupling regime
g > κ . When driving the cavity with the blue-detuned field
� = ωc − ωL = −ωt , one induces the two-mode squeezing
interaction term g(a†b† + ab). With these tools, we design
and derive different protocols to prepare non-Gaussian states.

The first protocol, called the reflected one-photon protocol,
consists in sending one resonant photon on top of the driving
field and measuring the reflected part. More specifically, the
cavity is driven with a red-detuned field to induce the beam-
splitter interaction. The mechanical object is assumed to be in
its ground state. Now, on top of the driving field, a one-photon
pulse centered at the resonance frequency is sent into the cavity.
Impinging the cavity, part of it enters and part is reflected.
At the time th, where the part of the beam that has entered
the cavity is transferred to the mechanical oscillator through
the beam-splitter interaction, the light field is switched off.
Consequently, the light mode corresponding to the reflected
photon is entangled with the mechanical system inside the
cavity. We can obtain the exact form of the state by solving the
input-output problem in the Schrödinger picture. The state in
the displaced frame is given by

|ψ(th)〉 = cb(th)|10
〉 +
∫ ∞

−ωL

c(ω,th)a†
0(ω)dω|00
〉, (11)

where |nbna
〉 describes a state with nb phonons, na photons,
and all the output modes in the vacuum state. Here, the
coefficients cb(t) and c(ω,t) are obtained analytically. This
makes it clear that, by measuring the quadrature of the output
mode of the photon, one prepares a superposition state of
zero and one phonon with coefficients given by the outcome
of the measurement. In this paper, some technical issues are
addressed in detail for this protocol, such as the fact that in
the original frame, the state |ψ(th)〉 is displaced by a consider-
able amount. This makes it challenging to obtain a significant
signal-to-noise ratio in the measurement of the output mode.

An extension of the reflected one-photon protocol is the
perfect mapping protocol. In this protocol, the possibility
to time-modulate the laser intensity, and consequently the
optomechanical coupling, is exploited. Then, by imposing
the condition that the output field, with the transformed
Hamiltonian, is zero, we can obtain the equation of motion
for the optomechanical coupling g(t). Its solution yields a
modulation of g(t) such that the light pulse sent on top
of the driving field is perfectly absorbed, and therefore the
non-Gaussian state of the light is transferred to the mechanical
oscillator. In this section, we also discuss some technical
details regarding the transformation of the Hamiltonian that
has to be performed carefully since there are time-dependent
displacements.

The two protocols require a moderately strong coupling
g ∼ κ . As an alternative, we also derive a protocol, called
teleportation in the bad-cavity limit, which does not require
the strong-coupling regime. Once the mechanical oscillator
is in the ground state, it consists in driving the cavity
with a blue-detuned field, such that the two-mode squeezing
interaction is induced inside the cavity. This Hamiltonian
creates a two-mode squeezed state between the mechanical
oscillator and the light field leaking out of the cavity. The
squeezing parameter of this state is a measure of the degree
of entanglement. This entangled state can then be used to
teleport a non-Gaussian light state from outside of the cavity
to the mechanical oscillator. In this section, we also discuss
in detail the effect of the driving field and the possibility to
choose the initial state to be teleported to prepare a particular
state in the mechanical oscillator.

This part of the paper is concluded by providing a direct
method to perform full tomography of the state of the mechani-
cal oscillator. In general optomechanical systems, tomography
can, in principle, be done by coupling the mechanical resonator
to a well-controlled quantum system (e.g., a qubit), and then
measuring the quantum system. The method we provide here
performs direct tomography of the mechanical oscillator. It is
well known that by measuring the rotated quadrature phase
operator

X (θ ) = eiθb† + e−iθb (12)

for all θ , one can reconstruct the Wigner function and therefore
obtain all the information about the state of the harmonic
oscillator [47]. Our protocol achieves that by measuring the
position of the nanodielectric after some time of flight. In the
Heisenberg picture, the momentum operator in the harmonic
potential evolves like

p(t) = ipm(b†eiωt t − be−iωt t ), (13)

where pm = (Mωt/2)1/2. Thus the momentum operator
p(t)/pm = X (ωt te + π/2) is directly related to the rotated
quadrature phase operator. By switching off the optical
tweezers at te, letting the nanodielectric fall, and measuring
the position at some later time tf , one obtains z(te + tf ) ≈
(tf − te)p(te)/M , which is a measurement of the momentum
operator. By repeating the experiment at different times te,
full tomography of the mechanical state can be performed. In
this section, we discuss the experimental parameters and an
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extension of the protocol to amplify the oscillation prior to the
time of flight.

III. TOTAL HAMILTONIAN AND MASTER EQUATION
OF THE THEORY

In this section, we develop the main part of the theory to
describe the coupling of light with the mechanical motion of
dielectric objects in high-finesse optical cavities. In particular,
in Sec. III A, we derive the total Hamiltonian. We focus
on the light-matter interaction term in Sec. III B, and we
make the connection between the microscopic theory with the
macroscopic parameters such as the dielectric constant of the
object. In Sec. III C, we show how to obtain the optomechanical
Hamiltonian for the case of levitating objects inside a cavity.
Finally, in Sec. III D we derive the effects of scattering of light
embedded in the total Hamiltonian of the theory. Indeed, we
show how to derive a master equation to describe the time
evolution of the state of both the cavity and mechanical mode.
We provide the quantitative expression of the light-scattering
parameters for subwavelength spheres.

A. Setup and general Hamiltonian

We consider a dielectric object with c.m. position r and a
dielectric constant

εr (x) =
{

εr if x ∈ V (r);

1 if x 	∈ V (r),
(14)

where V (r) is the spatial region of the object, centered at r, with
volume V , density ρ, and mass M = ρV . The homogeneity of
the dielectric constant inside the object is chosen for simplicity;
the nonhomogeneous case can be incorporated easily. As
shown in Sec. IV, the c.m. degree of freedom of dielectrics
at the micron scale is decoupled from its relative modes.
Hence, we will only consider the c.m. degree of freedom
in the following analysis. We suppose that the dielectric
object is inside an optical cavity. We define the cavity mode,
characterized by an annihilation (creation) operator a (a†),
the modes coupled to the cavity mirror a0(ω) [a†

0(ω)], which
we call output modes, and the other free modes of the
electromagnetic field a(k) [a†(k)]. We use a one-dimensional
(1D) theory to describe the modes coupled to the cavity
mode, therefore denoting them by ω = k (we use c = 1 in
the protocols part of the paper) and a scalar 3D theory for the
rest of the modes. The effects of polarization can also be easily
incorporated but will be neglected for simplicity.

The total Hamiltonian of the dielectric object inside the
optical cavity can be written as

Htot = H f
m + H f

cav + H f
out + H f

free + H i
cav−out + H i

diel. (15)

The superscript f (i) labels free (interacting) terms. The first
term, H f

m = p2/2M , describes the kinetic energy of the c.m.
mode along the cavity axis. The motion along other directions
is not considered since it decouples from the motion along
the cavity axis, as will become clear in the following. Note,
however, that in analogy to trapping and cooling of ions, these
other modes are assumed to be cooled by external means (e.g.,
by feedback cooling) to make the trap stable (see a recent
article for a 3D ground-state cooling scheme based on using

different cavity modes [33]). The next three terms describe the
free radiation parts,

H f
cav = ωca

†a, (16)

H f
out =

∫ ∞

0
dωωa

†
0(ω)a0(ω), (17)

H f
free =

∫
dk|k|a†(k)a(k), (18)

of the cavity mode a with the mode frequency ωc, the output
modes a0(ω), and the free modes a(k). As is usually done in
the context of cavity QED [48], we double-count some of the
modes by considering the ones coupled to the cavity mode
separately. However, since they have zero measure, this does
not affect the correctness of the description. The interaction
between the cavity mode and the free modes is described by
[44]

H i
cav−out = i

∫ ∞

0
dωγ (ω)[a†a0(ω) − H.c.], (19)

where the coupling strength is described by γ (ω) and can be
assumed to be constant over a large frequency interval centered
around ωc with a value γ (ω) = √

κ/π , where κ is the decay
rate of the cavity [44].

Finally, H i
diel describes the interaction between the light

field and the dielectric object, which can be written as

H i
diel = −1

2

∫
V (r)

dxP (x)E(x). (20)

Here, P (x) is the polarization field and the volume integral
is performed over the volume of the object V around the
c.m. position r. This term is the central equation in the rest
of the subsections: in Sec. III B, we develop this interaction
term by relating the polarization field with the electric field;
in Sec. III C, we consider the proposal of using an optically
levitating nanodielectric as a quantum optomechanical system,
and derive the optomechanical Hamiltonian; and in Sec. III D,
we show how this term can be used to derive the effects induced
by light scattering.

As a final remark and for later convenience, let us define
the light-mechanics (LM) and light-cavity (LC) part of the
Hamiltonian as

HLM = H f
cav + H f

free + H i
diel,

(21)
HLC = H f

out + H i
cav−out,

such that Htot = H f
m + HLM + HLC.

B. Light-matter interaction Hamiltonian

Let us focus here on the key part of the total Hamiltonian,
namely the light-matter interaction term H i

diel, Eq. (20). First
of all, note that for the typical light intensities, the polarization
field responds linearly to the electric field, such that P (x) =
αpE(x). The parameter αp can, in principle, be computed by
performing a quantum theory of the object by considering its
atomic properties. However, this involved task is not necessary
since one can relate αp to macroscopic properties of the object,
such as the dielectric constant εr . Comparing the resulting
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relation between the polarization and the electric field for the
macroscopic [49,50] and microscopic cases,

macroscopic : P (x) = 3ε0
εr − 1

εr + 2
E(x) ≡ εcε0E(x),

(22)
microscopic : P (x) = αpE(x),

one can identify the microscopic constant to the macroscopic
one,

αp = εcε0. (23)

Then, plugging this back into the Hamiltonian Eq. (20),
we obtain the final form of the light-matter interaction
Hamiltonian,

H i
diel = −εcε0

2

∫
V (r)

dx[E(x)]2. (24)

In Appendix A, we show how from this Hamiltonian one can
derive the scattering equation that can be used to compute the
electric field inside the object.

C. Optomechanical Hamiltonian

The expression for H i
diel obtained in the preceding section,

see Eq. (24), is the key ingredient to develop our theory. Let
us now apply it to the particular proposal of using levitated
objects in a cavity as an optomechanical system [21,22]. This
experimental setup consists of an external optical tweezers
as well as a laser driving the cavity at frequency ωL, see
Fig. 1. The total electric field inside the object can be
decomposed into

E(x) = Ecav(x) + Efree(x), (25)

where the Ecav(x) is the cavity electric field and Efree(x) is the
free electric field. The free electric field contains a classical part
due to the optical tweezers generated by the laser, which can
be incorporated as Efree(x) → Efree(x) + Etw(x), where Etw(x)
describes the optical tweezers [51]; see Appendix B for its
expression. The implementation of the driving laser is carefully
done in Sec. V A, where, in order to keep the structure of the
total Hamiltonian, we will have to displace all the output modes
a0(ω) as well as the cavity mode and the mechanical mode. Let
us discuss here the terms that will be obtained when plugging
the total electric field

E(x) = Ecav(x) + Efree(x) + Etw(x) (26)

in H i
diel, Eq. (24). By doing so, one obtains six different

terms, which have been discussed in Sec. II and therefore
are only summarized here. The term [Etw(x)]2 accounts for the
harmonic trapping, see Appendix B, with a trapping frequency

ω2
t = 4εc

ρc

I

W 2
t

, (27)

where I = Pt/(πW 2
t ) is the field intensity, Pt is the laser

power, Wt ≈ λ/(πN ) is the laser waist, N is the numerical
aperture, and k is the wave-vector number. This allows us to
quantize the c.m. motion along the z axis as z = z0(b† + b),
where z0 = (2Mωt )−1/2. The term [Ecav(x)]2 describes the
coupling of the cavity mode and the motional state; see
Appendix B. By considering the c.m. position of the object

to be placed at the maximum slope of the standing wave, one
obtains the standard optomechanical coupling g0a

†a(b† + b).
The coupling strength is given by

g0 = −z0
εcω

2
c

4c

V

Vc

, (28)

where V is the volume of the object, Vc = LπW 2
c /4 is the

cavity volume, L is the cavity length, and Wc = [λL/(2π )]1/2

is the waist of the cavity field. This term also yields a shift
of the resonance frequency of the cavity; see Appendix B.
The two scattering terms 2Efree(x)[Etw(x) + Ecav(x)], which
describe the scattering of cavity photons and the laser light
from the optical tweezers, are addressed in Sec. III D. The
term 2Ecav(x)Etw(x), which yields a shift of both the trapping
frequency and the equilibrium position as well as some
scattering processes already taken into account in the term
2Efree(x)Etw(x), is discussed in the next section. Finally, the
term [Efree(x)]2 accounts for a negligible coupling of the c.m.
motion with vacuum fluctuations of the electromagnetic field.

Hence, the total Hamiltonian can now be written as

Htot = HOM + Hsc + HLC + Hsh, (29)

where HOM is the standard optomechanical Hamiltonian

HOM = ωtb
†b + ωca

†a + g0a
†a(b† + b). (30)

The term HLC was already introduced in Eq. (21) and we have
defined the scattering Hamiltonian

Hsc = H f
free − εcε0

∫
V (r)

dxEfree(x)[Ecav(x) + Etw(x)], (31)

which is studied in Sec. III D. The shift term is given by Hsh =
−εcε0

∫
Ecav(x)Etw(x)dx. Finally, note that by tracing out the

output modes of the cavity, a0(ω) in HLC, one obtains the usual
master equation

ρ̇(t) = i[ρ,HOM + HLC + Hsh] + Lcav[ρ], (32)

where

Lcav[ρ] = κ(2aρa† − a†aρ − ρa†a). (33)

This term describes the photon losses (at the decay rate of the
cavity κ) through the end mirrors of the cavity, and is treated
in detail in, for example, [44].

D. Light scattering

In the present setup, both trapping and cooling are achieved
by light, yielding an optomechanical system without thermal
contact with other mechanical objects. However, the effect of
light scattering has to be considered [22]. In this subsection,
we provide a framework to study elastic light scattering within
a quantum theory. While the derivation of this framework for
arbitrary dielectric objects will be provided elsewhere [45],
here we will discuss the general theory and present the results
obtained for objects smaller than the optical wavelength.

The key term of the total Hamiltonian describing the
effects of light scattering is Hsc, defined in Eq. (31). First,
we are interested in the case in which the cavity is strongly
driven. Then a coherent steady state is present in the cavity
field, which we explicitly consider by decomposing the cavity
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field into a quantum part plus a coherent (classical) part,
Ecav(x) → Ecav(x) + Ecav(x), where Ecav(x) is the classical
one. A detailed discussion of this transformation is given
in Sec. V A. In this framework, the scattering term of the
Hamiltonian can be written as

Hsc = H f
free + H�

sc + Hκ
sc + H�

tw, (34)

where we have defined

H�
sc = −εcε0

∫
V (r) dxEfree(x)Ecav(x),

Hκ
sc = −εcε0

∫
V (r) dxEfree(x)Ecav(x), (35)

H�
tw = −εcε0

∫
V (r) dxEfree(x)Etw(x).

Additionally, the displacement of the cavity field also modifies
the shift term of the Hamiltonian, which now reads Hsh =
−εcε0

∫
[Ecav(x) + Ecav(x)]Etw(x) dx. Whereas the first term

is already included in H�
tw [since in Efree(x) we integrate

over all the electromagnetic modes without excluding the
cavity mode], the second term yields a shift of the trapping
frequency as well as of the equilibrium position, as discussed in
Appendix B3.

The time evolution of the density matrix describing the
c.m. motion ρ is determined by tracing out the free modes
using a Markovian master-equation approach. Its utilization is
justified for the following reasons: first, due to the fact that
the reservoir of free modes of the electromagnetic field is very
large, the bath density operators are not significantly changed
by the interaction, such that one can always assume that its
density matrices remain constant in time ρE ≈ ρE(0). Second,
the Markov assumption, stating that the decay of correlations
is much faster than any other time scale in the system, τcorr �
τS , is fulfilled: the Hamiltonian operator contains terms ∝∫

exp(−iωkt) dk, with a distribution of ωk peaked around ωL,
which is the fastest time scale in the system. Any correlations
in the bath scale with the mode frequencies ωk and thus decay
very quickly. The details of derivation will be provided in [45].
In this paper, we just report the final result,

ρ̇(t) = i[ρ,H ′
OM + Hrn] + Lcav[ρ] + Lsc[ρ] + Dm[ρ]. (36)

Comparing to the case without scattering, Eq. (32), the new
terms are the following: first, two dissipation terms

Lsc[ρ] = κsc(2aρa† − a†aρ − ρa†a),
(37)

Dm[ρ] = �sc[b + b†,[b + b†,ρ]].

The first one Lsc[ρ] describes cavity photon losses due to
events in which cavity photons are scattered out of the cavity.
This term, which contributes to the decay rate of the cavity,
is obtained from Hκ

sc. For spherical objects smaller than the
wavelength, κsc is given by

κsc = ε2
c V

2k4
c c

16πVc

, (38)

where we have assumed the sphere to be trapped at the maxi-
mum slope of the standing wave, kcz ≈ π/4. As a check of the
theory, one can compare this expression with the decay rate
one would estimate using the Rayleigh cross section σR . With
this, the optical finesse is estimated as FR = πW 2

c /σR , and
consequently the decay rate κR = cσR/(4Vc). The Rayleigh
cross section neglecting the different polarization of the

incoming and scattered light (to be consistent with the rest
of the paper) is

σR = 4π

9
k4
cR

6ε2
c . (39)

By plugging σR into κR = cσR/(4Vc), one recovers the same
expression as derived in the theory, Eq. (38).

The term Dm[ρ] describes recoil heating due to elastic
scattering out of the cavity. This is obtained from H�

tw and
H�

sc. The heating rate �sc = �cav
sc + �tw

sc has two contributions
from the cavity photons and from the tweezers light. For
subwavelength dielectric spheres, it reads

�sc = ε2
c k

6
cV

6πρωt

(
Pt

ωLπW 2
t

+ nphc

2Vc

)
, (40)

where the first (second) term is �tw
sc (�cav

sc ) and Pt denotes
the power of the trapping laser. Here, nph is the number of
steady-state photons in the cavity due to the driving field. We
remark that surprisingly these results are in agreement with the
ones obtained in the standard theory of decoherence [52–54].
Another important remark is that the dissipative term Dm[ρ]
does not create any mechanical damping of the oscillator, but
only diffusion. Hence, in this case it might be misleading
to discuss the mechanical quality factor of the harmonic
oscillator. We think that it is more appropriate to consider
coherent times 1/�sc as usually done in the case of ions.
The harmonic oscillator can oscillate without mechanical
damping5 for very long times, however a quantum state
prepared in the harmonic oscillator will lose coherence in a
time scale of 1/�sc. Using typical numbers, see Appendix E,
this corresponds to time scales of the order of 0.1 ms for
nanospheres.

Finally, H�
sc and H�

tw also yield an additional force Hrn.
For a propagating wave it produces a force in the direction
of light propagation, generally known as the scattering force.
Apart from that, this term modifies the trapping frequency
by ωt → ωt (1 − εc)1/2 and the optomechanical coupling by
g0 → g0(1 − εc)1/2. This contribution has to be added to
the optomechanical Hamiltonian HOM, and represents a non-
negligible QED renormalization of the Hamiltonian due to
virtual photon exchange. This QED effects will be addressed
in Ref. [45], where we will show that higher perturbative terms,
for example, those corresponding to emission and reabsorption
of two photons, are suppressed by several orders of magnitude
for small spheres.

IV. QUANTUM ELASTICITY

Let us now address the coupling of the c.m. motion mode to
other internal vibrational modes. One can model the dielectric
as an object containing N constituents, in this case atoms, that
are coupled to each other by mutual interactions, here modeled

5A nonzero mechanical damping will of course be induced by
other sources of decoherence, such as the background gas pressure
(see [21]), laser shot noise, or from other sources (see supplementary
information in [22] for an explicit analysis of all of them). These
mechanical damping sources yield very high mechanical quality
factors >1010, as predicted in [21,22].

013803-7



O. ROMERO-ISART et al. PHYSICAL REVIEW A 83, 013803 (2011)

by springs. The entire nanodielectric inherits N different
modes (one of them is the c.m. mode), a collective movement
of all the system’s constituents in the same direction. The
other modes can be described as movements of the different
constituents relative to each other, mediated by the springs. All
of these different modes are also coupled to each other, which,
in turn, influences their form and lifetime. In principle, one
can couple any of these modes to light, especially if the object
is sufficiently large. We are particularly interested in the c.m.
mode in this paper. We will focus on investigating the influence
of the relative modes, also denoted as vibrational modes,
on the c.m. mode, treating them as a source of decoherence:
the vibrational modes can, in principle, take the role of a
thermal bath and prevent ground-state cooling of the c.m.
degree of freedom. To investigate this source of noise, we use
an elasticity theory for quantum systems in this section. After
introducing a field characterizing the object’s deformation, we
determine the vibrational eigenmodes in Sec. IV A. Thereafter,
we analyze the effect of an additional external potential and
the induced interactions between c.m. and vibrational modes in
Sec. IV B. Finally, in Sec. IV C we discuss the effect for small
objects and obtain an effective Hamiltonian by adiabatically
eliminating the internal modes.

A. Vibrational eigenmodes

Let us start by defining the coordinate x′, which describes
a point in the dielectric object. As illustrated in Fig. 2, this can
be written in the most general form as

x′ = r + R̂(φ1,φ2,φ3) [u(x) + x] , (41)

where r denotes the c.m. position. In the coordinate system
centered at the c.m. position, x is the coordinate describing
an equilibrium point and u(x) is its deformation field. The
term R̂(φ1,φ2,φ3) is the Euler rotation matrix with the Euler
angles φ1,φ2,φ3 that is used to rotate the coordinates x
and u(x). Note that the c.m. position can be defined as
r = ∫

dxρ(x)x′/[
∫

dxρ(x)], with ρ(x) denoting the system’s
density distribution. Therefore,

∫
dxρ(x)[x + u(x)] = 0. In

order to guarantee that r remains the c.m. coordinate in the

r

x

x

y

xu(x)
R

FIG. 2. (Color online) Coordinates used to describe a posi-
tion x′ within an arbitrary dielectric object given by x′ = r +
R̂(φ1,φ2,φ3) (u(x) + x), where r denotes the c.m., u(x) denotes a
small displacement from the equilibrium position x, and R(φ1,φ2,φ3)
denotes the Euler rotation matrix acting on the entire object.

case of a vanishing deformation field, that is, u(x) = 0, one
requires

∫
dxρ(x)x = 0, and consequently, the deformation

field always has to fulfill
∫

dxρ(x)u(x) = 0.
The system’s Lagrangian in the presence of a general three-

dimensional potential V (x′) reads [55,56]

L =
∫

V

dx
(

1

2
ρ(x)ẋ′2 − V (x′) − VE(x)

)
. (42)

The elasticity potential is given by

VE(x) = 1

2

∑
i,j

σij (x)εij (x), (43)

where

εij (x) = 1

2

(
∂ui(x)

∂xj

+ ∂uj (x)

∂xi

)
,

(44)
σij (x) = 2µεij (x) + λδij

∑
k

εkk(x)

are the elasticity and the stress tensor. The Lamé constants
are defined as λ = σY [(1 + σ )(1 − 2σ )]−1 and µ = Y [2(1 +
σ )]−1, with σ being the Poisson ratio and Y the Young modulus
characterizing the elastic properties of the material. One can
now replace the expression of x′ in the kinetic part of the
Lagrangian and obtain

L = 1

2
Mṙ2 + 1

2

∑
i

Ii φ̇
2
i + 1

2

∫
V

dxρ(x)u̇(x)2

−
∫

V

dx[V (x′) + VE(x)], (45)

where the dots denote time derivatives and Ii is the object’s
moment of inertia. We have used that in the kinetic part of
the Lagrangian, the rotational, vibrational, and c.m. degrees of
freedom decouple [56].

Let us now determine the unperturbed vibrational eigen-
modes of the system, that is, the modes obtained without
considering the potential density V (x′). In the following, we
will assume for simplicity the homogeneous case ρ(x) = ρ;
the nonhomogeneous case can be incorporated easily. Also,
we will omit the rotational modes since they decouple without
the presence of the external potential. Let us first derive the
Hamiltonian by defining the c.m. momentum as pi = ∂L/∂ṙi

and the momentum density as vi(x) = ∂L/∂u̇i(x), leading to

H0 = p2

2M
+

∫
V

dx
(

[v(x)]2

2ρ
+ VE(x)

)
. (46)

One can determine the vibrational eigenmodes by separating
variables in the corresponding equation of motion for u(x,t),
which reads [55]

ρü(x,t) = µ∇2u(x,t) + 1
2λ∇[∇ · u(x,t)]. (47)

Here, u(x,t) can be separated into transversal and longitu-
dinal oscillation modes, u(x,t) = u⊥(x,t) + u||(x,t), where
∇ · u⊥(x,t) = 0 and ∇ × u||(x,t) = 0, and either open or
periodic boundary conditions can be used. The longitudinal
modes describe compression waves propagating at velocity
c|| = [(λ + 2µ)/ρ]1/2 and the transversal modes describe
torsion wave propagating at c⊥ = (µ/ρ)1/2. In the following,
we will only consider the longitudinal modes along the
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cavity axis. By expanding the elasticity field along the cavity
axis for these eigenmodes u0

n(z) [which are normalized as∫
V

dxu0
n(z)u0

m(z) = δnmV ], one has

u(z,t) =
∑

n

u0
n(z)Qn(t),

(48)
v(z,t) =

∑
n

u0
n(z)Pn(t),

where Pn(t) = ρ Q̇n(t). By plugging this decomposition into
the Hamiltonian Eq. (46), one obtains after some algebra

H0 = p2

2M
+

∑
n

(
P 2

n

2M
+ 1

2
Mω2

nQ
2
n

)
, (49)

where the frequency of the internal modes is given by

ω2
n = λ(1 − σ )

Mσ

∫
V

dx
(

d

dz
un(z)

)2

. (50)

The eigenmodes u0
n(z) have to be chosen in accordance with

the geometry of the object. We will discuss the specific form
of the mode and the value of the parameters in Sec. IV C.

At this position, it is straightforward to perform a canon-
ical quantization of the eigenmodes Qn, by considering
them as operators fulfilling the canonical commutation rules
[Qn,Pm] = i. As already done in the previous sections, the
momentum operator of the c.m. will also be quantized with
the external harmonic trap.

B. Effect of the external potential

The external potential V (x′) can, in principle, effect a
coupling between the rotational, the c.m., and the vibrational
degrees of freedom. In the case of a purely isotropic har-
monic potential, it can be easily verified that the coupling
vanishes. On the other hand, for arbitrarily shaped objects,
the external anharmonic part of the potential effects some
coupling between all degrees of freedom. In the following,
we assume spherical objects, for which the direct coupling
between the c.m. and the rotational degrees of freedom
vanishes. Even in the case of a prolate spheroid, the coupling is
negligible [22]. For spherical objects, there is only an indirect
coupling between the c.m. and the rotations, mediated by
the vibrational modes; this coupling is negligible and will be
omitted hereafter. Therefore, with these assumptions one can
consider the c.m. mode to be decoupled from the rotational
motion, and we consequently omit the rotational modes in the
rest of the section. One can then focus on the one-dimensional
case derived in the previous section by only considering the
longitudinal modes.

The total Hamiltonian, including the external potential, is
hence given by

H = H0 +
∫

V

dxV (z′). (51)

Assuming that the deformations u(z) are small and that
the object is trapped at r ≈ 0, one can expand V (z′ = z +

u(z) + r) to second order in r and u(z), which leads to

H = H0 + r

∫
V

dxV ′(z) + r2

2

∫
V

dxV ′′(z)

+ 1

2

∑
n,m

QnQm

∫
V

dxu0
n(z)u0

m(z)V ′′(z)

+
∑

n

Qn

∫
V

dxu0
n(z)V ′(z)

+ r
∑

n

Qn

∫
V

dxu0
n(z)V ′′(z), (52)

where the primes denote spatial derivatives. By recalling that
the external potential is, in our case, given by the light-matter
interaction term Eq. (24), that is, V (x′) = −εcε0[E(x′)]2/2,
one can understand the terms appearing in Eq. (52) as follows:

(1) The term r
∫
V

dxV ′(z) yields the optomechanical cou-
pling of the c.m. mode as described in Appendix B2.

(2) The second term r2
∫
V

dxV ′′(z)/2 describes the har-
monic trap of the c.m. given by the optical tweezers, as
described in Appendix B1.

(3) The term QnQm

∫
V

dxu0
n(z)u0

m(z)V ′′(z)/2 gives a cor-
rection to the harmonic trap for the internal modes as well as
a coupling between internal modes.

(4) The first new interesting term is Qn

∫
V

dxu0
n(z)V ′(z),

which describes an optomechanical coupling between the
internal modes and the cavity field.

(5) Finally, the most relevant term for our purposes is
rQn

∫
V

dxu0
n(z)V ′′(z), which describes the coupling between

the vibrational degrees of freedom Qn and the c.m. mode r .
Taking these terms into consideration, one can now write

the c.m. mode as r = z0(b† + b), where z0 is the ground-state
size, as used in Sec. III, and the internal modes as Qn =
q0,n(cn + c

†
n), with q0,n = (2Mω′

n)−1/2. Note that, due to the
additional external trapping with frequency ωt , the effective
vibrational frequencies are changed to ω′

n = (ω2
t + ω2

n)1/2 (we
will omit the prime hereafter). The new part that has to be
added to the total Hamiltonian Htot, see Eq. (29), which takes
into account the presence of internal modes, is given by

HE =
∑

n

ωnc
†
ncn +

∑
n

gn(a,a†)(cn + c†n)

+
∞∑
n,m

ξnm(cn + c†n)(cm + c†m)

+
∞∑
n

γn(cn + c†n)(b + b†). (53)

The coupling between the cavity field (which depends on
the cavity mode a) and the vibrational modes is given
by gn(a,a†) = q0,n

∫
V

dxV ′(z)u0
n(z). The coupling between

the internal modes is ξnm = q0,nq0,m

∫
V

dxu0
n(z)u0

m(z)V ′′(z)/2.
Finally, the coupling between the c.m. mode and the vibrational
modes is given by

γn = z0q0,n

∫
V

dxV ′′(z)u0
n(z). (54)

Summing up this subsection, we have derived the quantized
Hamiltonian describing the coupling between the c.m. and
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the vibrational modes in the presence of an external potential
density. It can be shown that for a harmonic external potential,
the c.m. mode is decoupled from the internal ones since
V ′′(z) is constant, and by recalling that

∫
V

dxu0
n(z) = 0, one

obtains γn = 0. In the next section, we estimate the order
of magnitude of the parameters for objects smaller than the
optical wavelength in the presence of the anharmonic potential
given by the standing wave.

C. Subwavelength spheres

First of all, let us estimate the order of magnitude of the
internal vibrational frequencies, see Eq. (50), for the case
of a sphere of radius R. To get an estimation of the order
of magnitude, for simplicity one can just use the eigenmode
u0

n(z) = cos(knz) with kn = nπ/(2R), obtained for a cube of
length 2R and with open free periodic boundary conditions.
Then, using typical values of Young’s elasticity module Y

and the Poisson constant σ (see Appendix E), the vibrational
frequencies are of the order ωn ≈ 1011Hz (ωn ∼ nc||/R).
Note that comparing this to the typical values of the c.m.
frequency ωt ∼ 106 Hz, the internal frequencies are five orders
of magnitude larger for objects of the order of 100 nm.

This large difference in frequencies between the c.m.
modes and the internal modes enables us adiabatically to
eliminate the vibrational energy levels. It can be shown that this
approximation is justified by solving the equation of motion
for the c.m. and vibrational operators by applying Laplace
transformations. The solution obtained in this way contains
parts oscillating at frequencies ωt and ωn, where all terms
oscillating at ωn are suppressed by a factor ωt/ωn � 1. Thus,
it is well-justified to neglect these terms and to perform an
adiabatic elimination. One can perform this by eliminating the
vibrational levels on top of the steady state, yielding the result
that the only effect is a shift of the trapping frequency of the
c.m. mode given by(

ω′
t

ωt

)2

= 1 −
∑

n

4γ 2
n

ωt (ωn − ωt )
(2〈c†ncn〉 + 1), (55)

where 〈c†ncn〉 is the occupation number of phonons in the
vibrational mode n. By plugging in typical numbers, one gets a
correction to the trapping frequency of (ω′

t − ωt )/ωt ≈ 10−12,
which shows that the c.m. mode is decoupled from the internal
modes for objects smaller than the optical wavelength.

V. LIGHT-MECHANICS INTERFACE

One of the most fascinating perspectives of quantum
optomechanics is the possibility to prepare superposition states
of objects containing billions of atoms, and, therefore, to
test quantum mechanics at larger scales. Already in the early
days of this research area, several groups proposed to create
nonclassical states of a movable mirror [57–59]. The idea
behind these proposals is to use the optomechanical interaction
to entangle a small quantum system with the macroscopic
object. By observing the state of the small quantum system, the
creation and loss of the nonclassical state in the macroscopic
system can be monitored. This idea was also used in [60],
where the coupling between a micromechanical resonator and
a Cooper-Pair box is proposed in order to prepare entanglement

between the quantum system (Cooper-Pair box) and the
cantilever. We note that an experiment has been recently
reported in [61] in which coherent control of a single phonon
was achieved in a high-frequency micromechanical oscillator.
In Marshall et al. [19] (see also [20]), a scheme to prepare
a superposition state of two distinct locations of a mirror
through the optomechanical interaction with a single photon
has been proposed. These ideas pose a major challenge to an
experimental realization mainly due to the following reasons:
(i) the coupling between the small quantum system and the
macroscopic mechanical system is not strong enough, and (ii)
the mechanical system suffers from its fast decoherence due
to the thermal contact.

In this section, we show a possible way to circumvent
these two restrictions. We propose two protocols to strongly
couple a non-Gaussian light state to a mechanical object.
This is achieved by using a driving field which enhances the
interaction into the strong-coupling regime (the interaction
time has to be faster than the decoherence times). This
enhancement of the optomechanical coupling by the driving
field was suggested in [26,46] and experimentally observed
in [62]. Then, on top of the driving field, which is red-detuned,
a quantum light state is sent into the cavity which is transferred
to the mechanical system by the strong coupling. This idea has
been introduced in [21] (see also [63,64]). Additionally, we
propose an alternative protocol that uses the weak-coupling
regime to prepare non-Gaussian states. These protocols, which
can be applied to general optomechanical systems, are ideally
suitable for optically levitating nanodielectrics, since they do
not have a thermal contact [21,22], and thus possess longer
coherent times.

These general light-mechanics interface protocols allow
us to prepare non-Gaussian states by using a Gaussian
Hamiltonian. Their key ingredient is that one uses non-
Gaussian input states (similar ideas have been used in
the context of quantum computation [65,66]). Hence, these
protocols represent an effective and simple way to produce
nonlinearities in optomechanical systems, a goal that is being
intensively pursued (see, for instance, [43]).

Finally, we remark that in the case of a levitating object,
light scattering yields decoherence of the mechanical state
with a rate given by �sc. For sufficiently small objects, this
can be made much smaller than κ . In the following, where
we are interested in designing the protocols, we will neglect
the effects of light scattering (more precisely, the term Hsc)
by assuming that the protocols can be realized on a time scale
much shorter than 1/�sc. For other optomechanical setups,
decoherence in the mechanical system could be incorporated
easily into the protocols.

This section is organized as follows: In Sec. V A, we
transform the total Hamiltonian of the system in order to
account for the driving field of the laser. We then present
three different protocols in Secs. V B, V C, and V D.

A. Driving field: Displaced frame and initial state

In this subsection, we transform the Hamiltonian Htot, see
Eq. (29), into H ′

tot to incorporate the driving field of the cavity
and keep a close structure of the Hamiltonian. This allows us
to describe the quantum states on top of the steady state which
will be used in the protocols. Throughout the paper, we will
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use either the original frame, in which states are described
according to Htot, or the transformed or displaced frame, in
which states are related to H ′

tot. Then, we describe in both
frames the form of the total initial state that one obtains after
cooling the mechanical oscillator to the ground state.

1. Displaced frame

In this subsection, we will perform the standard transfor-
mation [26,28,46] done in quantum optomechanics to shift the
coherent part of the states obtained when driving the cavity
with a laser. However, contrary to what is usually done, here
we also need to displace the output modes since we use them
in the light-mechanics interface.

First, one moves the cavity and the output field to the frame
rotating with the laser frequency ωL. This is described by the
unitary operator

Ur (t) = exp

[
−iωL

(
a†a +

∫ ∞

0
a
†
0(ω)a0(ω) dω

)
t

]
. (56)

To ease the notation, after this transformation we redefine the
a0(ω) and γ (ω) such that a0(ω) ≡ a0(ω + ωL) and γ (ω)E ≡
γ (ω + ωL). The total Hamiltonian (ignoring the scattering part
Hsc and the shift Hsh, which is discussed later) reads

Htot = �0a
†a + ωtb

†b + g0a
†a(b† + b) +

∫ ∞

−ωL

ωa
†
0(ω)a0(ω)

+ i
∫ ∞

−ωL

γ (ω)[a†a0(ω) − H.c.], (57)

where �0 = ωc − ωL. Then, one displaces the cavity field
with the displacement operator Da(α), the mechanical field
with Db(β), and the output modes with Dout(αω), that is,

D
†
a(α)aDa(α) = a + α,

D
†
b(β)bDb(β) = b + β, (58)

D
†
out(αω)a0(ω)Dout(αω) = a0(ω) + αω.

After applying this transformation to the Hamiltonian, one
fixes α, β, and αω, such that the terms in the Hamiltonian that
have only one creation or annihilation operator vanish. This
corresponds to solving the following set of equations:

�0α + 2g0αβ + i
∫ ∞

−ωL

γ (ω)αωdω = 0,

ωtβ + g0|α|2 = 0, (59)∫ ∞

−ωL

ωa
†
0(ω)αω − i

∫ ∞

−ωL

γ (ω)a†
0(ω)α = 0,

which have the solutions

α = 
L

i� + κ
, β = −g0|α|2

ωt

,

(60)

αω =
(


L

γ (0)
− παγ (0)

)
δ(ω) + iαγ (ω)P(ω−1).

Here, � = �0 + 2g0β and α0 = 
L/γ (0), where 
L =√
2Pcκ/ωL, Pc being the laser power. The symbol P denotes

the principal part, and we have used that γ 2(ω) ≈ κ/π in
a finite region around ω = 0 [44] to perform the integral
P

∫ ∞
−∞ ω−1dω = 0. In Appendix D1, we show how to obtain

the expression of αω from a more physical perspective.

To sum up, the transformation applied to the Hamiltonian
can be defined as D ≡ Dout(αω)Db(β)Da(α), and the trans-
formed Hamiltonian is given by

H ′
tot = D†HtotD = H ′

OM + H ′
LC, (61)

where

H ′
OM = ωtb

†b + �a†a + g(a† + a)(b† + b) (62)

is the enhanced optomechanical Hamiltonian, and HLC is
transformed into

H ′
LC =

∫ ∞

−ωL

ωa
†
0(ω)a0(ω) dω

+ i
∫ ∞

−ωL

γ (ω)[a†a0(ω) − H.c.] dω. (63)

Note that Eq. (61) has the same structure as Eq. (57) with
the only replacement being �0 → � and g0a

†a(b† + b) →
g(a† + a)(b† + b). We have defined g = g0|α| and ξ = arg(α),
and we have redefined the a [a0(ω)] operators as a′ = ae−iξ

[a′
0(ω) = a0(ω)e−iξ ] (we omit the prime hereafter). A crucial

remark is that the optomechanical coupling g is enhanced by
α, which is the square root of the mean number of photons
inside the cavity in the steady state. This will allow us to reach
the strong coupling g ∼ κ (where κ is the decay rate of the
cavity) in the light-mechanics interface.

We remark that in case of using levitating objects, the
shift to the trapping frequency as well as the shift in the
equilibrium position, given by the Hamiltonian Hsh, should
be taken into account in the H ′

OM Hamiltonian. As discussed
in Appendix B3, this would imply to change the trapping
frequency to ωt → ωt + ωsh, and the displacement of the
cavity mode to β → β + ξsh/ω, where ωsh and ξsh are given in
Appendix B3. However, to keep the section in a general form,
so that it can also be applied to other optomechanical systems,
we will omit this effect hereafter.

The transformed Hamiltonian can now be written in the
interaction picture [assuming that the free part is H0 =
ωtb

†b + �a†a + ∫ ∞
−ωL

ωa
†
0(ω)a0(ω)dω] as

HI
tot = g(a†ei�t + ae−i�t )(b†eiωt t + be−iωt t )

+ i
∫ ∞

−ωL

γ (ω)[a†a0(ω)ei(�t−ωt) − H.c.] dω. (64)

Now, by choosing a red-detuned driving � = ωt , one can
perform the rotating-wave approximation (valid at ωt � g)
and obtain the beam-splitter interaction form of the total
transformed Hamiltonian in the Schrödinger picture,

H r
tot = ωt (a

†a + b†b) + g(a†b + ab†) + H ′
LC. (65)

Analogously, one can consider a blue-detuned driving � =
−ωt in order to get the two-mode squeezing interaction
Hamiltonian:

H b
tot = −ωt (a†a − b†b) + g(a†b† + ab) + H ′

LC. (66)

These two types of interaction will be used in Sec. V to design
different protocols in the light-mechanics interface.
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2. Initial state

All the protocols that we shall discuss in the next section
assume that the initial state is the ground state cooled by
the red-detuned field (� = ωt ). As discussed in the previous
section and in Appendix D, this state is given by

|in〉 = |β〉b ⊗ |α〉a ⊗
∫ ∞

−ωL

Dout(αω)dω|
〉out = D|00
〉,
(67)

where “b (a)” labels the subspace of the mechanical mode
(cavity mode), “out” is the subspace of the output modes, and

 is the vacuum state for the output modes. The displacements
α, β, and αω are defined in Eqs. (60).

Note that |in〉 is an eigenstate of the total Hamiltonian Htot,
see Eq. (57). This can be trivially demonstrated by using that
D†HtotD = H r

tot [for the red-detuned case Eq. (65)], and that
H r

tot|00
〉 = 0, since then one has

Htot|in〉 = DD†HtotD|00
〉 = DH r
tot|00
〉 = 0. (68)

The state |in〉 (reading |00
〉 in the displaced frame) will be
considered as the initial state upon which the protocols are
designed using either the beam-splitter interaction Eq. (65) or
the two-mode squeezing interaction Eq. (66).

B. Reflected one-photon state

In this subsection, we will present a protocol which strongly
couples a one-photon state to the mechanical motion of the
oscillator. This protocol is general and can be applied to
various optomechanical systems. Let us remark that it has
already been introduced by some of the authors in [21]
and that related ideas have been reported in [63,64]. In this
subsection, we will provide a thorough analysis. In particular,
we develop a formalism to solve the input-output formalism
in the Schrödinger picture to be able to describe the final state
of the protocol.

Let us start by sketching the different steps of the protocol:
(i) Cool the mechanical motion to the ground state by the

red-detuned driving field.
(ii) Keep the strong driving field switched on such that the

beam-splitter interaction is induced inside the cavity.
(iii) Impinge the cavity with a resonant single-photon state,

sent on top of the driving field as a result of parametric down-
conversion followed by a detection of a single photon [47].

(iv) When impinging the cavity, part of the field is reflected
and part is transmitted [67].

(v) The beam-splitter interaction Eq. (65) caused by the
red–detuned laser swaps the state of light inside the cavity to
the state of the mechanical motion.

(vi) By tuning the width of the light pulse appropriately,
one finds that at time th, one has a maximum mean number
of phonons of 1/2 in the mechanical system. At that time,
the driving field is switched off. Then, the entangled state
|E〉out,b ∼ |0̃〉out|1〉b + eiφ|1̃〉out|0〉b is prepared. Here, out(b)
stands for the reflected cavity field (mechanical motion) of the
system, and |0̃(1̃)〉out is a displaced vacuum (one-photon) light
state in the output mode of the cavity Aout. The phase φ, given
by the light-mechanics interaction, is always fixed.

(vii) At a later time, once the reflected photon is far away
from the cavity, a balanced homodyne measurement of the
output mode is performed. The motional state collapses into
the superposition state |�〉b = c0|0〉b + c1e

iφ|1〉b, where the
coefficients c0(1) depend on the measurement results.

In the following, we will analyze carefully the important
steps of the protocol. In the shifted frame, the initial state
(according to Sec. V A 2), consisting of a photon on top of the
ground state of the mechanical oscillator, is given by

|�(0)〉 =
∫ ∞

−ωL

φ�
in(ω)a†

0(ω)|00
〉, (69)

where φ�
in(ω) is the shape of the photon pulse, which is assumed

to be Gaussian,

φin(ω) =
(

2

πσ 2

)1/4

e−(ω−�)2/σ 2
e−iωxin . (70)

Here, xin is the position from which the pulse has been sent (it
is considered to be large, xin � 0). � = ωc − ωL = ωt is the
detuning, which shows that in the nonrotating frame, the pulse
is centered at the resonance frequency of the cavity. Note also
that one can express the mode function in position space by
the Fourier transform φ̃in(x) = ∫

dωφin(ω)eiωx/
√

2π .
The time-evolved state with the beam-splitter interaction

Eq. (65), |ψ(t)〉 = exp(−iH r
tott)|ψ(0)〉, can be expanded in the

following basis:

|ψ(t)〉 = cb(t)|10
〉 + ca(t)|01
〉
+

∫ ∞

−ωL

c(ω,t)a†
0(ω)dω|00
〉. (71)

The time dependence of the coefficients can be obtained using
the Wigner-Weisskopf formalism. By using the Schrödinger
equation, one obtains

ċb(t) = −iωtcb(t) − igca(t),

ċa(t) = −iωtca(t) − igcb(t) +
∫ ∞

−ωL

γ (ω)c(ω,t) dω, (72)

ċ(ω,t) = −iωc(ω,t) − Eγ (ω)ca(t).

This system can be further simplified by formally solving the
differential equation corresponding to c(ω,t), plugging it into
the equation for ċa(t), and by using the approximation γ (ω) ≈
γ (0) = √

κ/π . One gets (analogous manipulations have been
explicitly done in Appendix D)

ċb(t) = −iωtcb(t) − igca(t),

ċa(t) = −(iωt + κ)ca(t) − igcb(t)
(73)

+
∫ ∞

−ωL

γ (ω)e−iωtc(ω,0) dω,

ċ(ω,t) = −iωc(ω,t) − Eγ (ω)ca(t).

This system of differential equations can be solved by using
that ca(0) = cb(0) = 0 and c(ω,0) = φ�

in(ω). After some effort,
one obtains

ca(t) =
√

2κ

∫ t

0
p−(t − τ )φ̃�

in(τ )e−iωt (t−τ )dτ,

(74)

cb(t) =
√

2κ

∫ t

0
q(t − τ )φ̃�

in(τ )e−iωt (t−τ )dτ.
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FIG. 3. (Color online) Input-output dynamics after sending a
one-photon pulse centered at xin = 5/κ from the cavity at t = 0. A
Gaussian pulse of width σ = 5.6κ is used. We plot the mean number
of phonons in the mechanical system n̄b(t) = |cb(t)|2 (red solid line)
and the mean number of cavity photons n̄a(t) = |ca(t)|2 (blue dashed
line). We consider the strong-coupling regime g = κ , and tune the
width of the pulse so that the maximum mean number of phonons is
∼1/2 (dotted gray line) at t = th.

The functions q(t) and p−(t) are defined by

p±(t) = e−κt/2

(
cosh(χt) ± κ

2χ
sinh(χt)

)
,

(75)
q(t) = −i

g

χ
e−κt/2 sinh(χt),

where χ =
√

κ2/4 − g2. One can now plot the mean number
of phonons n̄b(t) = |cb(t)|2 and photons n̄a(t) = |ca(t)|2; see
Fig. 3 for some parameters given in its caption. Note that at
t = th, where

th = xin + arccos(κ/2g)√
g2 − κ2/4

, (76)

the mean number of phonons n̄b is maximal. By tuning the
width of the initial pulse, one obtains that ca(th) ≈ 0 and
|cb(th)| ≈ 1/

√
2. In this case, the total state at th is given by

|ψ(th)〉 = cb(th)|10
〉 +
∫ ∞

−ωL

c(ω,th)a†
0(ω) dω|00
〉.

(77)

This is an entangled state between the output photon mode,
described by the pulse shape c(ω,th), and the mechanical
phonon mode. In the nondisplaced frame, the state at th is
described by |ψ ′(th)〉 = D|ψ(th)〉.

At t = th the driving field is switched off. However, at
this time, there is still a large number of photons |α|2
present inside the cavity. They will leak out of the cavity
reducing the classical force that they were exerting on the
mechanical system, which is described by the displacement
of the mechanical system, β. In order to compensate for this
effect, one could move the center of the trap mω2

t [x − xt (t)]2/2
accordingly, which yields a force term −mω2

t xt (t)x0(b + b†),
to keep the ground state of the harmonic oscillator. Another
effect of this leaking out of photons is that the coefficient
cb(th) will be decreased at some later time. Note, however,
that one could send a pulse that generates |cb(th)| > 1/

√
2

such that, after the decrease due to the leaking out of

the coherent photons, one obtains |cb(t > th)| = 1/
√

2. The
discussion on how to compute and estimate this effect is done
in Appendix D3.

Here, we just approximate the state at t � th as

|ψ(t)〉 = cb(th)e−iωt (t−th)Dout|10
〉 + DoutA
†
out,t|00
〉, (78)

where Dout only displaces the output modes with αω. Also, we
have defined the output mode of the cavity as

A
†
out,t =

∫ ∞

−ωL

φout(ω,t)a†
0(ω) dω, (79)

where φout(ω,t) = c(ω,th)e−iω(t−th). Note that the displace-
ment is only in the output modes because the photons inside the
cavity, and the consequent radiation force into the mechanical
object, are not present at times t � th since the driving field
is switched off.

1. Measurement of the output mode

The final step of the protocol is the measurement of the
quadrature of the output mode Aout,t, that is

Xout,t = A
†
out,t + Aout,t. (80)

This measurement consists in integrating the signal of a
continuous measurement with the mode shape given by
φout(ω,t).

More generally, the output operator Aout = ∫ ∞
−ωL

φ(ω)a0(ω)
can be written as a combination of mode operators at position
x by using a0(ω) = ∫ ∞

0 dxe−iωxa0(x)dx/
√

2π , leading to

Aout =
∫ ∞

0
φ̃(x)a0(x) dx. (81)

Note that now the mode a0(x) can be measured at the position
x = xd of the detector at time t by the relation a0(xd,t) =
a0(x = xd − t,0). Then, by a continuous measurement of
a0(xd,t), one has access to the measurement of all a0(x) and,
consequently, also to Aout by integrating the signal over φ̃(x)
[note that Aout is a linear combination of the independent
modes a0(x)].

After the continuous measurement, let us assume one
obtains the value xout. Then, the superposition state in the
mechanical object, given by

|�〉 = 1√
2

(c0|0〉b + c1|1〉b) , (82)

is prepared, where c0(1) = 〈xout|1(0)〉. The measurement of
the quadrature poses an experimental challenge. If we define
the two orthogonal states |±〉0 = |
〉 ± A

†
out,t|
〉 and their

displaced states |±〉 = Dout|±〉0, one obtains that the mean
value and fluctuations of Xout are given by

〈Xout,t〉± = αx + 〈Xout,t〉±,0,
(83)〈

X2
out,t

〉
± = α2

x + 2αx〈Xout,t〉±,0 + 〈
X2

out,t

〉
±,0,

where we have defined αx = D
†
out,tXout,tDout − Xout,t. Thus,

〈�Xout,t〉± = 〈�Xout,t〉±,0. This shows that from the theo-
retical point of view, the two displaced states |±〉 are as
distinguishable as the nondisplaced ones |±〉0. From the
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experimental point of view, the problem is that the signal-
to-noise ratio in a balanced homodyne measurement is too
low. Although the displacement αx can be computed by using
φout(ω,t) and αω [see Eq. (60)], the final expression is not
very illustrative. Instead, in Appendix D2, we will analyze
the problem of the measurement of the output field when a
photon on top of the coherent field was prepared inside the
cavity. This general problem is more enlightening and the
conclusions apply directly to the reflected-photon protocol,
that is, the displacement of the output field is of the order of
α ∼ 104.

To circumvent this experimental challenge, we envisage
the following ways out: (i) subtract the coherent part by
destructively interfering with a coherent beam with the same
phase; (ii) use an optomechanical system where the detuning
between the resonant photon and the red-detuned driving is
much larger (since � = ωt , this would correspond to a large-
frequency mechanical oscillator). This must be done with-
out compromising the strong-coupling requirement, which
is based on the enhanced coupling g = |
L|g0/

√
�2 + κ2;

(iii) use a scheme similar to the one proposed in [64], where the
photon is sent in the dark port of an interferometer; (iv) design a
scheme where the light pulse is perfectly absorbed in the cavity
and therefore no measurement is needed. In the following
subsection, we present a protocol which follows solution (iv).

C. Perfect absorption

Here we present a protocol which circumvents the chal-
lenging step of measuring the displaced output mode in the
reflected one-photon protocol, as discussed in the previous
section (this protocol was announced in [21]). The goal is to
perfectly absorb the light pulse, which is in a non-Gaussian
state, into the cavity, and therefore transfer it to the mechanical
system. This is achieved by using a time modulation of the
optomechanical coupling g(t), which can be implemented by
varying the intensity of the driving field. Similar ideas have
been proposed in the context of quantum communication [68],
and recently in quantum optomechanical transducers [15].

1. Time-dependent displacement

In this subsection, one cannot use the beam-splitter in-
teraction (65), since the laser intensity is time-dependent.
Therefore, a time-dependent displacement has to be performed
carefully. Let us start with the basic Hamiltonian in the
nondisplaced frame Eq. (57). From there, one can derive the
evolution equations for a, b, and a0(ω),

ȧ = −i�0a − ig0a(b† + b) +
∫ ∞

−ωL

dωγ (ω)a0(ω,t),

ḃ = −iωtb − ig0a
†a, (84)

ȧ0(ω,t) = −iωa0(ω,t) − γ (ω)a.

The tool that will be used in this section is a time-dependent
driving field at the laser frequency ω = 0 (in the rotating
frame). This can be incorporated by applying the following
displacement to the output modes:

a0(ω,t) → a0(ω,t) −
√

π

κ

L(t)δ(ω). (85)

By formally integrating the equation of ȧ0(ω,t), and using the
Markov approximation γ (ω) ≈ √

κ/π , the system (93) reads

ȧ = −(i�0 + κ)a − ig0a(b† + b) + 
L(t) +
√

2κain(t),

ḃ = −iωtb − ig0a
†a, (86)

ȧ0(ω,t) = −iωa0(ω,t) − γ (ω)a +
√

π

κ

̇L(t)δ(ω),

where we have defined the so-called input operator as ain(t) ≡
(2π )−1/2

∫
dωa0(ω,0)e−iωt . Next, we perform the following

time-dependent displacement:

a(t) → a(t) + α(t),
(87)

b(t) → b(t) + β(t),

and choose α(t) and β(t), such that the constant terms in the
equations for ȧ(t) and ḃ(t) vanish, that is,

α̇ = −(i�0 + κ)α − ig0α(β + β�) + 
L,
(88)

β̇ = −iωtβ − ig0|α|2.
Then, we perform the following changes of variables:

a(t) → a(t)e−i�0t ,

b(t) → b(t)e−iωt t , (89)

α(t) = g(t)

g0
eiξ

[g(t) is real], and we perform the rotating-wave approximation
(RWA) considering the red-detuned case �0 = ωt . Putting all
these things together, Eqs. (86) read

ȧ = −κa − ig(t)eiξ b +
√

2κain(t)ei�0t ,

ḃ = −ig(t)e−iξ a,

ȧ0(ω,t) = −iωa0(ω,t) − γ (ω)[ae−i�0t + α(t)]

+
√

π

κ

̇L(t)δ(ω). (90)

We have neglected the small terms (not proportional to α)
−ig0a(b + b†) and −ig0a

†a in the equation of motion for ḃ.
We have also neglected the term −ig0a(β + β�) in the equation
for a. This term, which is smaller than −ig0a�0, makes the
equation describing the shape of g(t) (to be derived later in
the paper) much more difficult to solve and it is therefore also
neglected since it does not change the physics of the problem.

Finally, note that Eqs. (88) give the solution of the time-
dependent laser amplitude 
L(t) such that the time-dependent
coupling g(t) is implemented. In the next sections, we derive
the pulse g(t) for which any light state is absorbed into the
cavity and therefore perfectly mapped into the mechanical
system.

2. Condition for perfect absorption

The formal condition for perfect absorption can be derived
as follows. After the transformations are made, the evolution
equation for a0(ω,t) reads

ȧ0(ω,t) = −iωa0(ω,t) − γ (ω)ae−i�0t

− γ (ω)α(t) +
√

π

κ

̇L(t)δ(ω). (91)
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By formally integrating this equation for the initial condition
t = 0, as well as for the final condition t = t1, and subtracting
these two solutions after integrating over ω, one obtains
[using the approximation γ (ω) ≈ √

κ/π and that 
L(0) =

L(t1) = 0]

0 = ain(t) − 1√
2π

∫ ∞

−ωL

e−iω(t−t1)a0(ω,t1)

−
√

2κ
[
a(t)e−i�0t + α(t)

]
. (92)

This is the so-called input-output relation [44], which relates
the output field [the second term containing the a0(ω,t1)
modes] with the input field ain(t), the quantum field from the
cavity a(t), and its coherent part α(t). The condition for perfect
absorption is that the output field only contains the coherent
part from the cavity, that is,

1√
2π

∫ ∞

−ωL

e−iω(t−t1)〈a0(ω,t1)〉 = −
√

2κα(t). (93)

With this condition, Eq. (92) reads

〈ain(t)〉 =
√

2κ〈a(t)〉e−i�0t . (94)

One can now plug this condition into Eqs. (90) and obtain

〈ȧ(t)〉 = κ〈a(t)〉 − ig(t)〈b(t)〉eiξ ,
(95)

〈ḃ(t)〉 = −ig(t)〈a(t)〉e−iξ ,

which can be further simplified to

η(t)ġ(t) − η̇(t)g(t) + g3(t)〈a(t)〉 = 0, (96)

where η(t) = κ〈a(t)〉 − 〈ȧ(t)〉.

3. State-independent pulse

The solution of Eq. (96) yields the optomechanical pulse
g(t) necessary to perfectly transmit a light state into the
mechanical system. To obtain a state-independent solution,
we will assume that a coherent state with phase αs is sent to
the cavity, and we will show that the solution does not depend
on αs . Therefore, any linear combination of coherent states
(and therefore any state, since they form a complete basis)
will be perfectly transmitted to the cavity with the pulse g(t).

The initial state is assumed to be

|ψ(0)〉 = exp

(
αs

∫ ∞

−ωL

φ�
in(ω)a†

0(ω) dω − H.c.

)
|00
〉, (97)

where φ�
in(ω) is the shape of the pulse. One can then

obtain that 〈ain(t)〉 = αsφ̃
�
in(t), and using Eq. (94), 〈a(t)〉 =

αsφ̃
�
in(t)ei�0t /

√
2κ . Then, Eq. (96) reads

[κµ(t) − µ̇(t)]ġ(t) − [κµ̇(t) − µ̈(t)]g(t) + µ(t)g3(t) = 0,

(98)

where µ(t) ≡ φ̃�
in(t)ei�0t . This is the main result of the section

because its solution yields the time-dependent coupling g(t)
for perfect mapping of any light state into the mechanical
system, since it does not depend on the coherent phase αs .
In Fig. 4, the solution g(t) is plotted considering φin(ω) to
be the same Gaussian pulse used in the reflected one-photon
protocol; see Eq. (70).
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FIG. 4. (Color online) Perfect state transfer of a |0〉 + |1〉 pho-
tonic state by sending a Gaussian light pulse of width σ = 2κ/3
from a distance xin = 10κ (c = 1). We plot the time modulation
of g(t)/κ (solid red line) and 〈b(t)〉 (dashed blue line). After the
modulation, when g(t) = 0, one obtains that 〈b〉 = 1/2. This shows
that the superposition state has been mapped to the mechanical system
without requiring a measurement.

As an example, let us assume that one wants to transfer a
photon in a superposition state described by

|ψ〉 = 1√
2
|00
〉 + 1√

2

∫ ∞

−∞
φ�

in(ω)a†
0(ω)|00
〉. (99)

In Fig. 4, the mean value of b(t) is plotted using the g(t)
solution obtained for the Gaussian case. As expected, 〈b(t)〉
attains the value 1/2, showing that the superposition state
(|0〉 + |1〉)/√2 has been prepared.

To sum up, this protocol enables one to perfectly map any
state of light into the mechanical system without performing
any measurement, merely by using a smooth modulation of
the optomechanical coupling.

D. Teleportation in the bad-cavity limit

The two previous protocols required the strong coupling
g ∼ κ . In this subsection, we provide a protocol, announced in
[21], to map non-Gaussian states which is also applicable in the
bad-cavity limit κ > g. The key ingredient of the protocol is to
drive the cavity with a blue-detuned field to obtain a two-mode
squeezing interaction; see Eq. (66). The two-mode squeezed
state is then prepared by the optomechanical coupling between
the mechanical mode and the cavity mode, which rapidly leaks
out of the cavity. The output mode of the cavity, which is
in a two-mode squeezed state with the mechanical system,
can be used as an entanglement channel to teleport [69]
a non-Gaussian state of light from outside the cavity into
the mechanical system (see Fig. 5 for an illustration of the
protocol). This protocol was first introduced as an interface
between quantum dots in optical cavities [70]. In Ref. [70], a
detailed discussion of the protocol is provided, which applies
to our optomechanical setup in complete analogy. Thus, we
will only summarize and remark on the important aspects of
the protocol here.

Using the Hamiltonian Eq. (66), one can obtain the
equations of evolution for a and b,

ȧ(t) = −(i�0 + κ)a(t) − igb†(t) + √
2κain(t),

(100)
ḃ(t) = −iωtb(t) − iga†(t).
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|ψ e

|TMS b,out

ωL > ωc

FIG. 5. (Color online) Schematic representation of a light-
mechanics interface of teleportation in the bad-cavity limit. The cavity
is driven by a blue-detuned laser which induces a two-mode squeezing
interaction between the cavity mode and the mechanical mode. Being
in the bad-cavity limit κ > g, the cavity photons, which are in
a two-mode squeezed state |TMS〉 with the mechanical phonons,
rapidly leak out of the cavity. The output field is combined in a
beam-splitter together with the non-Gaussian state to be teleported
|ψ〉e. A measurement of the output quadratures would realize the Bell
measurement required for teleportation [69].

One can now move to the interaction picture [a(t) =
aI (t)e−i�0t and b(t) = bI (t)e−iωt t ], and by considering the
bad-cavity limit (κ � g), one can adiabatically eliminate aI (t)
by setting ȧI (t) = 0. One obtains

ḃI (t) = g2

κ
bI (t) − ig

√
2

κ
a†

in(t) e−i�0t . (101)

Formally integrating this equation and using the initial condi-
tions 〈a†

in(t)ain(t)〉 = 〈b†I (0)bI (0)〉 = 0 (the mechanical initial
state is assumed to be in the ground state) yields

〈b†I (t)bI (t)〉 = e2 g2

κ
t − 1. (102)

This can be used to obtain the squeezing parameter r of
the entangled state, which will provide the fidelity of the
teleportation scheme. As proved in [70], the output mode of
the cavity and the mechanical system are in the two-mode
squeezed state |TMS〉b,out, defined by (in the displaced frame)

|TMS〉b,out = S(reiφ)|00〉

= 1

cosh r

∞∑
n=0

(−eiφ tanh r)n|nn〉b,out

≡
∞∑

n=0

�n|nn〉b,out, (103)

where, in our case, φ = π/2 with the squeezing opera-
tor defined as S

(
reiφ

) = exp[−r(eiφa†b† − e−iφab)]. The
squeezing parameter r can be obtained using the relation
〈b†b〉 = (cosh r − 1) /2, as

r = arccosh
(
2e2g2t/κ − 1

)
. (104)

The teleportation fidelity is given by F = 1/(1 + e−2r ) [71].
Let us discuss the fact that the entangled state in the original

frame is given by Db(β)Dout(αout)|TMS〉b,out. Here Dout(αout)
is the displacement operator of the output mode, which is
displaced by αout as a consequence of the displacement of the
output operators a0(ω) by αω (analogously to the discussion in
Appendix D2). First, let us generally define the teleportation

scheme as the map �, such that it teleports a light state |ψ〉e
as follows:

�[|TMS〉b,out ⊗ |ψ〉e] = |ψ ′〉b. (105)

Here, the subscript e labels the external system containing
the state that one wants to teleport. Let us remark that
perfect teleportation |〈ψ |ψ ′〉| = 1 can only be achieved for the
maximally entangled state r → ∞. To determine the output
state in the original frame, let us first transform the initial state,

DbDout|TMS〉b,out = DbOb ⊗ Dout

∞∑
n=0

|nn〉b,out

= (
DbObD

T
out

)
b
⊗ 1

∞∑
n=0

|nn〉b,out, (106)

where Ob = ∑∞
n=0 �n|n〉〈n|. The relation A ⊗ B

∑
n |nn〉 =

ABT ⊗ 1
∑

n |nn〉 has been used, where BT denotes the
transpose of B. Using this relation, the output state of the
teleportation scheme with the original state is given by

�(DbDout|TMS〉b,out ⊗ |ψ〉e) = DbObD
T
out|ψ〉b. (107)

This gives the final state of the teleportation protocol in the
original frame. Note that DT

out(αout) = D
†
out(α

�
out). Therefore,

one can get rid of this displacement by teleporting the state
D(α�

out)|ψ〉e, such that the state teleported in the mechanical
system is given by Db(β)O|ψ〉b [the displacement Db(β)
can also be reduced by varying the center of the trap when
switching off the cavity lasers]. Besides, note that one can,
in principle, also choose the appropriate initial state |ψ〉 to
prepare a desired mechanical system |φ〉, such that Db|φ〉b =
DbO|ψ〉b.

VI. MECHANICAL TOMOGRAPHY BY TIME OF FLIGHT

After showing how to prepare non-Gaussian states, in
this section we discuss how to measure them. In general
quantum optomechanical systems, the proposal is to transfer
the mechanical state into a well-controlled quantum system,
such as a qubit, and probe the state in that system. This could
be analogously done in our setup by mapping the mechanical
state to the cavity mode by using the enhanced beam-splitter
interaction and performing full tomography of the output field.
However, this technique would suffer from the drawback that
the output field would contain a quantum state displaced
by the large driving field, and, therefore, the signal-to-noise
ratio would be challenging for experimental detection with
present-day technology.

In this section, we propose an alternative method to directly
perform full tomography of the mechanical system.6 In partic-
ular, we exploit the analogy of levitated nanodielectric objects
to atomic physics, more specifically to cold gases, where
time-of-flight measurements are used to experimentally probe
different many-body states [4]. The time-of-flight protocol to

6During the submission of this paper, an alternative proposal to
perform direct full tomography based in pulsed optomechanics was
suggested in [72].
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p(te)

z(t + tf ) ≈ (tf − t)p(te)/M

tf

FIG. 6. (Color online) Schematic illustration of the time-of-flight
protocol to perform full tomography of the mechanical state. The
momentum operator at times te, which corresponds to the rotated
phase quadrature χ (ωt te + π/2), is determined by measuring the
position of the dielectric after some time of flight. By repeating the
experiment at different times te, one can perform full tomography of
the mechanical state.

perform direct full tomography of the mechanical state is the
following (see Fig. 6):

(a) We consider that at t = 0, a particular state |ψ〉 in the
mechanical system is prepared (for instance, a non-Gaussian
state using the light-mechanics interface introduced in Sec. V).
Just after the preparation of the state, the cavity field is switched
off and only the optical trapping remains on. During these
transient times, the center of the trap has to be changed to
account for the variation in the classical force created by the
driving field, as discussed in the light-mechanics interface.

(b) Then, during some given time te, the system is evolving
within the harmonic potential, such that the mechanical
momentum operator in the Heisenberg picture is given by

p(t) = ipm(b†eiωt t − be−iωt t ), t ∈ [0,te], (108)

where pm = (Mωt/2)1/2.
(c) At t = te, the trap is switched off and the nanodielectric

falls freely during the time of flight tf , such that the distance
from the center of the cavity along the cavity axis is given by

z(te + tf ) = z(te) + (tf − te)
p(te)

M
∼ (tf − te)

p(te)

M
, (109)

where we assume that tf is sufficiently large such that (tf −
te)p(te)/M � z(te).

(d) At t = te + tf , the position z(te + tf ) is measured (e.g.,
by imaging the object and measuring the center of the light
spot in the screen), which means that the in-trap momentum
p(te) is effectively measured.

(e) The experiment is repeated to obtain statistics for any
time te ∈ [0,2π/ωt ].

The key observation is that with the data obtained in this
protocol, one has the statistical distribution of the rotated
quadrature phase operator,

X (θ ) = eiθb† + e−iθb, (110)

which permits the reconstruction of the Wigner function
[47,73], and therefore contains all the information about the
mechanical state |�〉 (of course, it does not have to be a pure
state). Indeed, there exists the following one-to-one relation
between the momentum operator and the rotated quadrature
phase operator,

p(te) = X (ωt te + π/2). (111)

Let us now discuss some experimental considerations.
First, we will estimate the order of magnitude of tf (and
therefore the time-of-flight distance df = gt2

f /2, where g is
the gravitational acceleration). In particular, let us assume that
after the time of flight, the position can be measured with a
resolution given by δz. This implies that the object has to
spread over a distance much larger than δz, which means
that tf � Mδz/pm is required. Using the parameters given
in Appendix E, one obtains that tf is of the order of tens of
milliseconds, which would require a time-of-flight distance
of the order of 1 cm. Although this position resolution is
very feasible, the requirement could even be relaxed with
the same duration of time of flight. The idea is to amplify
the oscillation via driving the field with a blue-detuned laser
prior to letting the object fall. More specifically, let us assume
that just after the preparation of the mechanical state, one
impinges the cavity with a laser detuned to the blue sideband
of the cavity. This corresponds to including an additional step
[point (a-1)] between steps (a) and (b) in the previous protocol.
The blue-detuned driving is performed during a certain time
τ < 1/� (where � is the decoherence rate when the cavity
field is switched on). After this amplification, the momentum
operator is transformed into

p(τ ) = ipmp+(τ )(b†eiωt τ − be−iωt τ ) + pcav(τ ), (112)

where p+(τ ) is the amplifying parameter given by

p+(τ ) = e−κt/2

(
cosh(χτ ) + κ

2χ
sinh(χτ )

)
(113)

with χ =
√

g2 + κ2/4. The term pcav(τ ) results from the
entanglement of the mechanical system to the cavity field
due to the two-mode squeezing interaction. It reads pcav(τ ) =
[q�(τ )eiωτ aI (0) + H.c.], where q(t) = −ige−κt/2 sinh(χt)/χ ,
and fulfills 〈pcav(τ )〉 = 0 (the cavity field is empty at t = 0)
and 〈p2

cav(τ )〉 = |q(τ )|2. After this amplification, step 2 of the
protocol follows. If one assumes g = κ = 2π × 100 kHz, and
τ = 0.02 ms, one obtains that p+(τ ) ∼ 103 and hence with
the same time of flight tf the required resolution is only
δz � tf pmp+(τ )/M ∼ 100 µm, three orders of magnitude
lower. Note that the amplification is restricted by keeping the
nanodielectric object in the region, where it still sees the slope
of the standing wave, that is, the condition x0p+(τ ) < 1 nm
has to be fulfilled, where x0 ∼ 10−12 m is the ground-state
size.

Let us remark that the rotated quadrature χ (θ ) could, in
principle, also be measured by a quantum nondemolition
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measurement. This could be done by using the back-action
evasion scheme proposed by Braginsky in the 1980s [74],
and recently revised from a quantum noise perspective [75].
This protocol would also benefit from the prominent property
of levitating objects; being free of any thermal contact. The
key idea of this method is to impinge the cavity at the two
motional sidebands, a scheme that has already been realized
with trapped ions [76,77].

The time-of-flight protocol presented in this section exploits
the unique property of using levitating objects in quantum op-
tomechanical systems; the mechanical resonator is unattached
to other objects and therefore can fall.

VII. CONCLUSIONS AND OVERLOOK

We conclude by summarizing and giving an overlook of
the contents presented in this paper. First, we have developed
a quantum theory to describe the coupling of light to the motion
of dielectric objects inside a high-finesse optical cavity. The
main result is the derivation of a master equation describing the
joint state of the c.m. motion and the cavity field. In parallel, we
have derived a quantum elasticity theory to show that the c.m.
decouples from the internal vibrational modes for sufficiently
small objects. This theory has been applied to describe
the experimental proposal of using an optically levitating
nanodielectric as a cavity optomechanical system [21,22]. The
master equation allows us to describe the coherent dynamics
as well as the dissipative processes. More specifically, we
have obtained the decoherence rate for the mechanical mode,
the enhanced cavity decay rate due to light scattering, and
a renormalization of the light-matter interaction Hamiltonian
due to virtual photon exchange processes. This theory supports
the statement that the c.m. motion of a levitating nanodielectric
inside an optical cavity behaves like a mechanical resonator of
very high quality.

In the second part of the paper, we describe a light-
mechanics interface that we developed with the aim of bringing
levitating objects into the quantum regime. This can be used
to prepare non-Gaussian states such as superpositions of
Fock states. We have provided three protocols with different
properties: first, the reflected one-photon protocol, which
requires strong coupling and a measurement of the output
field; second, the perfect mapping, which circumvents the
measurement by time-modulation of the optomechanical cou-
pling; third, the teleportation in the bad-cavity limit, which can
be used in the weak-coupling regime. These light-mechanics
interfaces apply to other optomechanical systems and provide
an effective way to obtain nonlinearities. Besides, these
input-output protocols required a formalism to be described
in the Schrödinger picture to obtain the final state. Finally, we
have proposed a method to perform direct full tomography of
the mechanical state. This method exploits the levitation of the
mechanical resonator, since it consists in measuring the c.m.
position after letting the object fall. The position after time of
flight carries information about the momentum in the trap, and
by repeating the measurement at different times of evolution
in the harmonic trap, one can perform full tomography.

The theory and the protocols introduced in this paper apply
to a large variety of setups and dielectric objects, even to micro-
organisms [21]. This work opens many further directions that

we are currently investigating. Some of these directions are as
follows: (i) the possibility to apply time-of-flight experiments
to prepare and measure macroscopic superpositions of the
levitating object, that is, states in which the object is in
two macroscopically distant (larger than its radius) positions;
(ii) a thorough study of higher-order light-scattering pro-
cesses in dielectric objects; (iii) the possibility to circumvent
the decoherence processes due to light scattering by using
magnetic levitation of micron objects; (iv) to reduce light
scattering by using dielectrics of other shapes; (v) to address
the internal modes of the object for high-frequency resonator
optomechanical purposes; (vi) to use objects with internal
degrees of freedom, such as nanocrystals with NV centers,
to couple the internal degree of freedom to the c.m. mode.

As mentioned in the introduction, the project of cavity
optomechanics with levitating objects aims at applying the
quantum techniques developed to control and manipulate
atoms back to the nanodielectrics that were first used by
Ashkin. It is our hope that this paper will stimulate further
theoretical and experimental research in this direction. The
ultimate goal of these investigations is to explore the bound-
aries of quantum mechanics, which may reveal unexpected
and fascinating new insights.
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APPENDIX A: LIGHT-SCATTERING EQUATION

In this Appendix, we show how from the light-matter
interaction Hamiltonian Eq. (24), one can derive the scattering
equations which can be used to compute the total electric field
inside the dielectric object. We decompose the total electric
field into

E(x) = i

(2π )3/2

∫
dk

√
ωk

2ε0
[e−ikxa(k) − H.c.], (A1)

where ωk is the frequency of the different light modes and
ε0 is the vacuum permittivity. Starting from the Hamiltonian
(24) [including the free term H f

free, Eq. (18), of the modes
a(k)], one can connect the electric field E(x) to the electric
field without the presence of the dielectric object, E0(x). To
achieve this, we determine the equation of motion for the
annihilation operator a(k),

ȧ(k,t) = −iωka(k,t)− iαp

(2π )3/2

√
ωk

2ε0

∫
dxE(x,t)eikx. (A2)

To obtain E(x), one needs to formally integrate Eq. (A2)
over time, multiply both sides of the equation by
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i
√

ωk/2ε0/(2π )3/2e−ikx, and integrate it over k. Given
that the electric field is varying with the laser frequency,
one can move to the rotating frame, where Ẽ(x,t) is
slowly varying, Ẽ±(x,t) = e±iωLtE±(x). This justifies the
assumption Ẽ±(x,t) ≈ Ẽ±(x,t ′), which permits us to simplify
the integration over time, leading to

E+(x,t) = E+
0 (x,t) +

∫
dx′

∫
dk

αpωk

2(2π )3
eik(x′−x)e−iωkt

×
(

Ẽ+(x′,t)
∫ t

0
dτe−i(ωL−ωk )τ

+ Ẽ−(x′,t)
∫ t

0
dτei(ωL+ωk )τ

)
. (A3)

The terms containing Ẽ−(x,t) are rotating fast compared to any
other time scale and will hence be neglected within an RWA.
Carrying out the integration dk in Eq. (A3) gives us a function
that decays very quickly in τ . This permits us to extend the
upper integration boundary t to ∞, and hence to obtain

E(x,t) = E0(x,t) + αp

∫
dx′G(x′,x)E(x′,t), (A4)

where G(x,x′) = k2
L exp(kL|x − x′|)/|x − x′|. This equation

has the same structure as a scattering equation where G(x,x′)
takes the role of the propagator.

Let us remark here that in order to determine E(x,t) for
any size and shape of the object, the scattering-wave equation
(A4) has to be solved. However, this equation can only be
solved approximately (see [78,79] for a solution). Merely in
the special case of a spherical object, the electric field can
be determined exactly by expansion in spherical waves, the
Mie solution [80,81]. Indeed, this solution coincides with the
discrete-dipole approximation for perfectly spherical objects
[79]. In the limit of very large spheres, R � λ, a ray optics
approach has to be used to determine the forces on the sphere
[82].

APPENDIX B: OPTOMECHANICAL PARAMETERS

In this Appendix, we show how from the light-matter
interaction term of the total Hamiltonian Eq. (24), one can
easily obtain the optomechanical Hamiltonian discussed in
Sec. III C.

1. External trapping with optical tweezers

The trapping of the sphere can be achieved either by using
optical tweezers [51] or two optical cavity modes [21,22]. For
the optical tweezers, we assume a Gaussian beam

[Etw(x)] = E0
Wt

W (y)
exp

(
−x2 + z2

W (y)2

)
, (B1)

where E0 = [Pt/(ε0cπW 2
t )]1/2, Pt is the laser power, Wt is

the laser beam waist, W (y) = Wt {1 + [yλ/(πW 2
t )]2}1/2, and

we assume the beam is aligned as sketched in Fig. 1. The
interaction between the sphere and the light field is described
by Eq. (24). If the object is smaller than the laser waist and is
placed close to the beam center, one obtains after integrating
over a sphere of radius R, mass M , density ρ, and relative

dielectric constant εr , that the Hamiltonian is of the form of a
harmonic oscillator with frequency ωt given by

ω2
t = 4εc

ρc

I

W 2
t

≈ εc

ρc
Ik2N 2, (B2)

corresponding to the x and z directions in our setup. Here, I

is the field intensity, the laser waist can be approximated by
Wt ≈ λ/(πN ), N is the numerical aperture, and k = 2π/λ is
the wave vector. In the direction of light propagation, the y

direction in our configuration, the trapping frequency is

ω2
‖ ≈ 2εc

ρc

IN 2

W 2
t

, (B3)

which is reduced by a factor of N 2/2 compared to the trapping
in the x and z directions. This lower trapping frequency can be
enhanced by the use of a second optical tweezers perpendicular
to the first one. Besides, the scattering force will change the
equilibrium position of the object in the direction of light
propagation. To circumvent this, a second tweezers of the
same intensity and waist, but with a different polarization, can
be used.

2. The optomechanical coupling

The optomechanical coupling arises from plugging the
cavity mode into Eq. (24). For small spheres, we choose a
TEM 00 mode as the cavity mode in the presence of the
sphere. Given that the sphere has a radius smaller than the
laser waist and is placed close to the center of the cavity, one
can approximate the square of the electromagnetic field close
to the center of the beam by

[Ecav(x)]2 ≈ ωc

2ε0Vc

(
1 − 2(x2 + y2)

W 2
c

)
cos2 (kcz − ϕ) a†a.

(B4)

Here, Vc = πW 2
c L/4 is the cavity volume, Wc = [λL/(2π )]1/2

is the laser’s waist at the center of a confocal cavity, L is the
cavity length, ωc is the cavity’s resonance frequency, λ is
the laser wavelength, and a (a†) is the annihilation (creation)
operator of cavity photons. Furthermore, we presume that the
laser is aligned such that the wave vector of the cavity mode
kc points in the z direction. The integration over the volume
V around the c.m. position r = (x,y,z) leads to

−εcε0

2

∫
V (r)

dx[Ecav(x)]2 = ωca
†af (r), (B5)

with

f (r) = −V εc
[
W 2

c − 2(x2 + y2)
]

cos2(kcz − ϕ)

4VcW 2
c

, (B6)

where V is the volume of the sphere, z is the c.m. position
in the z direction, and ϕ is a phase shift. To obtain Eq. (B6),
we have assumed kcR � 1. If the sphere is trapped at the
maximum slope of the standing wave, that is, x0 = y0 = 0 and
z0 = 0,ϕ = π/4, it is justified to expand Eq. (B6) to first order
in the z coordinate. The zeroth-order contribution leads to a
constant shift of the trapping frequency given by

ω̃c = ωc

(
1 − εcV

8Vc

)
, (B7)
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which we will always use in the paper without explicitly
denoting the tilde. After quantization of the z coordinate,
the first-order contribution yields the optomechanical coupling
g0a

†a(b† + b), where the coupling constant reads

g0 = − 1√
2Mωt

εcω
2
cV

4cVc

. (B8)

3. Shift due to interference of the tweezers and the cavity field

In this subsection, we show that the term of the shift
Hamiltonian Hsh discussed in Sec. III D yields a shift in the
trapping frequency as well as in the equilibrium position of the
dielectric object. We first recall the term leading to this shift,

Hsh = −εcε0

∫
V (r)

dxEcav(x)Etw(x), (B9)

where

Ecav(x) =
√

ωc

2ε0Vc

cos(kcz − ϕ)|α|. (B10)

Then, by expanding up to second order around the equilibrium
position of the c.m. coordinate, one obtains

Hsh = ωshb
†b + ξsh(b† + b), (B11)

where the parameters are given by

ω2
sh = εc|α|

2ρ

√
ωcPt

2Vccπ

kcW
2
t + 2

W 3
t

,

(B12)

ξsh = −εcV |α|kcz0

√
ωcPt

8VccπW 2
t

.

Therefore, the total trapping frequency of the object is given
by ω′

t = ωt + ωsh. The change in the equilibrium position is
considered when displacing the mechanical mode in Sec. V A.

APPENDIX C: GROUND-STATE COOLING

Using the theory of ground-state sideband cooling in
optomechanical systems [25–29], the minimal number of
phonons attainable is given by

n0
M =

(
κ + κsc

4ωt

)2

. (C1)

Taking into account heating mechanisms, such as the recoil
heating due to light scattering �sc, and others, �others (e.g.,
Brownian motion heating due to the surrounding gas, laser
noise, blackbody radiation, etc. [21,22]), which can be shown
to fulfill �others � �sc, the final phonon occupation number is
given by

nM = n0
M + �sc + �others

�−
. (C2)

For g < κ , the maximal achievable cooling rate is given by

�− = 4
(g0|α|)2

κ

�

ωt

, (C3)

where the detuning is � ∼ ωt . By using the experimental
parameters described in Appendix E, nM can be made much
smaller than 1.

APPENDIX D: DISPLACEMENT OF THE OUTPUT MODES

In this Appendix, we show how the expression of the
displacement of the output modes, αω, appears naturally by
computing the steady state obtained when the driving field
is switched on. Then we discuss how to measure a photon
created on top of the coherent cavity field in the output field.
To simplify the problem, we assume a cavity of resonance
frequency ωc, driven by a laser at ωL. In the rotating frame
at the laser frequency, and by defining � = ωc − ωL, the
Hamiltonian reads

H = �a†a +
∫ ∞

−ωL

ωa
†
0(ω)a0(ω) dω

+ i
∫ ∞

−ωL

γ (ω)[a†a0(ω) − H.c.] dω. (D1)

1. Steady state with a driving field

The initial state of the system is assumed to be

|in〉 = |α〉 ⊗
∫ ∞

−ωL

δ(ω)D(α0)|
〉, (D2)

that is, the cavity state is in a coherent state with phase α,
and all the output modes are empty, only the laser mode is in
a coherent state with phase α0 (which is related to the laser
power). In the following, we aim at computing the final state
|st〉 = limt→∞ exp(−iHt)|in〉.

First, let us write the Heisenberg evolution equations for
the cavity mode and the output modes:

ȧ(t) = −i�a(t) +
∫ ∞

−ωL

γ (ω)a0(ω,t),

(D3)
ȧ0(ω,t) = −iωa0(ω,t) − γ (ω)a(t).

Then, one can formally integrate the differential equation for
a0(ω,t),

a0(ω,t) = e−iωta0(ω,0) − γ (ω)
∫ t

0
dτa(τ )e−iω(t−τ ). (D4)

This solution can be introduced into the differential equation
for a(t). By using the approximation γ (ω) ≈ γ (0) = √

κ/π ,
one gets

ȧ(t) = −(i� + κ)a(t) +
∫ ∞

−ωL

γ (ω)e−iωta0(ω,0), (D5)

which can be trivially integrated to

a(t) = e−(i�+κ)t a(0)

+
∫ t

0
dτ

∫ ∞

−ωL

γ (ω)e−iωτ a0(ω,0)e−(i�+κ)(t−τ ). (D6)

By taking the average value of this expression, and using that
〈a(0)〉 = α and 〈a0(ω,0)〉 = α0, one gets

〈a(t)〉 = e−(i�+κ)t α + γ (0)α0
1 − e−(i�+κ)t

i� + κ
. (D7)

In the steady state, one obtains

α ≡ lim
t→∞〈a(t)〉 = γ (0)α0

i� + κ
= 
L

i� + κ
. (D8)
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Note that we have assumed that the initial coherent state of
the cavity is equal to the steady state obtained when driving
the cavity with the laser. We have also related α0 to the usual
frequency 
L = √

2Pcκ/ωL, Pc being the laser power. Let us
now compute the mean value of the output modes, which after
some algebra is given by

〈a0(ω,t)〉 = α0δ(ω) − γ (ω)
∫ t

0
dτ 〈a(τ )〉e−iω(t−τ )

= α0δ(ω) − αγ (ω)
∫ t

0
dτe−iωτ . (D9)

Then, the steady-state phase of the output modes can be
expressed by

αω = lim
t→∞〈a0(ω,t)〉

= [α0 − παγ (0)]δ(ω) + iαγ (ω)P
(

1

ω

)
, (D10)

which coincides with the expression used in Eq. (60).
It is trivial to show that the Hamiltonian is invariant

under the displacement operation D = DaDout, such that
D

†
aaDa = a + α and D

†
outa0(ω)Dout = a0(ω) + αω. By using

that P
∫ ∞
−∞ ω−1dω = 0, one can check that

D†HD = H. (D11)

This implies that the steady state

|in〉 = D|0
〉 = |α〉 ⊗
∫ ∞

−ωL

dωD(αω)|0
〉 (D12)

is indeed an eigenstate of the Hamiltonian:

H |in〉 = DD†HD|0
〉 = DH |0
〉 = 0. (D13)

2. Measurement of a photon

In this subsection, we want to compute the displacement
of the output mode of the cavity. To do so, we assume that
at t = 0 a photon is present inside the cavity in the displaced
frame, that is,

|ψ(0)〉 = |1
〉. (D14)

Therefore, using the Wigner-Weisskopf formalism, one can
obtain the state at some later time

|ψ(t)〉 = ca(t)|1
〉 +
∫ ∞

−ωL

dωc(ω,t)a†
0(ω)|0
〉, (D15)

where the coefficients are given by

ca(t) = e−(i�0+κ)t ,
(D16)

c(ω,t) = γ (ω)(e−iωt − e−(i�0+κ)t )

i(ω − �0) + κ
.

For large t , the final state is given by |ψ(t)〉 = A
†
out,t |0
〉,

where the collective output mode is defined as Aout,t =∫
φout(ω)eiωta0(ω) dω, with the mode function

φout(ω) = γ (ω)

κ − i(ω − �0)
. (D17)

Let us now compute how many photons will be encountered
in this collective photon mode after transforming back to
the nondisplaced frame. By using the expression of the
displacement of the output modes αω, one can obtain after
some careful manipulation that the displacement of the output
mode Aout,t , defined as

αout =
∫ ∞

−ωL

φout(ω)eiωtαωdω, (D18)

is just given by αout = α.

3. Switching off the driving field

In this subsection, we want to discuss the final state of the
one-photon protocol once the driving field has been switched
off. The Hamiltonian in the frame rotating with the laser
frequency ωL is given by

H ′
tot = ωtb

†b + �a†a +
∫ ∞

−ωL

ωa
†
0(ω)a0(ω) dω

+ g0a
†a(b† + b) + i

∫ ∞

−ωL

γ (ω)[a†a0(ω) − H.c.] dω

+ λ(t)(b† + b), (D19)

where the term with λ(t) accounts for the variation of the center
of the harmonic trap. By writing the Langevin equations, and
considering that there is no input fields since they have already
been switched off, one obtains

ȧ(t) = −i�a(t) − κa(t) − ig0a(b† + b),
(D20)

ḃ(t) = −iωtb − ig0a
†a − iλ(t).

By displacing the operators by a′ = a + α(t), and choosing
the restriction

α̇ = −i�α − κα,
(D21)

0 = −ig0|α|2 − iλ(t),

one obtains the following equations:

ȧ(t) = −i�a(t) − κa(t) − ig0|α|(b† + b),
(D22)

ḃ(t) = −iωtb − ig0|α|(a† + a).

In the interaction picture, one can perform the RWA to get

ȧ(t) = −κa(t) − ig(t)b,
(D23)

ḃ(t) = −ig(t)a,

where

g(t) = g0|α(0)|e−κt . (D24)

The equation for b(t) is then given by

b̈(t) − ḃ(t)

(
ġ(t)

g(t)
− κ

)
+ b(t)g2(t) = 0. (D25)

This can be solved to predict the variation of the mechanical
state by switching off the driving field.

APPENDIX E: EXPERIMENTAL PARAMETERS

To illustrate the experimental feasibility of the proposal, we
will choose a set of experimental parameters.
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FIG. 7. (Color online) The ratio between the decay rate of the
cavity due to light scattering κsc [using Eq. (38) valid for spheres
smaller than the wavelength] over the standard decay rate of a cavity
of finesse F = 5 × 105 is plotted as a function of the radius of the
sphere. As can be observed, photon losses due to scattering dominate
for objects larger than 150 nm.

(1) Dielectric object. We assume nanospheres fabricated
from fused silica with a radius R = 100 nm, density ρ =
2201 kg/m3, and a dielectric constant Re(εr ) = 2.1 and
Im(εr ) ∼ 2.5 × 10−10. Their Young modulus is Y = 73 GPa
and their Poisson constant σ = 0.17, giving internal vibra-
tional modes with frequencies of the order of ∼ 1011 Hz.

(2) Cavity. We assume a confocal high-finesse cavity of
length L = 4 mm and finesse F = 5 × 105 leading to a cavity
decay rate κ = cπ/2FL = 2π × 38 kHz.

(3) Lasers. The optical tweezers is constructed with a laser
of power Pt = 15 mW at a wavelength λ = 1064 nm and
a lens of high numerical aperture N = 0.8. The cavity is
impinged by a laser of power Pc = 0.2 mW and a wavelength
λ = 1064 nm, which gives a waist of Wc = √

λd/2π ≈
26 µm.

(4) Dissipation due to light scattering. The decay rate of
the cavity due to the light scattering is κsc = 2π × 6 kHz (see
Fig. 7 for the dependence with the radius of the sphere). The

50 100 150 200 250 300

0.01

0.1

1

10

R nm

n M

FIG. 8. (Color online) Final phonon occupation number using
spheres of radius R and for the parameters given in the text. Ground-
state cooling is possible for spheres smaller than R ∼ 200 nm. This
is obtained using the expressions valid for objects smaller than the
wavelength.

mechanical motion decoherence rate is given by �sc = 2π ×
11 kHz.

(5) Optomechanical parameters. The tweezers supplies a
harmonic trap for the object of frequency ωt = 2π × 135 kHz
in the transversal direction and ω‖ = 2π × 77 kHz in the
direction of light propagation. The steady-state photon number
is |α|2 ≈ 7.3 × 108. The optomechanical coupling to the c.m.
degree of freedom of the sphere is given by g0 ≈ −2π × 2 Hz,
which is enhanced by a factor of |α| to g = −2π × 46 kHz.
The frequency of the cavity photons is given by ωc = 2π ×
2.8 × 1014 Hz. Note that ωt/(κ + κsc) ≈ 3 (condition for the
RWA), |g|/(κ + κsc) ≈ 1 (the strong-coupling regime used in
the light-mechanics interface), |g|/�sc ≈ 4, and ωt/�sc ≈ 13
(number of coherent oscillations).

(6) Ground-state cooling. The cooling rate is given by �− =
2π × 50 kHz (using a cavity laser power Pc = 50 µW). The
final occupation number is given by nM = 0.18, see Fig. 8 for
the dependence with the radius of the sphere.
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