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Ferromagnetic resonance in spinor dipolar Bose-Einstein condensates
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We used the Gross-Pitaevskii equations to investigate ferromagnetic resonance in spin-1 Bose-Einstein
condensates with a magnetic dipole-dipole interaction. By introducing the dipole interaction, we obtained
equations similar to the Kittel equations used to represent ferromagnetic resonance in condensed-matter physics.
These equations indicated that the ferromagnetic resonance originated from dipolar interaction, and that the
resonance frequency depended upon the shape of the condensate. Furthermore, spin currents driven by spin
diffusions are characteristic of this system.
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I. INTRODUCTION

Magnetic resonance (MR) as a physical concept has been
applied in various fields, enabling physical, chemical, and
medical experiments to obtain information on nuclear spin and
electron spin systems. The concept has also provided valuable
information to help understand the unknown structures of
many condensed-matter systems [1].

The use of MR in the study of ferromagnets, e.g., nickel,
cobalt, and iron, began in the 1940s. Griffiths observed that
the Landé g factor of electrons in ferromagnets was far from
the well-known value of 2 [2]. In order to understand these
anomalous results, Kittel theoretically introduced a demag-
netizing field into the equation representing the motion of
the magnetization M = (Mx,My,Mz), obtaining an equation
valid in an external magnetic field H0ẑ, with Mz0 = H0/Nz

and demagnetizing fields [3], thereby obtaining the Kittel
equation

dM
dt

= γn[M × H]. (1)

Here, γn is the nuclear gyromagnetic ratio, and H =
(−NxMx, − NyMy,H0 − NzMz) is given by the de-
magnetizing factors Ni . By linearizing the magnetiza-
tion M = M0 + δM from the stationary magnetization
M0 = Mz0ẑ, Kittel obtained a precession of the mag-
netization and a precessing frequency, i.e., resonance
frequency,

ω2 = γ 2
n [H0 + (Ny − Nz)Mz0][H0 + (Nx − Nz)Mz0], (2)

which explained the anomalous g factor. Furthermore, he
found that the resonance frequency depends on the shape of
a ferromagnet because Ni depends on the shape [3]. Thus,
ferromagnetic resonance (FMR) was established, and the work
enabled numerous additional studies [4].

MR also plays an important role in quantum condensate
systems. In superfluid 3He, the dynamics of the spin vector
and the d vector are represented by the Leggett equation,
which couples these vectors through magnetic dipole-dipole
interactions [5]. The equation also shows not only a MR
typical of condensed matter, but also a new MR that cannot
be described using the equations of motion for general
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paramagnets and ferromagnets. This MR was used to find
A and B phases [6]. Parallel ringing, which is an oscillation of
longitudinal magnetization, was also observed [7].

Since the discovery of atomic Bose-Einstein condensates
(BECs) [8,9], BECs have been studied in optics and atomic and
condensed-matter physics. We have introduced MR into BECs
to realize magnetic resonance imaging, a popular method
of nondestructive testing. Spinor BECs are expected to be
suitable for MR, since they have not only internal degrees of
freedom but also magnetic properties. In particular, we are
interested in magnetic dipole-dipole interactions (MDDIs) in
spinor BECs, which have been actively studied. The interaction
between spins has a characteristic symmetry of rotation and
spin, which is expected to result in a new quantum phase
[10–12] and Einstein-de Haas effects [13]. Experimentally,
Griesmaier et al. realized spinor dipolar condensates using
52Cr atoms, which have a larger magnetic moment than
alkali-metal atoms [14]. The shape of the condensates clearly
represented the anisotropy of the interaction [15,16]. Thus,
the MDDI has opened new areas of spinor condensate
research.

As an introduction to MR in BECs, we numerically studied
spin echo in dipolar BECs with spin-1 [17]. The spin echo
is a typical phenomenon of MR, discovered by Hahn [18]
and developed by Carr and Purcell [19]. Previously, we
calculated the transition from Rabi oscillations to internal
Josephson oscillations in spinor condensates [20]. In this
paper, we consider MDDIs in spin-1 BECs, examining FMR
by analyzing the Gross-Pitaevskii (GP) equations.

In Sec. II, we derive Kittel-like equations from the GP
equations and analyze them. In Sec. III, using a single-
mode approximation, we derive Kittel equations from the
Kittel-like equations. The MDDI of the Kittel equations is
considered as the origin of the demagnetizing field, which
is phenomenologically introduced in Eq. (1). In Sec. IV,
we numerically solve the GP equations, obtaining resonance
frequencies that depend upon the shape of the conden-
sates, and spin currents driven by spin diffusion which is
given by the MDDI. Finally, Sec. V is devoted to our
conclusions.

II. FORMULATION

In this section, we derive the equations of motion for spins
from the spin-1 GP equations with an external magnetic field
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and MDDI [17].

ih̄
∂ψα

∂t
=

(
− h̄2

2M
∇2 + V − µ + c0n

)
ψα

−gµBHiF
i
αβψβ + c2FiF

i
αβψβ

+cdd

∫
dr′ δij − 3eiej

|r − r′|3 Fi(r′)F j

αβψβ. (3)

Here, V is the trapping potential, µ is the chemical potential,
and the total density n = ∑

i ni is given by ni = |ψi |2. The ex-
ternal magnetic field is H = (Hx,Hy,Hz), and the components
F i

αβ of the spin matrices F̂i are for spin-1. The interaction
parameters are c0 = (g0 + 2g2)/3 and c2 = (g2 − g0)/3 for
gi = 4πh̄2ai/M represented by s-wave scattering lengths ai .
The dipolar coefficient is cdd = µ0g

2
eµ

2
B/4π , and the unit vec-

tor is e = (ex,ey,ez) = (x − x ′,y − y ′,z − z′)/|r − r′|. Under
the homogeneous magnetic field H = H ẑ, the equations can
be rewritten as

ih̄
∂ψ1

∂t
=

(
−h̄2∇2

2M
+ V − µ + c0n

)
ψ1 − gµBHψ1

+ c2
[
(n1 + n0 − n−1)ψ1 + ψ∗

−1ψ
2
0

] + D1, (4a)

ih̄
∂ψ0

∂t
=

(
−h̄2∇2

2M
+ V − µ + c0n

)
ψ0

+ c2[(n1 + n−1)ψ0 + 2ψ∗
0 ψ1ψ−1] + D0, (4b)

ih̄
∂ψ−1

∂t
=

(
−h̄2∇2

2M
+ V − µ+ c0n

)
ψ−1 + gµBHψ−1

+ c2
[
(n−1 + n0 − n1)ψ−1 + ψ∗

1 ψ2
0

] + D−1. (4c)

These dipolar terms are represented as

D1 =
(

ψ0√
2
d− + ψ1dz

)
, D0 =

(
ψ1√

2
d+ + ψ−1√

2
d−

)
,

D−1 =
(

ψ0√
2
d+ − ψ−1dz

)
,

with the integrations d± = dx ± idy and dz given by,

di = cdd

∫
dr′ Fi(r′)

|r − r′|3
(

1 − 3ei
∑

j

ej

)
. (5)

The components Fi of the spin-density vector F = (Fx,Fy,Fz)

Fx = �†F̂x�

= h̄√
2

[ψ∗
0 (ψ1 + ψ−1) + ψ0(ψ∗

1 + ψ∗
−1)], (6a)

Fy = �†F̂y�

= ih̄√
2

[ψ∗
0 (ψ1 − ψ−1) − ψ0(ψ∗

1 − ψ∗
−1)], (6b)

Fz = �†F̂z� = h̄(|ψ1|2 − |ψ−1|2). (6c)

Here, � = (ψ1,ψ0,ψ−1)T is the spinor wave function.

Differentiating Eq. (6) with respect to time and utilizing
Eq. (4), we can obtain the Kittel-like equation

∂F
∂t

= K + γe[F × Heff], (7)

with the gyromagnetic ratio γe = gµB/h̄ of an electron. The
first term K = [Kx,Ky,Kz] becomes

Kx = h̄

2Mi

1√
2
{(ψ1 + ψ−1)∇2ψ∗

0 − ψ∗
0 ∇2(ψ1 + ψ−1)

+ψ0∇2(ψ∗
1 + ψ∗

−1) − (ψ∗
1 + ψ∗

−1)∇2ψ0},

Ky = h̄

2Mi

i√
2
{(ψ1 − ψ−1)∇2ψ∗

0 − ψ∗
0 ∇2(ψ1 − ψ−1)

−ψ0∇2(ψ∗
1 − ψ∗

−1) + (ψ∗
1 − ψ∗

−1)∇2ψ0},

Kz = h̄

2Mi
(ψ1∇2ψ∗

1 − ψ∗
1 ∇2ψ1

+ψ∗
−1∇2ψ−1 − ψ−1∇2ψ∗

−1).

The effective magnetic fields Heff = H + Hdd =
(Hx

eff,H
y

eff,H
z
eff) consist of the external magnetic field

and the dipolar field Hdd, given by

Hx
eff = − cdd

gµB

dx, H
y

eff = − cdd

gµB

dy,

Hz
eff = H − cdd

gµB

dz.

Note that Eq. (7) does not depend on spin exchange interaction,
which refers to the second term with c2 in Eq. (3). Generally,
the interaction affects a spin through the effective magnetic
fields of the other spins. However, exchange interaction does
not appear in Heff . The effective magnetic fields in the spinor
dipolar BECs are properly given by the summation of external
magnetic fields and the magnetic fields given by the spin
exchange interaction and the magnetic dipole interaction,
which is represented in [21]. However, in Eq. (7), the spin
exchange interaction does not drive the motion of the spin-
density vector F because the effective magnetic fields drive
the spin through the outer product term, F × Heff . Namely, the
c2 term gives F × c2/(gµB)F = 0 in the equation. Therefore,
we do not describe the c2 interaction in the effective magnetic
field.

We can redefine Eq. (7) as,

∂Fk

∂t
= h̄

2Mi
∇2Fk − ∇ · jk + γe[F × Heff]k, (8)

where

jx = h̄√
2Mi

[ψ∗
0 ∇(ψ1 + ψ−1) + (ψ∗

1 + ψ∗
−1)∇ψ0],

jy = h̄√
2M

[ψ∗
0 ∇(ψ1 − ψ−1) − (ψ∗

1 − ψ∗
−1)∇ψ0],

jz = h̄

Mi
(ψ∗

1 ∇ψ1 − ψ∗
−1∇ψ−1).

The equation of motion (8) for spins describes the properties
of spin dynamics in a ferromagnetic fluid. The first, second,
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and third terms of Eq. (8) represent spin diffusion, spin current,
and spin precession around Heff , respectively.

Comparing Eq. (8) with Eq. (1), we noticed several
differences. First, Eq. (8) was directly derived from the GP
equations, whereas Eq. (1) is a phenomenological equation
of magnetization. The spin-density vectors in Eq. (8) are
microscopically affected by other spins through the dipolar
fields in the effective magnetic fields. On the other hand, the
magnetization in Eq. (1) is affected by demagnetizing fields
originating from macroscopically polarized magnetization in
the condensed matter. Namely, Eq. (8) can describe the macro-
scopic demagnetizing field resulting from the microscopic
dipolar field. This is a very important difference between these
equations.

We initially investigated the physics of the first and second
terms of Eq. (8). To simplify the discussion, we considered the
equation under the condition Heff = 0. Thus, we derived the
continuity equations

∂Fi

∂t
+ ∇ · Ji = 0, (9)

where Jk = jk − h̄/(2Mi)∇Fk is an effective current term,

Jx = − ih̄2

2
√

2M
[ψ∗

0 ∇(ψ1 + ψ−1) + (ψ∗
1 + ψ∗

−1)∇ψ0

−ψ0∇(ψ∗
1 + ψ∗

−1) − (ψ1 + ψ−1)∇ψ∗
0 ], (10a)

Jy = h̄2

2
√

2M
[ψ∗

0 ∇(ψ1 − ψ−1) − (ψ∗
1 − ψ∗

−1)∇ψ0

+ψ0∇(ψ∗
1 − ψ∗

−1) − (ψ1 − ψ−1)∇ψ∗
0 ], (10b)

Jz = − ih̄2

2M
(ψ∗

1 ∇ψ1 − ψ1∇ψ∗
1 − ψ∗

−1∇ψ−1 + ψ−1∇ψ∗
−1).

(10c)

Equation (9) can also be rewritten as

d

dt

∫
V

Fi dV =
∫

V

∇ · Ji dV =
∫

S

Ji · n dS,

by using the volume integral and the surface integral, whose
unit vector n is vertical to the surface for the Stokes theorem.
The equation indicates that the expectation value of the spin
matrix 〈F̂i〉 = ∫

dV Fi in the volume V is conserved for the
spin probability flux Ji leaving and entering the surface.

Under Heff �= 0, the Kittel-like equation can be reduced to
the following equation:

∂Fi

∂t
+ ∇ · Ji = [F × Heff]i , (11)

where the right side of the equation breaks the conservation
law of spin density. Therefore, the Kittel-like equations have
two dynamics: spin precessions with frequency given by
the effective magnetic field and spin currents without spin
conservation. The spin currents of the system will be discussed
in Sec. IV B.

III. FMR UNDER SINGLE-MODE APPROXIMATION

To study the basic properties of the second term in Eq. (7),
we introduced the single-mode approximation

ψi(r,t) =
√

Nξi(t)φ(r) exp

(
− iµt

h̄

)
, (12)

where φ satisfies the eigenvalue equation (−h̄2∇2/2M + V +
c0n)φ = µφ with the relation

∫
dr|φ|2 = 1. The approxi-

mation is effective when the shapes of the condensates are
determined by the spin-independent terms, namely, |c0| � |c2|
[22]. For 87Rb and 23Na, the relation is satisfied. Under this
approximation, the first term of Eq. (7) vanishes, and we obtain
the Kittel equation for the spatially independent spin-density
vector S = (Sx,Sy,Sz),

dS
dt

= γe

[
S × HSMA

eff

]
, (13)

where

Sx = h̄√
2

[ξ ∗
0 (ξ1 + ξ−1) + ξ0(ξ ∗

1 + ξ ∗
−1)],

Sy = ih̄√
2

[ξ ∗
0 (ξ1 − ξ−1) − ξ0(ξ ∗

1 − ξ ∗
−1)],

Sz = h̄(|ξ1|2 − |ξ−1|2),

and the effective magnetic field HSMA
eff = (−Nx

ddSx, −
N

y

ddSy,H − Nz
ddSz) is given by

Ni
dd = cdd

gµB

N

∫ ∫
dr dr′ |φ(r)|2|φ(r′)|2

|r − r′|3

⎛
⎝1 − 3ei

∑
j

ej

⎞
⎠ .

(14)

Equation (13) also indicates that the spin vector S precesses
around HSMA

eff . The precession frequency reveals the charac-
teristic dynamics. Next, we consider a small deviation δS =
(δSx,δSy,δSz) around the stationary solution, S0 = S0ẑ with
S0 = H0/N

z
dd, of Eq. (13), namely, S = S0 + δS. Introducing

this representation into Eq. (13) and linearizing the equation,
we derived the following equations:

d

dt
δSx = γe

[
H + (

N
y

dd − Nz
dd

)
S0

]
δSy,

d

dt
δSy = −γe

[
H + (

Nx
dd − Nz

dd

)
S0

]
δSx,

d

dt
δSz = 0,

which give the resonance frequency

ω2 = γ 2
e

[
H + (

Nx
dd − Nz

dd

)
S0

][
H + (

N
y

dd − Nz
dd

)
S0

]
. (15)

The spin precesses with the resonance frequency ω, which
depends on the dipolar terms Ni

dd.
Here, we consider the single-particle density distribution

|φ(r)|2 ∝ e−(x2+y2+λzz
2)/a2

, where λz is the aspect ratio, and
discuss simple situations. For the spherical case of λz = 1, the
integration (14) results in Nx

dd = N
y

dd = Nz
dd, giving ω = γeH .

The dipolar fields are canceled because of the isotropy, so that
the spin precesses with Larmor frequency. For the circular
plane (infinite cylinder) case of λz = ∞ (0), we obtain ω =
γe{H − (Nx

dd − Nz
dd)S0} for Nx

dd = N
y

dd.
In this representation, it seems that the microscopic dipolar

fields, Eq. (14), act as a macroscopic demagnetizing field to
compare Eq. (2) with (15). We believe that the origin of the
demagnetizing field is a MDDI. If the above discussion is
correct, the dipolar coefficients Ni

dd should depend on the shape
of the condensates. However, the single-mode approximation
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in spinor dipolar BECs is not effective in large-aspect-ratio
condensates, as discussed by Yi and Pu [23]. Therefore, we
must consider the spin dynamics beyond the approximation.

IV. FMR FOR NUMERICAL CALCULATION

A. Precession dependence on the aspect ratio λ

In this section, we discuss FMR by numerically calculating
the two-dimensional equation (3) under the condition of 87Rb,
namely, c0 � −c2 > 0. We began calculating the spin preces-
sions by applying a π/20 pulse to the ground state, whose
spins were polarized to the uniform magnetic field H = H ẑ
trapped by V = Mω2

x(x2 + λ2y2)/2 with gµBH/h̄ωx = 20
and an aspect ratio λ = ωy/ωx . Then, we study dynamics of
the spin-density vector in the uniform magnetic field which is
kept during the whole dynamics.

We investigated the dynamics of 〈Fx〉 for λ = 0.5,1, and 1.5
with and without the MDDI. From t = 0 to π/(20γeH1), the
π/20 pulse, which is represented by the rotational magnetic
field (H1 cos ωLt, − H1 sin ωLt,0) with the Larmor frequency
ωL = γeH and H1 = H/10, was applied. Then, the spins were
tilted by π/20 radians from the z axis with precession. After
turning off the pulse, the spins precessed around the z axis,
conserving 〈Fz〉. We define the notation 〈Fi〉dd

λ=λa
and 〈Fi〉λ=λa

as indicating the expectation values of Fi with and without a
MDDI in the trap with λ = λa .

First, the typical motions of spins are shown in Fig. 1.
Investigating the time development of 〈Fi〉dd

λ=0.5, 〈Fi〉dd
λ=1, and

〈Fi〉dd
λ=1.5, we obtained the differences between their precession

frequencies, as shown in Figs. 1(a) and 1(b). The differences
appeared at frequencies below the Larmor frequency, given
by H . For 0 � t � 2, no deviation between the precessions
was observed, but deviations clearly appeared as more time
elapsed. In order to demonstrate that the λ dependence was
given not by H but by Hdd, we show precessions for the same
aspect ratios without the MDDI in Figs. 1(c) and 1(d). The

π/20 pulse
Fx

dd
λ=0.5/h̄ Fx

dd
λ=1/h̄

Fx
dd
λ=1.5/h̄

ωxt xt

Fx λ=1/h̄

Fx λ=1.5/h̄

Fx λ=0.5/h̄

(a) (b)

(c) (d)

ω

FIG. 1. (Color online) Time development of 〈Fx〉dd
λ , (a) and (b),

and 〈Fx〉λ, (c) and (d). The red solid, blue dashed, and green dotted
lines show the results of λ = 0.5, 1, and 1.5 respectively. The gray
zone represents the duration of a π/20 pulse.

precession frequency did not change without the MDDI for
different values of λ. Therefore, the dipolar frequency ωdd =
γeHdd depends upon the shape of the condensate.

Next, we examined the effects of the MDDI on the
precessions in Fig. 2. Comparing 〈Fx〉dd

λ with 〈Fx〉λ, we
observed that the MDDI caused an effective magnetic field,
because the frequency of the precession with the MDDI
deviated from that without the MDDI in Figs. 2(a)–2(f).
Assuming that 〈Fi〉dd

λ=1 − 〈Fi〉λ=1 is represented approximately
to A cos γe(H + Hdd)t − A cos γeHt with an amplitude A,
we extracted the dipole frequency from the wave form.
Since the wave form became −2A sin ωddt/2 sin(ωL +
ωdd/2)t , the beat consisted of the large frequency ωL + ωdd/2
and the small frequency ωdd/2. From Fig. 2(h), we estimated
these frequencies to obtain ωdd/ωL � 6.5 × 10−3,9 × 10−3,
and 11 × 10−3 for λ = 0.5,1, and 1.5, respectively.

Figure 3 shows the λ dependence of ωdd/ωL. From
the results, however, we cannot safely conclude that the
λ dependence of the frequencies is given by changing the

π/20 pulse

ωxt xt

λ = 0.5

λ = 1

λ = 1.5

λ = 0.5

λ = 1

λ = 1.5

ω

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. (Color online) Comparing the precession with and with-
out the MDDI. (a) and (b), (c) and (d), and (e) and (f) show
the precession for λ = 0.5, 1, and 1.5, respectively. The solid
and dashed lines are 〈Fx〉λ and 〈Fx〉dd

λ . (g) and (h) represent
(〈Fx〉dd

λ=0.5 − 〈Fx〉λ=0.5)/h̄ (solid), (〈Fx〉dd
λ=1 − 〈Fx〉λ=1)/h̄ (dot), and

(〈Fx〉dd
λ=1.5 − 〈Fx〉λ=1.5)/h̄ (dashed), respectively.
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λ

ωdd

ωL

FIG. 3. λ dependence of ωdd/ωL.

shape of the condensates, since the dipolar frequencies may
be given by change of the density with the shape. FMR in
condensed matters has been discussed in condensed matter of
uniform density, even with changing shape. On the other hand,
atomic BECs have tunable densities and shapes. Therefore, our
calculations indicate characteristics of FMR in atomic cold
gases.

B. Spin current

We observed spin currents driven by spin diffusion, which
was caused by an r dependence of the dipolar field. Figure 4
shows the projections of F onto the x-y plane for λ = 1.5 and
ωxt = 12.7. The precession with the MDDI lost homogeneity
of the spin directions, whereas the precession without the
MDDI maintained this homogeneity. This is because the
precession frequency has an r dependence, specifically, ω(r) =
γeHeff(r) = γe[H + Hdd(r)].

The dipole interaction drives the spin diffusion, which is
shown in Fig. 5. The figure shows Fx/|Fxy | = cos φ as a
function of x at y = 0, where φ is the angle between the
spin vector and the x axis. In the dynamics with the dipole
interaction for λ = 1.5 [Fig. 5(a)] and 1 [5(b)], the spin
densities lost their angular coherence, whereas the dynamics
without the dipole interactions maintained this coherence
[Figs. 5(c) and 5(d)].

The spin diffusion drives the spin current Jk in Eq. (10),
which is shown in Fig. 6. To explain how the spin current is
driven by the spin diffusion, we considered the amplitudes of
the wave functions ψj = fje

iϕj as

ψ1(r,t) =
√

n(r,t)
2

[1 + cos θ (r,t)]eiϕ1(r,t), (16a)

ψ0(r,t) =
√

n(r,t)
2

sin θ (r,t)eiϕ0(r,t), (16b)

x

y
0

3.637 × 10−3

0

1.964 × 10−3

(a) (b)

FIG. 4. (Color online) Projection of F onto the x-y plane for
λ = 1.5 and ωxt = 12.7. The figures show the results (a) with and
(b) without MDDI. The vectors are nondimensionalized.

x                                           x

λ = 1

λ = 1.5

ωxt = 0.12

8

16

32

40

48

48

λ = 1

0.12

8

16

32
40

0.12 40

4832 16

8

λ = 1.5

0.12 40

8

32 16 48

co
s
φ

co
s
φ

FIG. 5. (Color online) Dynamics of a cross section of Fx/|Fxy | at

y = 0, where |Fxy | =
√

F 2
x + F 2

y . From the relation Fx = |Fxy | cos φ,
the parameter represents cos φ. Panels (a) and (b) show the results
with the MDDI and (c) and (d) without it, for λ = 1.5 and 1. The
x axis are nondimensionalized by

√
h̄/Mωx .

ψ−1(r,t) =
√

n(r,t)
2

[1 − cos θ (r,t)]eiϕ−1(r,t), (16c)

where the forms show the ground state of the ferromagnetic
state [24]. The amplitude is represented by n and the angle
θ between the spin and the z axis. We introduced this
representation to demonstrate that the spin current is derived
from the spin diffusion. Of course, we confirmed the validity
of the ferromagnetic representation under the pulse and
magnetic field by calculating θ directly. Therefore, it can
be utilized for the polarized spin state studied in our work.
The amplitudes f±1 were formed to represent Fz = nh̄ cos θ ,
and f0 was determined to satisfy the relation n = ∑

j |ψj |2.
For example, (n1,n0,n−1) = (n,0,0) led to Fz = nh̄ with
θ = 0, and (n1,n0,n−1) = (n/4,n/2,n/4) resulted in Fz = 0
with θ = π/2. The wave function can only express the
ferromagnetic states, i.e., the form cannot represent the antifer-
romagnetic state (n1,n0,n−1) = (n/2,0,n/2) or the polar state
(n1,n0,n−1) = (0,n,0). This restriction of the wave function is
caused by the first representation Fz = nh̄ cos θ .
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FIG. 6. (Color online) Dynamics of F projected onto the x-y
plane for λ = 1.5 with dipolar interaction.
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FIG. 7. (Color online) Same as Fig. 6, but without dipolar
interaction.

By introducing this representation into Eqs. (6) and (10),
we can redefine as follows:

Fx = nh̄ sin θ (cos ϕr cos ϕ − cos θ sin ϕr sin ϕ),

Fy = −nh̄ sin θ (cos ϕr sin ϕ + cos θ sin ϕr cos ϕ),

and

Jx = nh̄2

4M
[sin θ (1 + cos θ ) cos(ϕ1 − ϕ0)∇ϕ1

+ sin θ (1 − cos θ ) cos(ϕ−1 − ϕ0)∇ϕ−1

− 2 sin θ (cos ϕr cos ϕ − cos θ sin ϕr sin ϕ)∇ϕ0

+ 2(cos ϕr sin ϕ + cos θ sin ϕr cos ϕ)∇θ ], (17a)

Jy = −nh̄2

4M
[sin θ (1 + cos θ ) sin(ϕ1 − ϕ0)∇ϕ1

− sin θ (1 − cos θ ) sin(ϕ−1 − ϕ0)∇ϕ−1

+ 2 sin θ (cos ϕr sin ϕ + cos θ sin ϕr cos ϕ)∇ϕ0

+ 2(cos ϕr cos ϕ − cos θ sin ϕr sin ϕ)∇θ ], (17b)

Jz = nh̄2

4M
[(1 + cos θ )2∇ϕ1 − (1 − cos θ )2∇ϕ−1], (17c)

where ϕr = (ϕ1 + ϕ−1 − 2ϕ0)/2 and ϕ = (ϕ1 − ϕ−1)/2 are
relative phases. Since the relation ϕr = 0 was satisfied in
our calculations, we used the relation in Eqs. (17) , and
the spin-density vector formed an azimuthal angle ϕ with
the x axis. Then, we derived the spin components Fx =
nh̄ cos ϕ sin θ , Fy = nh̄ cos ϕ sin θ , and Fz = nh̄ cos θ . We can
therefore rewrite the spin-density currents as

Jx = nh̄2

4M
(4 cos ϕ sin θ∇ϕ0 + 2 cos ϕ sin θ cos θ∇ϕ

− 2 sin ϕ∇θ ), (18a)

Jy = −nh̄2

4M
(4 sin ϕ sin θ∇ϕ0 + 2 sin ϕ sin θ cos θ∇ϕ

+ 2 cos ϕ∇θ ), (18b)

Jz = nh̄2

4M
[4 cos θ∇ϕ0 + 4(1 + cos2 θ )∇ϕ], (18c)

which are driven by the gradients of the angles ϕ and θ and
the phase ϕ0. In the precessions with MDDI, the gradients
occurred because of the dipolar fields Hdd(r). As a result, the
spin currents were clearly driven, as shown in Fig. 6. For ωxt =

ωxt = 0.12 ωxt = 8 ωxt = 16

ωxt = 32 ωxt = 40 ωxt = 48

1.95 × 10−4

0 0

2.69 × 10−4

0

9.8 × 10−5

0

4.6 × 10−5

0

2.73 × 10−4

(a) (b) (c)

(d) (e) (f)

FIG. 8. (Color online) Dynamics of the spin currents Jx projected
onto the x-y plane for λ = 1 with dipolar interaction. The vectors are
nondimensionalized.

0.12, the spin vectors were coherent just after the applied π/20
pulse [Fig. 6(a)]. The spin densities Fx and Fy then flowed to
the center of the condensates from Figs. 6(b) to 6(c) . Then,
the densities reversed and diffused outward from Figs. 6(d)
to 6(e). This oscillation was repeated. Of course, we cannot
obtain the spin current without the dipolar interactions, since
the gradients of θ and ϕ were not caused; the dynamics are
shown in Fig. 7.

To investigate the spin fluid dynamics, we calculated the
spin current Jx for Eq. (17), as shown in Figs. 8 and 9. These
figures represent Jx from the previous calculations with λ =
1 and 1.5, respectively. Despite the difference in the ratio,
we observed two common properties in these figures. The
direction of the currents changed rapidly, corresponding to
the large precession frequency, and the magnitudes changed
slowly with the small dipolar frequency, as shown in Fig. 10,
which shows the time development of the x component of
Jx (x = 4,y = 0). This figure indicates that the oscillation of
the current direction occurred with the precession frequency,
which varied in magnitude with changing dipolar frequency.
Equation (11) also indicates that the spin density was not
conserved because of the effective magnetic field. Therefore,
the spin currents can be driven from a source and sink in the
center of the condensates, as in Figs. 8 and 9. The two common
properties were insensitive to the value of λ. However, the
change in spin density for λ = 1.5 exhibited quadratic pole
motion in a scissorslike mode for mass density [25], which

ωxt = 0.12 ωxt = 8 ωxt = 16

ωxt = 32 ωxt = 40 ωxt = 48
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2.76 × 10−4
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0
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(a) (b) (c)

(d) (e) (f)

FIG. 9. (Color online) Same as Fig. 8, but for λ = 1.5.
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} x
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ωxt
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FIG. 10. Dynamics of the x component of Jx at x = 4 and y = 0.
The insets show the results for ωxt = 0 to 4.

can be understood as an oscillation between the spin density
migrating to the y axis from the x axis and back again, as shown
in Figs. 6(a)–6(c). Therefore, the spin collective mode was
caused by spin diffusions induced by the MDDI. Therefore, the
spin current may cause the dynamics of the spin scissorslike
mode, which was observed as a shrinking and expansion of
the spin density in Fig. 6. The shrinking and expansion were
common features for λ = 1 and 1.5. However, the spin currents
were affected by the symmetry of the traps, as shown in Figs. 8
and 9.

From the calculations, we expected that the spin current
would be observable when using the spinor BECs. However, it
is difficult to observe the spin current in metals and condensed
matter. Atomic BECs, a macroscopic quantum phenomenon,
can show the spin current clearly and directly in the dynamics
of the spinor densities. Therefore, we should attempt to
observe various spin currents utilizing tunable experimental
parameters, i.e., interaction parameters, trap frequencies, and
the number of particles.

V. CONCLUSION

We investigated the properties of magnetic resonance
in spinor dipolar BECs by calculating the GP equations,
obtaining Kittel-like equations as the equations of motion for
the spin-density vector. The equations revealed two properties.

One is the dynamics of the spin fluid, and the other is
precession under the effective magnetic field consisting of
the external magnetic fields and the dipolar fields. The
magnetic resonance with the properties of the spin fluid was
characteristic of this system.

To extract properties from the GP equations, we studied the
law of conservation of spin-density current without effective
magnetic fields by first deriving the continuity equations
from the GP equation, obtaining representations of the spin
current. Second, we analytically evaluated the precession
dynamics described by the Kittel equations derived from the
GP equations using a single-mode approximation, where the
Kittel equations show conventional FMR. The analysis clearly
indicated that the origin of the FMR in the BECs is like the
dipolar field, whereas the origin of the resonance in the Kittel
equations for condensed matter is the demagnetizing field.
Comparing the FMR of the BEC with that of the condensed
matter, we concluded that the origin of the resonance was
not the spin exchange interaction that causes magnetism in
condensed matter, but the anisotropy of the MDDI. Finally,
we numerically calculated the GP equations, representing the
dynamics with the two common properties. The characteristic
dynamics showed that the effective magnetic field introduced
spin diffusion into the Larmor precession, driving the spin-
current-like scissors modes.

The relation between the spin current and FMR has not
yet been discussed for typical FMR. Therefore, it is important
to study spin current in condensates. We also believe that
the study of spin current will be useful for the development
of spintronics, because it is difficult to directly observe spin
currents in condensed-matter spintronics.
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