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Localized collapse and revival of coherence in an ultracold Bose gas
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We study the collapse and revival of coherence induced by dipolar spin waves in a trapped gas of 87Rb atoms.
In particular, we observe spatially localized collapse and revival of Ramsey fringe contrast and show how the
pattern of coherence depends on the strength of the spin-wave excitation. We find that the spatial character of
the coherence dynamics is incompatible with a simple model based only on position-space overlap of wave
functions. We show that this phenomenon requires a full phase-space description of the atomic spin using a
quantum Boltzmann transport equation, which highlights spin-wave-induced coherent spin currents and the
ensuing dynamics they drive.
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I. INTRODUCTION

Trapped ultracold gases are promising systems for com-
pact, high-resolution interferometric sensors. They have been
proposed for a diverse range of applications, including atomic
clocks [1,2], magnetometers [3], polarizability measurements
[4], and inertial force sensors [5]. Many interferometric sensors
rely on differential energy shifts for measurements. Further-
more, ultracold trapped gases all require inhomogeneous exter-
nal potentials for confinement. While this confinement allows
for long interrogation times and high sensitivities, the inherent
inhomogeneity can have profound impacts on the coherence of
the sample. Thus, it is imperative to understand atomic coher-
ence in trapped gases in the presence of inhomogeneous poten-
tial energies if they are to be used as interferometric sensors.

While Bose-Einstein condensates offer the potential for
enhanced measurement sensitivity via squeezed states, it is
often equally advantageous to use ultracold nondegenerate
gases due to their larger populations, faster cycle times, and
simpler experimental designs [6]. Even above degeneracy,
however, gases can exhibit quantum scattering effects if the
de Broglie wavelength of the atoms is long compared to the
scattering length a. In this case, interferometric measurements
using nondegenerate quantum gases must contend with the
identical spin rotation effect (ISRE) [7]. Exchange symmetry
between identical particles in a quantum gas leads to interfer-
ence effects: if the interacting particles have different spins,
a net spin rotation can occur. This spin rotation gives rise to
a wide array of macroscopic collective behaviors, including
spin-state segregation [8,9], spin waves [10,11], spin locking
in coupled fluids [12], and dramatically enhanced coherence
times [2].

Of particular concern for trapped-atom-based measure-
ments is the collapse and revival of coherence, which was first
noted in [13–15]. A recent study of the collapse and revival
of interference in the time domain showed that the dynamics
could be tuned by altering the differential potential experienced
by the two-state system [2]. If the trap frequencies are larger
than all other frequency scales, especially the collision rate and
differential frequency shifts, as in [2], the ensemble remains
largely spin synchronized. (See [16] for a detailed discussion
of time scales.) This limit obscures the spatial character of the
spinor evolution, and for experiments outside this limit, a more
detailed approach is required.

In this paper, we observe localized collapse and revivals
of interference fringes and demonstrate how the spatial
character of the localization changes with excitation strength.
This behavior is well described by a quantum Boltzmann
equation for spin transport. However, to highlight the sur-
prising localization of coherence collapses, we show that
a simple, intuitive model based on the degree of spatial
overlap of the spin-state wave functions fails to explain
the observed interference patterns. Last, we present a full
numerical treatment using the Boltzmann equation to elucidate
the evolution of coherence.

II. EXPERIMENT

We interferometrically study the coherent evolution of
atomic spins in the presence of spin-wave excitations. The
spin system described herein consists of two magnetically
trapped hyperfine states of 87Rb, |1〉 = |F = 1, mF = −1〉
and |2〉 = |F = 2, mF = 1〉, which form a pseudospin-1/2
doublet. A two-photon microwave transition couples |1〉 and
|2〉 and creates an equal coherent superposition. We excite spin
waves in this superposition with an inhomogeneous differential
optical potential Udiff designed to drive the lowest normal
spin-wave mode: the dipole mode [11].

The optical potential consists of a diode laser detuned by
0.3 nm from the D2 cooling transition, and the slight difference
in the energies of the hyperfine ground states gives slightly
different detunings for each state, producing a differential
ac Stark shift. A frequency- and amplitude-modulated acousto-
optic modulator sweeps the laser across the atom cloud and
creates a differential potential energy that varies linearly
with axial position z (see [11]). The gradient of the spin
perturbation, dUdiff/dz, is controlled by adjusting the laser
power. The Zeeman shift from the trapping potential and the
mean-field shift also contribute to the differential potential,
but these sources of inhomogeneity can be eliminated with a
mutual compensation scheme by tuning the magnetic field [8].

Typical experimental parameters include a magnetic field
of B0 = 3.05 G at the center of the trap for this mean-
field compensation, with a peak density of n0 = 2.5 ×
1019 m−3 and temperature of 650 nK, about 60% above
the critical temperature for condensation. The cylindrically
symmetric magnetic trap is highly elongated in the axial
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FIG. 1. (Color online) Ramsey fringes in the presence of a
dipolar spin wave driven by an optical potential with dUdiff/dz �
h × 10 Hz/mm. (a) N1 measured after a Ramsey sequence, radially
averaged, and normalized to its maximum value and plotted in false
color as a function of t and z. Data are interpolated between bins
and time steps. (b) and (c) Cross sections of Ramsey fringes for
the center bin and a bin near the edge of the cloud, respectively, as
shown by the arrows in (a). (d) Normalized projections of the of the
states of the superposition N1 (solid line) and N2 (dashed line) at the
time of maximal component separation and collapse, denoted by an
arrow in (a).

direction, with an aspect ration of 37:1, corresponding to
trap frequencies of 247 and 6.7 Hz. Thus, the density
may be radially averaged, and all dynamics can be treated
one-dimensionally.

Ramsey interferometry allows us to measure the local
transverse components of the atomic spin using two π/2
pulses separated by a variable delay time t . Following the
interferometer sequence, absorption imaging measures the
number of atoms N1 returning to the |1〉 state. The microwave
coupling is detuned a small amount from the |1〉 − |2〉 transi-
tion (δ ∼ 30 Hz), and as we vary t , we observe high-contrast
interference fringes (Fig. 1). Alternately, we can omit the final
π/2 pulse to project the superposition onto the |1〉 state to
measure N1 or replace the final π/2 pulse with a π pulse to
measure N2. For all measurements, we measure the atomic
distributions with absorption imaging and bin the images into
equally spaced axial bins.

The optical potential excites a dipole spin-wave mode that
causes a linear phase gradient to build up across the cloud,
as seen by the tilting of the phase fronts in Fig. 1(a). ISRE-
induced spin currents build up and lead to longitudinal rotation
of the spin. This spin rotation manifests as axial separation
of the spin states in the magnetic trap [Fig. 1(d)], and as
the spin wave peaks, the phase fronts become disrupted and
interference fringe visibility collapses. The spins soon rephase,
and the spin oscillation continues, with a second collapse
occurring at the next peak in the spin-wave cycle.

There is an overall damping of both the spin-wave excitation
and the superposition coherence through elastic collisions that
eventually randomize the atomic spins and destroy the coherent
superposition. This damping is more pronounced in potentials
with greater inhomogeneity. There is also longitudinal relax-
ation due to dipolar collisions leading to loss from the |2〉
state. Last, the spin waves themselves damp by an additional
mechanism: Landau damping due to coupling to higher-order,
highly damped spin-wave modes [10,13,14].

III. DISCUSSION

The spatial pattern of the interference contrast is particu-
larly interesting, as an ensemble-wide collapse does not occur.
There is nearly complete collapse in the center of the atom
cloud [Fig. 1(b)], but in the wings of the distribution, fringe
visibility is only moderately affected at the peak of the spin-
wave perturbation [Fig. 1(c)]. Furthermore, this spatial pattern
of interference is not identical for all spin-wave-induced
collapses. Figure 2 displays Ramsey fringes for a more weakly
driven spin-wave excitation. When the fringe collapse occurs,
it happens to a greater degree near the edges of the cloud and
not as much in the center [Figs. 2(c) and 2(b), respectively].
Note that the time scales are different, as spin-wave frequency
has a nonlinear dependence on excitation amplitude in this
system [11].

The localization of the collapse of coherence can be
modeled with a full phase-space analysis using a quantum
Boltzmann equation. However, as this equation is a highly
nonlinear vector equation, the spatially varying pattern of
coherence is not an obvious result. To highlight the surprising
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FIG. 2. (Color online) Ramsey fringes in the presence of a
more weakly driven dipolar spin wave (dUdiff/dz � h × 7 Hz/mm).
(a) N1 measured after a Ramsey sequence, normalized to its maximum
value. (b) and (c) Cross sections of Ramsey fringes for the center
bin and a bin near the edge of the cloud, respectively, as shown by
the arrows in (a). (d) Normalized projections of N1 (solid line) and
N2 (dashed line) at the time of maximal component separation and
collapse, denoted by an arrow in (a).
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FIG. 3. (Color online) (a) Predicted interference contrast Fo
determined from population overlap (see text). (b) Measured fringe
contrast, showing minima in the cloud center at t � 180 and 575 ms,
calculated by performing Fourier transforms on the Ramsey fringes
in Fig. 1(a) using a two-fringe running window to extract the
fringe amplitude. The resulting contrast is filtered to remove residual
aliasing at the Ramsey frequency.

nature of the coherence localization, that decoherence collapse
occurs exactly where one would expect it not to happen, we
first construct a simple model for fringe visibility Fo based on
the spatial overlap of the two spin states in the superposition.
The local relative populations of the superposition, N1(z) and
N2(z), are projected as described previously [e.g., Fig. 1(d)].
If the interference contrast were determined only by the local
density overlap, then it would be given by

Fo(t,z) = 2
√

N1(t,z)N2(t,z)

N1(t,z) + N2(t,z)
e−t/τ , (1)

where τ is an empirically determined time constant that char-
acterizes the cloud-wide decoherence due to elastic scattering.
We set τ � 350 ms using an average of the decoherence
times over the entire distribution. Figure 3(a) shows how
Fo evolves in the presence of the same dipolar spin-wave
perturbation shown in Fig. 1, while Fig. 3(b) shows the actual
measured fringe contrast. The measured contrast is more
sensitive to shot-to-shot magnetic-field-induced phase noise,
and the reduced contrast at ∼150 ms on the positive side of the
trap (where the |2〉 state density is highest) is caused by atom
loss due to dipolar relaxation.

The large component separation means the longitudinal
rotation of the spin is especially pronounced on the edges
of the cloud during the spin-wave peak (t ∼ 180 ms), and
thus, the density overlap method predicts the smallest fringe
contrast to be there. In the center of the atomic distribution
the density overlap is maximal, and one would expect higher
contrast than on the edges [Fig. 3(a)]. This prediction clearly
does not explain the actual collapse and revival dynamics
observed in the strong dipole potential, which gives minimal
contrast in the cloud center during the spin-wave peaks

[Fig. 3(b)]. While the local density overlap does give a
maximum possible value for interference contrast at a given
position, it provides an incomplete picture.

We turn to a full phase-space treatment of the spin vector to
understand the spin dynamics completely. The spin evolution
can be described with a quantum Boltzmann transport equation
for the spin momentum and position distribution �σ (p,z,t)
[13–15]:

∂ �σ
∂t

+ p

m

∂ �σ
∂z

− ∂Uext

∂z

∂ �σ
∂p

− �� × �σ = ∂ �σ
∂t

∣
∣
∣
∣
1D

, (2)

where m is the atomic mass, Uext is the axial harmonic trapping
potential, and the right-hand side represents a collisional
relaxation term related to the elastic scattering rate. The
differential potential Udiff and mean-field coupling g that drive
spin waves are contained in the cross term �� × �σ as follows:

�� = (g �S + Udiff ŵ)/h̄. (3)

The mean-field coupling constant is g = 4πh̄2a/m, and ŵ is a
longitudinal unit vector on the Bloch sphere. The spatial spin
distribution is obtained by integrating �σ over the momentum
distribution, �S(z) = ∫ �σdp.

We numerically solve Eq. (2) using an alternative direction
implicit finite difference method. The transverse component
�σ⊥ describes the coherence. Figure 4 shows the magnitude of
�σ⊥ and its orientation φ for a selection of evolution times as
well as the Ramsey fringe contrast obtained by integrating �σ⊥
over p to find | �S⊥|.

The full phase-space evolution of �σ⊥ sheds light on the
spatial nature of the coherence as follows. The effect of Udiff

manifests in Fig. 4 as an axial phase gradient (vertical phase
stripes) for t < 100 ms. As the atoms move in the confining
potential, these phase gradients correlate with momentum and
position, and coherent spin currents develop on either side
of the trap (t ∼ 100–120 ms). The ISRE keeps the phase
within each lobe of the spin distribution more uniform than
the differential potential would otherwise suggest. The two
lobes have opposite phases from each other, however, and
where they meet, nodes form in the spin distribution. When
the counterpropagating spin currents meet at the peak of
the spin-wave cycle, exchange scattering rephases the two
halves of the distribution (t ∼ 130–140 ms, corresponding
to maximum spin-state segregation). If the phases of the two
lobes are significantly different, this rephasing leads to a zero in
the center of the transverse spin distribution and manifests as a
localized collapse of coherence. Coherence revives somewhat
as the spin wave completes a cycle (t > 150 ms) due to the
ISRE rephasing the entire spin distribution, although elastic
scattering destroys the superposition on a similar time scale.

For smaller-amplitude spin-wave excitations, the nodes
develop more slowly and do not reach the center by the time the
spin wave peaks. Instead, they are ejected from the phase-space
profile, and thus, the regions of minimal contrast do not reach
the center of the distribution, as in Fig. 2. Conversely, if the
spin-wave amplitude is increased further, phase accrues more
rapidly, and more nodes begin to appear. The presence of
contrast minima in the wings of the distribution at t � 180 ms
in Fig. 3(b) may indicate that we are beginning to enter this
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FIG. 4. (Color online) False color images from numerical simulations of the evolution of (top ) σ⊥ and (middle) φ in phase space under
the influence of a dipolar spin wave, using similar parameters as for the data shown in Fig. 1. This initial distribution at t = 0 is Gaussian in
p and z. At each time step, σ⊥ is normalized and does not reflect the global relaxation of the spin vector. (bottom) Interference fringe contrast
(transverse spin distribution S⊥) obtained by integrating �σ⊥ over the momentum coordinate. The vertical scale for t > 70 ms has been magnified
by a factor of 3 to compensate for transverse spin relaxation.

regime. Decoherence from elastic scattering increases as well
for more strongly driven spin waves, and thus, detection of
more complex spatial features is difficult.

IV. CONCLUSION

We have demonstrated that the coherence of trapped gas
interferometers near quantum degeneracy can exhibit complex
spatial patterns of collapse and revival. This behavior can be
understood by considering the full phase space evolution of
the spin distribution given by a quantum Boltzmann equation.
Although we cannot tomographically reconstruct the full �σ dis-
tribution, the effects of quantum dynamics in the momentum
coordinate are still manifested in the spatiotemporal coherence
patterns. Clearly, care must be taken to avoid significantly

inhomogeneous differential potentials when attempting to
make interferometric measurements. Such inhomogeneous
potentials enhance dephasing and, even worse, can lead to
complete collapse of coherence. If inhomogeneous potentials
are unavoidable, their effect may be lessened by working with
tight confining potentials and lower densities, as in [2], where
the entire atomic distribution tends to stay phase synchronized
to a greater extent.
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Rev. Lett. 88, 230404 (2002); Eur. Phys. J. D 25, 57
(2003).
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