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Bogoliubov theory of interacting bosons on a lattice in a synthetic magnetic field

Stephen Powell, Ryan Barnett, Rajdeep Sensarma, and Sankar Das Sarma
Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland,

College Park, Maryland 20742, USA
(Received 28 September 2010; published 19 January 2011)

We consider theoretically the problem of an artificial gauge potential applied to a cold atomic system of
interacting neutral bosons in a tight-binding optical lattice. Using the Bose-Hubbard model, we show that an
effective magnetic field leads to superfluid phases with simultaneous spatial order, which we analyze using
Bogliubov theory. This gives a consistent expansion in terms of quantum and thermal fluctuations, in which the
lowest order gives a Gross-Pitaevskii equation determining the condensate configuration. We apply an analysis
based on the magnetic symmetry group to show how the spatial structure of this configuration depends on
commensuration between the magnetic field and the lattice. Higher orders describe the quasiparticle excitations,
whose spectrum combines the intricacy of the Hofstadter butterfly with the characteristic features of the superfluid
phase. We use the depletion of the condensate to determine the range of validity of our approximations and also to
find an estimate for the onset of the Mott insulator phase. Our theory provides concrete experimental predictions
for both time-of-flight imagery and Bragg spectroscopy.
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I. INTRODUCTION

One of the main goals of experiments with cold atoms
has been to extend to new contexts physical effects that are
familiar from the study of condensed matter. From this point
of view, a particularly important area has been the study
of vortices in superfluid systems, previously considered in
the context of type II superconductors [1] and superfluid
helium [2]. When a trapped superfluid comprised of weakly
interacting bosonic atoms is caused to rotate, it forms a
lattice of vortices, a remarkably clear demonstration of the
quantization of circulation [2,3].

In a corotating reference frame, the (neutral) atoms expe-
rience a Coriolis force of the same form as the Lorentz force
on charged particles in a magnetic field [3]. This magnetic
analogy has inspired considerable experimental effort to
achieve effective magnetic fields large enough to reach the
quantum Hall regime and corresponding theoretical work to
extend the theory of the quantum Hall effect to the context of
trapped bosons [3].

Much recent effort has been directed toward combining
effective magnetic fields and optical lattices, both to increase
the stability of the experimental systems and because of
interesting physical effects expected in the presence of a
lattice. The first experiments with rotating lattices used masks
to produce parallel beams, whose subsequent interference
formed the optical lattice potential. Mechanical rotation of
the mask caused the interference pattern to rotate, and a
density of vortices comparable to the density of lattice sites
was achieved [4]. Mechanical instabilities limited the lattice
strength, however, restricting to the regime where the vortices
are weakly pinned [5].

More recent experiments [6] have replaced the mask
with an acousto-optic modulator, allowing for considerably
deeper lattices and lower temperatures. For a sufficiently
deep lattice, a single-band approximation becomes valid, and
the Bose-Hubbard model [7,8] gives a good description of
the physics. Experiments with Raman lasers [9–11] allow
for effective magnetic fields without rotation, instead using

coupling between internal atomic states to imprint the required
geometric phases. A static optical lattice can be applied
to such an arrangement, giving an effective magnetic field
within the laboratory frame. Various other proposals have been
made to induce phases directly within the lattice [12–16],
some of which have the advantage of producing a perfectly
commensurate flux density.

A major goal of these experiments is, as noted above, to
reach the quantum Hall regime [17–19], in which the effective
flux density (in units of the flux quantum φ0 = 2πh̄/Q, where
Q is the effective particle charge) is comparable to particle den-
sity. Continuum systems in this regime exhibit a sequence
of incompressible phases, the integer and fractional quantum
Hall states, and, in the presence of a lattice, closely related
physics has been predicted in certain areas of the phase diagram
[19].

Systems of bosons also support compressible superfluids,
which are more closely related to the phases in the absence of
a magnetic field, and are likely competitors with the quantum
Hall states in the phase diagram. Detailed study of these phases
is beneficial for the search for quantum Hall physics, both
to calibrate experiments and to understand this competition,
but their nontrivial properties and phenomena, especially in
comparison with conventional superfluids, make them worthy
of considerable interest in their own right.

These properties are inherited from the remarkable structure
of the corresponding noninteracting problem, a single particle
moving on a tight-binding lattice in the presence of a uniform
magnetic field [20–26]. The density of states exhibits a
fractal structure known as the “Hofstadter butterfly” (see
Sec. II C, and in particular Fig. 2), with the spectrum depending
sensitively on α, the magnetic flux per plaquette of the lattice
(measured in units of φ0). For rational α = p/q (with p

and q coprime), there are q bands, and each state is q-fold
degenerate. This degeneracy can be understood in terms of
the “magnetic symmetry group” [23,24], which takes into
account the modification of the symmetries inherent in making
a particular choice for the gauge potential.
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The present work introduces a theoretical approach that
starts with the noninteracting Hofstadter spectrum and treats
the superfluid using Bogoliubov theory. This gives a mean-
field description of the superfluid phase of the Bose-Hubbard
model, in which the interplay between the “magnetic” vorticity
and the lattice potential (analogous to pinning effects for
a weak lattice [5,27]) leads to real-space density modula-
tions (“supersolidity”). The theory furthermore provides a
consistent expansion in terms of both thermal and quantum
fluctuations and describes the quasiparticle spectrum above
the condensate, which combines features of the Hofstadter
butterfly and the Goldstone mode characteristic of superfluid
order. We present detailed calculations within the superfluid
phase, based on the microscopic Hamiltonian, which include
predictions for both time-of-flight and Bragg spectroscopy
measurements. A brief outline of our methods and results has
been presented elsewhere [28].

Bogoliubov theory has previously been applied to unfrus-
trated superfluids in optical lattices [29] and also more recently
to a proposed “staggered-flux” model [30], which shares some
features of the present analysis. --Durić and Lee [31] have
applied a spin-wave analysis to the system considered here,
using a real-space perspective that provides results consistent
with ours. A related analysis has been applied to fermions [32],
which similarly show spatial order in the paired superfluid
phase.

The real-space structure of the condensate also bears
many similarities to other systems with phase coherence in
a magnetic field. In particular, superconducting lattices with
applied fields support states with current patterns similar
to those discussed in Sec. III below [33] and experiments
on these systems have clearly demonstrated the effect of
the Hofstadter spectrum on the superconducting transition
[34]. Frustrated Josephson junction arrays [35,36], where the
charging energy can become comparable to the Cooper-pair
tunneling amplitude, provide a close analog of the present
system, and implementations using cold atoms have been
proposed [37,38].

Previous work on this system has also considered the
Mott insulator that should exist for strong interactions and
commensurate density [7,8,27,39–41]. This phase, which is
very similar to its analog in the absence of a magnetic
field, is favored when the Hubbard U interaction suppresses
number fluctuations and eliminates the coherence between
neighboring sites of lattice. The transition between this phase
and the superfluid has been studied using the Gutzwiller ansatz
[27,39,40,42–44] and effective field-theory methods [45], with
the main effect being an enhancement of the insulator phase
due to the frustration [46] of the hopping.

In this work, we restrict consideration to uniform magnetic
fields. By modulating the effective field in real space, it
is possible to produce states with nontrivial topological
properties [47]. These include topological insulators and
metals, which display similar physics to the single-particle
states underlying the phenomena described here. Recent work
has also addressed systems of interacting bosons in spatially
varying magnetic fields [48].

Although the framework that we present has broad appli-
cability, our specific model includes several simplifications.
First, we use a single-band Hubbard model, incorporating only

the lowest band of the optical-lattice potential. (One effect of
the magnetic field is to split the tight-binding spectrum into
multiple “Hofstadter bands,” and these are included exactly in
our approach.) While this is certainly not a valid approximation
for the shallow lattices of earlier experiments [4], the single-
band limit is approached by more recent work with rotating
lattices [6] and should be readily achievable in combination
with Raman-induced gauge potentials [10,11].

We also assume a spatially uniform system with exactly
rational α. The main effect of the finite trap size is to wash
out the small-scale fractal structure of the Hofstadter butterfly
[13,25], so we expect most of our results to be valid for
any α. The experimental consequences of nonuniformity and
incommensurate magnetic flux will be addressed in more detail
in future work.

A. Outline

Our approach is as follows: In Sec. II, we use a symmetry
analysis to find the full spectrum of single-particle states,
described by bosonic annihilation operators akλ, where k is
the momentum and λ labels other quantum numbers. We then
apply the Bogoliubov ansatz [49,50],

akλ = Aλ(2π )2δ2(k) + ãkλ, (1)

where Aλ is a set of c numbers giving the condensate
order parameter, and the operators ãkλ describe the residual
bosons outside the condensate. An expansion in terms of
these operators is then developed, which in physical terms
is an expansion in fluctuations around mean-field theory. In
Sec. III, we address the lowest-order term, which involves
only the constants Aλ and leads to a time-independent Gross-
Pitaevskii equation for the condensate configuration.

Higher-order terms, describing the spectrum of low-energy
excitations and their interactions, are treated in Sec. IV. In this
work, we truncate the expansion at quadratic order, leading
to a theory of noninteracting Bogoliubov quasiparticles. For
this approximation to be reasonable, one requires a sufficiently
low density of quasiparticles, and we determine the regime of
validity by calculating the condensate depletion.

In Sec. V, we describe the consequences for experiments,
giving predictions for both time-of-flight imagery and Bragg
spectroscopy. We conclude with discussion in Sec. VI. Some
details of the Bogoliubov transformation and the symmetry
analysis of the interacting spectra are given in Appendices A
and B. In Appendix C we provide more details and analytic
results for the simplest case, α = 1

2 .

B. Hamiltonian

The single-band Bose-Hubbard model in the presence of a
static magnetic field can be written [13] as

H = −t
∑
〈ij〉

(ei�ij b
†
j bi + H.c.) + U

2

∑
j

nj (nj − 1), (2)

where bj and nj = b
†
j bj are the annihilation and number

operators, respectively, for site j . We treat a two-dimensional
square lattice and assume hopping with amplitude t only
between nearest neighbors, denoted 〈ij 〉. The second term
gives an onsite interaction with strength U ; the approach
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described here can straightforwardly be extended to in-
corporate more complicated interactions, including between
particles on different sites. (Note that we treat electrically
neutral particles in the presence of a synthetic magnetic field,
and we will assume that there are no long-range interactions.)

The phase �ij on the directed link from site i to site j , to be
denoted i → j , can be expressed [20] in terms of the magnetic
vector potential A as

�ij = Q

∫ xj

xi

d r · A(r). (3)

The integral is to be taken along the straight-line path between
the positions xi and xj of the two sites; one has �ij = −�ji .
While the individual phases depend on the choice of gauge,
the lattice curl∑

ij��
�ij = Q

∫
�

d2r · ∇ × A(r) (4)

is gauge independent, where the sum is over links enclosing a
given plaquette � in a counterclockwise sense.

The integral in Eq. (4) is simply the magnetic flux through
the plaquette, given by |B|a2, assuming a uniform magnetic
field B = ∇ × A perpendicular to a square lattice with
spacing a. The dimensionless flux per plaquette is defined
by α = |B|a2/φ0 and completely specifies the effect of the
magnetic field. We will henceforth use units where h̄ = a = 1
and take the effective charge on the bosons as Q = +1, so the
flux quantum is simply φ0 = 2π , and Eq. (4) becomes∑

ij��
�ij = 2πα. (5)

It is convenient theoretically, and also for recent
experiments with effective gauge potentials [10,11], to use the
Landau gauge, in which the vector potential is parallel to
one of the square lattice axes. We take the vector potential
along ŷ, which is conventional in the theoretical literature,
but it should noted that in the recent experiments of Lin
et al. [10,11] it is instead aligned with x̂. Our choice of gauge
is illustrated in Fig. 1.

With this choice, one has ei�j,j+x̂ = 1 and ei�j,j+ŷ = e2πiαxj ,
where (for example) j + x̂ denotes the site adjacent to j in the
+x̂ direction. The kinetic term Ht then becomes

Ht = −t
∑

j

[b†j+x̂bj + b
†
j−x̂bj + ωxj b

†
j+ŷbj + ω−xj b

†
j−ŷbj ],

(6)

where ω = e2πiα . Note that the phases act to “frustrate” the
hopping, so for noninteger α it is not possible to minimize the
kinetic energy on every link of the lattice simultaneously [46].

The transformation to an alternative gauge is implemented
by applying a spatially varying phase rotation to bj . For
example, particles of mass m in a lattice rotating with angular
velocity � have A(r) = m� × r , giving an effective magnetic
field [3,51] of B = 2m�. It is then more natural to use the
symmetric gauge, by defining operators b̃j = ω−xj yj /2bj , so
the gauge field becomes ei�j,j+x̂ = ω−yj /2 and ei�j,j+ŷ = ωxj /2.
The number operator nj = b

†
j bj is invariant under any such

gauge transformation, as required for a physically observable
quantity, and so the interaction energy HU is also invariant.

x

y

0,0

x

x

y 2 π α

FIG. 1. (Color online) An illustration of the vector potential �ij

in the Landau gauge, and the symmetries defined in Sec. II A. The
number of arrowheads on each link of the square lattice gives the value
of �ij on the directed link i → j in units of 2πα. The configuration
is one possible choice obeying Eq. (5): going around any square
plaquette in a counterclockwise sense, the number of forward arrows
minus backward arrows is +1. In this choice of gauge, �ij vanishes
on all links in the x direction. Any choice of gauge reduces the
full symmetry of the square lattice, and the translation and rotation
operations shown are only symmetries when accompanied by phase
factors (see Sec. II A). Reflections must be combined with time-
reversal operations to preserve the direction of the applied magnetic
field.

As noted above, we assume precisely rational α = p/q

(with p and q coprime), so ωq = 1, and the unit cell of H is
q × 1 sites. (In the symmetric gauge, the unit cell is consider-
ably larger, containing 2q × 2q sites.)

II. SINGLE-PARTICLE SPECTRUM

We begin by describing in detail the spectrum of the
single-particle kinetic term Ht , given in Eq. (6). While these
results [21,23–25] are well established (and have been for
many decades), we will present them here in some detail in
order to introduce the concepts and formalism that will be
central to our subsequent analysis.

The general structure of the spectrum for any α = p/q

can be determined by considering the “magnetic symmetry
group” (MSG; also known as the “projective symmetry
group”) [23,24,52]. This arises because any choice of gauge
necessarily reduces the physical symmetry of the lattice and
leads to a Hamiltonian that does not commute with the standard
spatial symmetry operators. For example, while the (uniform)
magnetic field is invariant under translation by a single lattice
site in any direction, Ht is manifestly asymmetric under
translations in the x direction.
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One can nonetheless define a group of operators in one-to-
one correspondence with the physical symmetries that obey
the multiplication table apart from phase factors and that
commute with Ht (and indeed the full Hamiltonian H). We
define this group by specifying operators corresponding to the
elementary translation, rotation, and reflection transformations
from which the full group can be constructed.

A. Magnetic symmetry group

We first define the elementary translation operators Tx and
Ty , illustrated in Fig. 1, in terms of their commutation with
the annihilation operator bj . With our choice of the Landau
gauge, the Hamiltonian is symmetric under translations in the
y direction, and so one can define Ty by

Tybj = bj+ŷTy. (7)

In contrast, the x-dependent phase factors in Eq. (6) imply that
a pure translation does not commute with Ht , and we instead
define Tx by

Txbj = bj+x̂Txω
−yj . (8)

The gauge field has periodicity q in the x direction, so the
combination T q

x obeys T q
x bj = bj+qx̂T q

x .
The multiplication relations of the MSG are equal up to

phase factors to those of the ordinary spatial group. With total
particle number N = ∑

j nj , one finds

TxTy = TyTxω
N, (9)

by induction, starting from the (totally symmetric) vacuum
state [53]. While the phase factors associated with individual
operators are dependent on the choice of gauge, this relation
is gauge independent.

Besides translations, it is useful to consider rotation and
reflection operations. We define the unitary operator R giving
a rotation by 90◦ counterclockwise about the site at the origin
(see Fig. 1):

Rbj = bRjω
xj yjR, (10)

where j → Rj under the rotation (xRj = −yj , yRj = xj ).
The phase factor again ensures that [R,Ht ] = 0.

For reflection operators, the situation differs somewhat,
since the magnetic field explicitly breaks chirality and time-
reversal symmetry. While reflection reverses chirality and so is
not a symmetry of the Hamiltonian, a combination of reflection
and time reversal restores the appropriate sense of circulation
and remains a symmetry in the presence of the field. One can
therefore define antiunitary operators corresponding to such
combinations; we define Ix and Iy for the transformations
obeying xIxj = −xj and yIyj = −yj respectively. No phase
factors are required in these cases.

It is also useful to define the combinations P = R2 = IxIy

and Ixy = RIy . The former gives inversion about the origin,
x → −x, which in two dimensions is a proper rotation and
hence represented by a unitary operator. The antiunitary
operator Ixy gives reflection in the line y = x.

Note that the interaction term HU is a function only of the
gauge-invariant combination nj = b

†
j bj and so is unaffected

by the phase factors included in expressions such as Eq. (8).
Any interaction term with the full symmetry of the lattice, such

as the explicit example in Eq. (2), is therefore invariant under
the magnetic symmetry group.

B. Momentum-space operators

While the unit cell of the Hamiltonian Ht contains q sites
and hence gives a reduced Brillouin zone, it is useful to
construct momentum space operators based on the full lattice
Brillouin zone BL: −π � kx,ky < π . The momentum-space
annihilation operator bk is defined by

bk =
∑

j

e−ixj ·kbj , (11)

so the commutator is given by

[bk,b
†
k′] = (2π )2δ2([k − k′]BL

). (12)

Here and throughout, we use the notation [k]B to denote the
momentum k reduced to the Brillouin zone B by the addition
of an appropriate lattice vector. We also use the shorthand
notation [x]q = x mod q.

Written in momentum space, the Hamiltonian Ht is

Ht = −t

∫
k∈BL

d2k
(2π )2

(
2 cos kx b

†
kbk

+ e−iky b
†
[k+X]BL

bk + eiky b
†
[k−X]BL

bk

)
, (13)

where X = 2πα x̂. The enlarged unit cell (q × 1 sites) of the
Hamiltonian allows mixing between momentum states that
coincide when reduced to the magnetic Brillouin zone BM :
−π � ky < π , −π/q � kx < π/q.

The operators bk commute with Ty ,

Tybk = eiky bkTy, (14)

but the phase factor in the definition of Tx causes it to mix
momenta,

Txbk = eikx b[k+Y ]BL
Tx, (15)

where Y = 2πα ŷ. Since Tx commutes with Ht , this implies
degeneracies in the single-particle spectrum between points
separated by Y . To make this transparent, it is convenient
to define the doubly reduced Brillouin zone BN : −π/q

� kx,ky < π/q.
Any point within BL can be specified as [k + �X + nY ]BL

,
where k ∈ BN and n and � are integers from 0 to q − 1, so Ht

can be rewritten as

Ht =
∫

k∈BN

d2k
(2π )2

q−1∑
�=0

q−1∑
n,n′=0

b
†
[k+nX+�Y ]BL

×Hnn′
(
[k + �Y ]BL

)
b[k+n′ X+�Y ]BL

, (16)

where the q × q matrix H(k) has elements (for q > 2)

Hnn′(k) = −t ×

⎧⎪⎪⎨
⎪⎪⎩

e+ikx ωn + e−ikx ω−n if n′ = n

e+iky if n′ = [n + 1]q
e−iky if n′ = [n − 1]q
0 otherwise.

(17)

(If q = 2, [n + 1]q = [n − 1]q and H01 = H10 = −2t cos ky .)
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Noting that Hnn′ ([k + �Y ]BL
) = ω(n′−n)�Hnn′ (k), we diag-

onalize Ht by writing

b[k+nX+�Y ]BL
= ω−n�

∑
γ

ψγn(k)ak�γ , (18)

where ak�γ is the annihilation operator for a single-particle
state labeled by band index γ ∈ {1, . . . ,q}. For each k ∈ BN ,
ψγn(k) is an eigenvector of H(k) with eigenvalue εγ (k). The
q bands can be understood from the “folding” of the Brillouin
zone due to the reduced translation symmetry of H.

It should be noted that the annihilation operator ak�γ has
momentum k when referred to BN , but momentum k + �Y
in the magnetic Brillouin zone BM . For each k ∈ BN , the
eigenvectors ψγn(k) corresponding to different bands are
orthogonal, so the operators ak�γ obey canonical commutation
relations,

[ak�γ a
†
k′�′γ ′] = (2π )2δ2([k − k′]BN

)δ��′δγ γ ′ . (19)

The single-particle Hamiltonian can finally be rewritten as

Ht =
∫

k∈BN

d2k
(2π )2

q−1∑
�=0

∑
γ

εγ (k)a†
k�γ ak�γ . (20)

The single-particle energy εγ (k) is independent of �, so every
state is (at least) q-fold degenerate. The band labels γ can
be arranged so εγ (k) � εγ+1(k) for every k and εγ (k) is a
continuous function of k.

Using Eqs. (14) and (15), one finds the effect of the
operators Ty and Tx as

Tyak�γ = eiky ω�ak�γTy (21)

Txak�γ = eikx ak[�+1]qγTx. (22)

The operator Tx therefore transforms one degenerate single-
particle state into another, and it is this symmetry that enforces
the degeneracy.

Determining the effects of the rotation and reflection
operators R, Ix , and Iy is somewhat more involved [54].
Considering first R, its commutation with Ht implies that
Rak�γR† can be written in terms of a(Rk)�′γ in the same band
γ . With an appropriate choice of the arbitrary phase of the
eigenvectors ψγn at the points k and Rk, one finds

Rak�γ = 1√
q

e−iφγ

∑
�′

ω��′
a(Rk)�′γR, (23)

where the phase φγ is independent of k. The requirement that
R4 = 1 implies that φγ is a multiple of π/2 for all bands γ .
One similarly finds

Ixak�γ = a(Iy k)[−�]qγIx (24)

Iyak�γ = e−2iφγ a(Ix k)�γIy (25)

Pak�γ = e−2iφγ a(−k)[−�]qγP. (26)

Note that e−2iφγ = ±1 is real. Similar expressions, such as

ψγn(Rk) = 1√
q

e−iφγ

∑
n′

ωnn′
ψγn′ (k), (27)

relate the eigenvectors ψγn(k) at symmetry-equivalent mo-
menta k.
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FIG. 2. The Hofstadter butterfly [25], a plot of the single-particle
energies εγ as a function of flux α. The butterfly has a fractal
structure, but only a finite set of α = p/q can be plotted; for
clarity, we restrict to q � 10. Points mark the top and bottom
of each of the q bands, which become increasingly narrow as q

becomes larger. In the limit q → ∞ with p fixed, or equivalently
α 	 1, the low-lying bands become the Landau levels of the
continuum.

Applying these operators to the Hamiltonian in the form of
Eq. (20) immediately shows that the single-particle dispersion
εγ (k) is symmetric under the corresponding transformations
of the momentum k. For example, εγ (Rk) = εγ (k), which
implies that the dispersion has the full fourfold rotation
symmetry of the lattice, despite the reduced symmetry
of Ht .

C. Spectrum

In summary, for α = p/q, the single-particle spectrum
consists of q bands, labeled by γ , with each state q-fold
degenerate. These degenerate states have energy εγ (k) and
momentum [k + �Y ]BM

, with � ∈ {0, . . . ,q − 1}. Figure 2
shows the “Hofstadter butterfly” [25], a plot of the allowed
single-particle energies εγ (for any momentum k) as a
function of the flux α. The plot has a fractal structure [25]
that is sensitively dependent on α, and for clarity only
rational α = p/q with q � 10 have been included. For each
α = p/q, points mark the top and bottom of each of the
q bands.

As can be seen in Fig. 2, most of the bands are separated by
nonzero gaps. The only exceptions are the two central bands for
q even, which touch exactly at the point of zero energy. These
occur at k = 0 for q an integer multiple of 4, and at the corner
of BN , kX = π

q
x̂ + π

q
ŷ, otherwise. For both, the spectrum

has a linear “Dirac-cone” dispersion near the degeneracy
point [55].

In all other cases, including the lowest band for all α, the
dispersion is quadratic near its minimum. The minimum of
the lowest band always occurs at k = 0, as can be shown
using the Perron-Frobenius theorem, and the effective mass
near this point can be found by perturbation theory for small
k. In all cases, the coefficients are equal in the x and y

directions (i.e., the effective mass tensor is proportional to the
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FIG. 3. (Color online) Contour plot of the lowest band of the
noninteracting single-particle spectrum ε1(k) in units of hopping t ,
for α = p

q
= 1

3 (left) and 1
5 (right). In both cases, the spectrum is

plotted in the magnetic Brillouin zone BM , in which − π

q
� kx < π

q

and −π � ky < π . Points separated by momentum Y = 2πα ŷ are
degenerate; identifying these gives the doubly reduced Brillouin zone
BN , − π

q
� kx,ky < π

q
, indicated by the horizontal dashed lines. Note

that the lowest band is considerably narrower in the case α = 1
5 , as is

also evident in Fig. 2.

unit matrix), a straightforward consequence of the symmetry
R. Figure 3 shows the lowest band of the noninteracting
dispersion, ε1(k), for α = 1

3 and 1
5 . In both cases, the dispersion

is quadratic and isotropic near the top and bottom of the
band.

D. Interactions

The operators ak�γ defined in Sec. II B are chosen to
diagonalize the kinetic energy operator Ht . To incorporate the
effects of the interaction term HU , this must also be expressed
in terms of these operators. This involves the straightforward
process of substituting Eqs. (11) and (18) into HU , and
can be performed for any choice of interaction. Our explicit
calculations are for the on-site Hubbard interaction in Eq. (2),
appropriate to bosons in a deep optical lattice.

A general quartic interaction can be written in terms of the
operators ak�γ as

HU =
∫

k1···k4

∑
�1···�4

∑
γ1···γ4

u a
†
k1�1γ1

a
†
k2�2γ2

ak3�3γ3
ak4�4γ4

, (28)

where the coefficient u is a function of the four sets of indices
k, �, and γ . It can be chosen symmetric under exchange of the
first two (1 ↔ 2) or last two sets (3 ↔ 4), and the requirement
that HU be Hermitian implies that u(3,4,1,2) = u∗(1,2,3,4).

A translation-invariant interaction conserves momentum,
so the coupling coefficient u is nonzero only if

[(k1 + k2 − k3 − k4) + (�1 + �2 − �3 − �4)Y ]BM
= 0 .

(29)

Note that this allows for umklapp processes where the net
momentum is zero only when reduced to BN . Factoring out
(2π )2δ2([k1 + k2 − k3 − k4]BN

) gives ū:

ū({k},{�},{γ }) = U

2
δ{�}

∑
n1···n4

δ{n}ψ∗
γ1n1

(k1)ψ∗
γ2n2

(k2)ψγ3n3
(k3)

×ψγ4n4
(k4)ωn1�1+n2�2−n3�3−n4�4 , (30)

where δ{�} and δ{n} denote Kronecker δs enforcing Eq. (29) and
a similar constraint on n1···4. The complicated structure of the
single-particle states gives ū a nontrivial dependence on the
momenta k of the interacting particles, despite the choice of a
purely on-site interaction.

Note that ū is, up to a phase factor that is only nontrivial
for umklapp processes, only dependent on two of the �’s:

ū(�1,�2,�3,�4) = e−ipp̄�1(k1+k2−k3−k4).x̂

× ū(0,[�2 − �1]q,[�3 − �1]q,[�4 − �1]q),

(31)

where p̄ is the modulo-q reciprocal of p, the integer such that
[pp̄]q = 1 and 0 < p̄ < q. This identity, and the momentum-
conservation constraint of Eq. (29) are consequences of
the symmetry of the interactions under Tx and Ty . Further
constraints on the coefficients u result from the symmetry
properties of the eigenvectors ψγn(k) under rotations and
reflections. For example, requiring that P commutes with HU

and using Eq. (26) gives

e−2i
∑4

i=1 φγi u(k1 . . . k4,�1 . . . �4,γ1 . . . γ4)

= u(−k1 . . . − k4,[−�1]q . . . [−�4]q,γ1 . . . γ4). (32)

This implies that u is odd in momentum and hence vanishes
for k1···4 = 0, for certain combinations of �1···4 and γ1···4. A
detailed discussion of the restrictions imposed by symmetries
has been presented by Balents et al. [54] in a different context.

III. MEAN-FIELD THEORY

Having described the spectrum of noninteracting particles,
we now turn to the effects of interactions on the many-body
physics. As described in Sec. I A, our approach is based on the
Bogoliubov theory, using the ansatz Eq. (1), which becomes

ak�γ = A�γ (2π )2δ2(k) + ãk�γ (33)
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when expressed in terms of the single-particle operators of
Eq. (18).

This ansatz, and the expansion in powers of fluctuation
operators ãk�γ , can be viewed as specifying correlation
functions in the superfluid phase. The first term in Eq. (33)
gives the one-point correlation function, the condensate order
parameter 〈ak�γ 〉 = A�γ (2π )2δ2(k), and the zeroth-order term
in the Bogoliubov expansion is given by neglecting higher-
order connected correlation functions.

This mean-field theory is a special case of that derived by
using the Gutzwiller ansatz, which assumes a state

∏
j |ψj 〉

that is factorizable in real space [27,39,40,42]. In general,
one allows |ψj 〉 to be an arbitrary state within the on-site
manifold, but our ansatz assumes a bosonic coherent state and
is appropriate only within the superfluid phase.

Substituting the mean-field ansatz into the Hamiltonian,
written as in Eqs. (20) and (28), gives the energy density

h0 =
∑
�,γ

A∗
�γ A�γ [εγ (0) − µ]

+
∑

{�},{γ }
ū({0},{�},{γ })A∗

�1γ1
A∗

�2γ2
A�3γ3

A�4γ4
, (34)

where the interaction strength ū is evaluated with all momenta
equal to zero. [This expression has been divided by a factor of
(2π )2δ2(0), corresponding physically to the system volume.]
The mean-field condensate configuration can be found by
minimizing h0 with respect to A�γ . The resulting equation can
be viewed as a time-independent Gross-Pitaevskii equation for
the condensate wave function in momentum space.

The corresponding real-space wave function can be found
using Eqs. (11) and (18) and is given by

〈bj 〉 =
∑
�n

ωnxj +�yj −n�
∑

γ

ψγn(0)A�γ . (35)

This is in general a function of [x]q and [y]q and so
gives a q × q site unit cell in real space. To this order,
the particle density is simply given by 〈nj 〉 = |〈bj 〉|2. Note
that the presence of A�γ for nonzero � implies that the
condensate contains components for k = �Y �= 0 and hence
that spatial symmetry is broken. Within this mean-field theory,
this spatial order develops simultaneously with the breaking of
phase-rotation symmetry and is a simple consequence of the
degeneracy in �. (In fact, the finite-temperature transition in
two dimensions is of the Berezinskii-Kosterlitz-Thouless type,
and so this particular result is not necessarily reliable.)

The configuration of currents within the superfluid phase
can be calculated using the gauge-invariant current operator
for the link i → j ,

Jij = it ei�ij b
†
j bi + H.c.. (36)

Figure 4 shows the currents 〈Jij 〉 in the mean-field condensate
configurations for α = 1

q
with 2 � q � 5; they have the

same q × q unit cell as the condensate wave function. For
the larger values of q, particularly α = 1

5 , these resemble
Abrikosov lattices [1]: the plaquettes with low density and
high current circulation can be viewed as containing vortices.
The symmetry properties of these configurations are listed in
Table I.

FIG. 4. (Color online) Example mean-field condensate config-
urations for α = 1

2 (top left), 1
3 (top right), 1

4 (bottom left), and 1
5

(bottom right). The blue arrows show the direction of the current
〈Jij 〉 on each link i → j of the lattice, and their lengths indicate
the magnitude (the length scale is not consistent between different
values of α). The black points show the positions of the lattice sites
i and have area proportional to the density 〈ni〉. In each case, the
condensate reduces the spatial symmetry of the square lattice and is
one member of a discrete set of degenerate configurations related by
the action of the broken symmetries. The degeneracies and residual
symmetries are listed in Table I. The quantitative details, but not the
symmetries, depend on the interaction strength U ; the plots show the
case U 	 t .

An analysis of the patterns that are allowed for general
interactions and various values of q has been given by Balents
et al. [54], who considered the same problem in a different
context. In the present case, it is valid to assume purely on-
site interactions, allowing the ordered states to be determined
unambiguously.

TABLE I. Properties of the mean-field condensate configurations
shown in Fig. 4, including their degeneracies and unbroken sym-
metries. The vectors in the column labeled A�1 are configurations
minimizing h0 in the limit of weak interactions, U/t → 0, where
the condensate is restricted to the lowest band, γ = 1. The residual
symmetry group is given by products of powers of the operators listed,
along with T q

x and T q
y , which are always preserved by the ansatz of

Eq. (33). The symmetries Tx , Ty , and R are illustrated in Fig. 1, and
the combination Ixy = IxR gives a reflection in the line y = x.

α A�1 Degeneracy Symmetries

1
2 (1 i) 2 TyTx , TxR, Ixy

1
3 (1 ω ω) 6 TyTx , R2, Ixy

1
4 (1

√
ω/2 −i

√
ω/2) 16 R, T 2

y T 2
x Iy

1
5 (1 ω ω∗ ω∗ ω) 10 TyT 2

x , R
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Minimization of h0 with respect to A�γ is equivalent to
minimizing with respect to the real-space condensate wave
function or vortex configuration. The latter perspective is more
appropriate in the continuum, whereas here the lattice provides
a strong pinning potential that simplifies the momentum-space
approach.

Our ansatz for the condensate configuration, Eq. (33),
also involves bands γ other than the lowest. Occupation of
higher bands costs kinetic energy, increasing the first term of
Eq. (34) and so is disfavored when interactions are very weak.
For stronger interactions, the energy is reduced by smoothing
out density fluctuations, which requires incorporating higher
bands into the condensate. This competition between kinetic
and potential energy also allows for first-order transitions
between different local minima of h0 as the interaction strength
or mean density varies. We have not found any examples for
q � 5, however, and their observation in experiments would
anyway likely require considerable enhancements in stability
and cooling.

The mean-field energy h0 is symmetric under the same
transformations of A�γ as the full Hamiltonian is under trans-
formations of a0�γ , as discussed in more detail in Appendix B.
As noted above, certain symmetries are spontaneously bro-
ken by the condensate configuration, and the corresponding
operators transform a given A�γ into a symmetry-equivalent
degenerate configuration. The degeneracies of the patterns
shown in Fig. 4 are listed in Table I. The number of degenerate
configurations is in every case a multiple of q, as we prove in
Appendix B. The degeneracy in the ordering patterns allows for
the possibility of real-space domain formation, which would
not affect time-of-flight images and would likely require more
sophisticated in situ probes to confirm [56,57].

It should be noted that the ansatz of Eq. (33) implicitly
excludes ordered states with larger unit cells than q × q sites.
(Previous work using a real-space approach [31] has suggested
that this may happen for α = 1

4 .) It is straightforward to include
such states (with larger but finite unit cells) at the mean-field
level, by allowing nonzero condensate amplitude at a discrete
set of momenta [k]BN

�= 0. This complicates somewhat the
analysis that follows, and we will not treat this possibility
further.

The condensate configuration A�γ also determines the
occupation numbers in momentum space and so can be used to

predict the result of a time-of-flight expansion measurement,
as discussed in detail in Sec. V A. Briefly, the terms in the
Hamiltonian Eq. (13) mixing momenta differing by X imply
Bragg peaks at points corresponding to momenta nX , while
the nonzero condensate amplitude A�γ for � �= 0 gives further
peaks at �Y . (It should be recalled that our axes are reversed
from those of Lin et al. [10,11].)

IV. BOGOLIUBOV THEORY

The mean-field theory of Sec. III results from using the
Bogoliubov ansatz of Eq. (33) and keeping only the lowest-
order term in an expansion in terms of the fluctuation operators
ãk�γ . To improve on this theory and determine the spectrum for
single-particle excitations above the condensate, we consider
in this section the following order in the expansion. The terms
containing a single operator vanish when the mean-field energy
density h0 is minimized, and so we next treat the quadratic
terms.

The quadratic part of the Hamiltonian H(2) can be conve-
niently expressed in matrix form, by combining creation and
annihilation operators into a column vector,

αk�γ =
⎛
⎝ ãk�γ

ã
†
(−k)�γ

⎞
⎠ . (37)

One can then write H(2) as

H(2) = 1

2

∫
k∈BN

d2k
(2π )2

∑
��′,γ γ ′

α
†
k�γ M�γ,�′γ ′ (k)αk�′γ ′ + H(2)

c ,

(38)

whereH(2)
c is a term that contains no operators and comes from

a commutator.
This expression can straightforwardly be generalized to

allow for other choices of single-particle basis, by replacing �

and γ by a single generic index λ, as in Eq. (1). The matrix
M(k) can then be written as

Mλλ′(k) = 12[ελλ′(k) − µδλλ′] + Bλλ′(k), (39)

where ελλ′ , the generalization of εγ δγ γ ′δ��′ , is not diagonal in
the general case, and

Bλλ′(k) =
∑
λ1λ2

(
4ū(k,0,k,0; λ,λ1,λ

′,λ2)A∗
λ1

Aλ2
2ū(k, − k,0,0; λ,λ′,λ1,λ2)Aλ1Aλ2

2ū∗(k, − k,0,0; λ′,λ,λ1,λ2)A∗
λ1

A∗
λ2

4ū(−k,0, − k,0; λ′,λ1,λ,λ2)A∗
λ1

Aλ2

)
. (40)

Similarly to h0 in Eq. (34), M(k) has contributions from both
the kinetic and potential energy. The latter can be viewed
as self-energy terms for the quasiparticles due to scattering
with bosons in the condensate. They include “anomalous”
processes in which a pair of condensed particles scatter from
each other into an excited state and the reverse process
where they return to the condensate. These result in the
off-diagonal elements in Eq. (40), giving terms in H(2) that do
not conserve the number of ãk�γ quanta [49,50]. The standard

Bogoliubov theory for zero magnetic field is recovered
by taking q = 1, in which case the � and γ indices are
redundant.

It is useful to consider M�γ,�′γ ′(k) as a 2q2 × 2q2 matrix
(for each k). Using the properties of u given after Eq. (28), one
can show that this matrix is Hermitian. The zero-momentum
limit M(0) is the Hessian of the mean-field term h0 (with
respect to variations in A�γ and its conjugate) and so is a
non-negative-definite matrix. The single vanishing eigenvalue
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corresponds to the broken U(1) symmetry of h0. For nonzero
k, all eigenvalues of M(k) are strictly positive.

A. Bogoliubov quasiparticles

To find the spectrum of quasiparticles, one must define a
new set of annihilation and creation operators in terms of which
H(2) is diagonal. Momenta (referred to BN ) are not mixed in
Eq. (38), so the new operators are labeled by k, but since the
condensate breaks symmetry under Ty , � is no longer a good
quantum number. We therefore define annihilation operators
for these modes as dkζ , where ζ ∈ {1,2, . . . ,q2}. (In certain
cases, there are unbroken translation symmetries, as shown in
Table I. The states can then be labeled by the eigenvalues of
the corresponding operators, as discussed in Appendix B.)

In order to preserve the bosonic commutation relations,
[dkζ ,d

†
k′ζ ′] = (2π )2δ2(k − k′)δζζ ′ , the transformation between

αk�γ and dkζ must be symplectic [58]; details are given in
Appendix A. In terms of the new operators, the quadratic part
of the Hamiltonian is given by

H(2) =
∫

k∈BN

d2k
(2π )2

∑
ζ

ξkζ

×
[
d
†
kζ dkζ − (2π )2δ2(0)

∑
�γ

Y
ζ

k�γ

∗
Y

ζ

k�γ

]
, (41)

where

dkζ =
∑
�γ

[
X

ζ

k�γ

∗
ãk�γ − Y

ζ

k�γ

∗
ã
†
(−k)�γ

]
. (42)

To this order, the system is therefore described by noninteract-
ing Bogoliubov quasiparticles with annihilation operators dkζ

and energies ξkζ > 0. Because of the off-diagonal elements
in M(k), the quasiparticles are superpositions of particles
and holes, with X

ζ

k�γ and Y
ζ

k�γ respectively giving these
components.

For vanishing interactions, the second term in Eq. (39)
is absent and the quasiparticle spectrum ξkζ is identical to
the single-particle spectrum εγ (k) described in Sec. II C.
With nonzero interactions, the q-fold degeneracy within each
band is split and, for generic k, the spectrum consists of q2

distinct modes. The quasiparticle dispersion for α = 1
2 and

1
3 are shown in Figs. 5 and 6 respectively, along with the
noninteracting single-particle spectrum. (For clarity, only 6 of
the q2 = 9 modes are shown in the latter case.) For general q,
the diagonalization of M(k) must be performed numerically,
but the simplest case is analytically tractable and is treated in
detail in Appendix C.

As the figures show, the lowest energy approaches zero in
the limit k → 0, giving the Goldstone mode that results from
broken U(1) symmetry. For small |k| this “phonon” has a linear
dispersion, and can be described in terms of long-wavelength
fluctuations of the condensate phase. A low-energy theory of
the mode can be found by allowing gradual deviations from
the mean-field value of the phase and its conjugate density, as
described in Sec. C 2.

The phase velocity c of the Goldstone mode, which is
expressed in terms of the spectrum at k = 0 in Sec. A 3, is in
many cases independent of direction, including both α = 1

2 and

M X

2

4

6

8

M

X

π

q

π q

FIG. 5. (Color online) Quasiparticle dispersion (solid lines) and
noninteracting single-particle dispersion (dashed), both in units of
hopping t , for α = p

q
= 1

2 . An analytic expression for the spectrum
for this case is given in Eq. (C7) of Appendix C. The dispersions are
plotted along a path in the reduced Brillouin zone BN shown in the
left inset. In the interacting case, U = 4t , the mean density is ρ = 1,
and the real-space configuration is as shown in the right inset (see also
Fig. 4). In both cases there are q2 = 4 modes, including, in the
interacting case, one Goldstone mode with linear dispersion. For U =
0, the modes are q-fold degenerate and have been shifted vertically
by an arbitrary choice of chemical potential. At k = π

2 x̂ + π

2 ŷ, the
corner X of BN , the modes meet at a point, with a linear dispersion.
Such a “Dirac cone” occurs whenever q is even. Other notable
features of the interacting spectrum include a twofold degeneracy
along the line from M to X and the unshifted modes (relative to the
noninteracting dispersion) from X to �. The former can be understood
as a Kramers degeneracy due to the antiunitary symmetry under TxIy ,
as discussed in Appendix B.

X' M X

1

2

3

4

5

M

X

X'

π

q

π q

FIG. 6. (Color online) Quasiparticle dispersion (solid lines) and
noninteracting single-particle dispersion (dashed), both in units of
hopping t , for α = p

q
= 1

3 . In the interacting case, U = 2t , the mean

density is ρ = 1. In both cases, there are q2 = 9 modes, of which
only the lowest 6 are shown. The dispersions are plotted along a path
in the reduced Brillouin zone BN shown in the left inset. Because
the condensate configuration breaks the symmetry under R, rotation
by π

2 , the quasiparticle dispersions along the lines from � to X and
from � to X′ are different. The interacting spectrum includes several
(unavoided) level crossings, for example, in the lower band near X′,
a result of the unbroken translation symmetry TyTx , as discussed in
Appendix B.
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1
3 . This isotropy is a straightforward result of the symmetry in
both cases under Ixy = RIy , as noted in Table I. This property,
and other features of the spectra shown in Figs. 5 and 6, are
discussed in Appendix B.

The second term in Eq. (41) includes H(2)
c from Eq. (38)

and represents the change in the zero-point energy associated
with the superfluid state. This term, coming from quantum
fluctuations, is accompanied at nonzero temperature T by a
contribution from thermally excited Bogoliubov quasiparti-
cles, leading to a free energy per site of

�f =
∫

k∈BN

d2k
(2π )2

∑
ζ

[
T ln(1 − e−ξkζ /T ) − ξkζ

∣∣Y ζ

k�γ

∣∣2],
(43)

where we use units such that kB = 1. (Within the mean-field
theory of Sec. III, all particles are in the condensate, so
the entropy vanishes and the free energy is given by h0.)
These contributions in principle allow a configuration with
a higher mean-field energy h0 to be selected because of its
enhanced fluctuations and hence lower free energy h0 + �f .
It should be noted, however, that the degeneracy of the
symmetry-equivalent condensate configurations discussed in
Sec. III cannot be lifted by �f .

The calculated spectra lead to important experimental
predictions, as discussed below in Sec. V. Occupation of
the quasiparticle modes, due to both thermal and quantum
fluctuations, gives the structure of time-of-flight images away
from the Bragg peaks mentioned previously, and spectroscopic
methods should be able to measure the mode dispersions ξkζ

directly (see Sec. V B).

B. Condensate depletion

The ansatz of Eq. (33) and the expansion in powers of oper-
ators is in principle exact, with the higher-order terms leading
to interactions between the Bogoliubov quasiparticles. Here,
the series is truncated at quadratic order, an approximation that
is valid provided that the quasiparticles remain at sufficiently
low density for their interactions to be neglected.

This criterion can be quantified by calculating the depletion
of the condensate, equal to the quasiparticle contribution to
the total particle number. This is found by expressing the
number operator nj is terms of the quasiparticle operators
dkζ , summing over sites j , and taking the ensemble average.
The mean particle density is then given by

ρ =
∑
�γ

|A�γ |2 +
∫

k∈BN

d2k
(2π )2

×
∑
ζ�γ

{∣∣Xζ

k�γ

∣∣2nB(ξkζ ) + ∣∣Y ζ

k�γ

∣∣2[1 + nB(ξkζ )]
}
, (44)

where nB(ξ ) = (eξ/T − 1)−1 is the Bose-Einstein distribution
function. The first term in Eq. (44) is the condensate density
and is simply the spatial average of the mean-field density
calculated in Sec. III, while the second term gives the
average density of particles outside the condensate. The relat-
ive magnitude of these two terms gives a measure of the
significance of fluctuations, and we use the ratio of the second
to the first as our definition of the depletion.

1 2 3 4

U

t

0.05

0.10

0.15

0.20

0.25

Depletion

0.0 0.1 0.2 0.3 0.4 0.5

T

t

0.05
0.10
0.15
0.20
0.25

FIG. 7. (Color online) Condensate depletion for α = 1
3 as a

function of interactions U/t (main figure) and temperature T/t

(inset), where t is the hopping strength. In the main figure, T = 0
and the densities are ρ = 1 (top curve), 2 (middle), and 4 (bottom),
while in the inset, ρ = 1 and U/t = 2. The depletion is smallest, and
hence the approximation best, deep in the superfluid phase, with weak
interactions, high density, and low temperature. For T > 0, small-
momentum cutoffs of k0 = 0.1 (solid line) and k0 = 0.02 (dashed
line), in lattice units, have been used to remove the logarithmic
divergence of the depletion integral.

Figure 7 shows the depletion for α = 1
3 , as a function of

density, interaction strength, and (in the inset) temperature.
It is small deep within the superfluid phase and increases
to roughly 25% for the largest values of U and T shown.
Neglecting cubic and quartic terms within the Bogoliubov
theory relies on the assumption of small depletion, and so the
conclusions presented here are only qualitatively applicable
for larger values of U and T . (The order of magnitude is
consistent with the spin-wave analysis of --Durić and Lee [31].)

For zero temperature, nB(ξ > 0) = 0 and the only fluctua-
tion contribution is from the second term within the braces
[zero-point fluctuations; compare Eq. (43)]. In this case,
the integrand diverges as v2

0 |k|−1 for small |k|, where v0

is a coefficient in the expansion of Y
ζ

k�γ for small k (see
Appendix A 3).The integral is therefore finite in this case.

For T > 0, the Bose-Einstein distribution function becomes
T (c|k|)−1 for small |k|. This results in a logarithmically diver-
gent integral, an instance of the Mermin-Wagner-Hohenberg
theorem [59,60], which states that, in two dimensions for
nonzero temperature, the continuous phase symmetry cannot
be broken. In an infinite two-dimensional system, there is no
true condensate and so the “depletion” is complete.

In the presence of an external trapping potential, however,
nonzero temperature condensation is possible even in two
dimensions [61]. This can be captured in a crude way by
applying a small-momentum cutoff k0 on the integral over k,
with k0 
 R−1

eff , where Reff is the effective radius of the system
in the trap (in units of the lattice spacing).

If the two-dimensional plane is embedded within a deep
lattice in the z direction, then hopping in this transverse
direction can also stabilize the condensate. An appropriate
momentum cutoff is then given by k0 ≈ √

2m∗t⊥, where t⊥ is
the transverse hopping matrix element, and hence the energy
scale over which the system appears three dimensional, and
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m∗ is the effective mass at the minimum of the lowest band in
the single-particle dispersion.

In either case, the depletion integral is finite, with a
logarithmic dependence on k0 of

ρlog = v2
0T

2πc
ln k0. (45)

In the inset of Fig. 7, the depletion is shown at nonzero
temperature, using two different values of k0. The difference
between the two curves is well approximated for most values
by Eq. (45). (The exact difference involves other terms that are
not singular at k0 = 0.) To determine the cutoff used in the plot,
we have assumed that the finite system size will be the most
important effect and taken Reff 
 10–50 lattice sites [62].

The depletion calculation also provides a rough estimate
for the boundary of the superfluid phase, at the point where
the depletion reaches 100%, although the approximation of
independent quasiparticles is probably not valid at this point.
For α = 1

3 , ρ = 1, and T = 0, this gives an estimate of
(t/U )c = 0.08, in reasonable agreement with the value of
(t/U )c = 0.063 (at the tip of the ρ = 1 Mott lobe) found using
the Gutzwiller ansatz [27,39,40]. It should be noted that the
latter approach, which neglects fluctuations within the Mott
insulator, generally underestimates (t/U )c [63].

V. EXPERIMENTAL PREDICTIONS

The Bogoliubov theory that we have presented for the
superfluid phase provides several concrete predictions for
experiments, most notably for time-of-flight images and Bragg
spectroscopy.

A. Time-of-flight images

As noted above in Sec. III, the enlarged unit cell of
the condensate has important consequences for time-of-flight
images. The corresponding reduction of the Brillouin zone
leads to additional Bragg peaks that give a clear indication of
the formation of spatial order in the condensate. The intensity
away from these peaks is determined by bosons excited to
states with [k]BN

�= 0 by thermal and quantum fluctuations.
In a time-of-flight measurement, the trapping potential

confining the atoms within the lattice is suddenly switched
off, causing a rapid expansion. After a fixed period of time,
the density profile of the cloud is determined, for example, by
illuminating the atoms and measuring the transmitted intensity.
If the interactions between the atoms during the expansion are
sufficiently weak, then it can be treated as ballistic, and we
will assume that this is the case throughout. In the absence of
a magnetic field, the density profile after a fixed time-of-flight
measures the original momentum distribution in the trap [64].
The same is true with a field, apart from some modifications
that we discuss in the following.

The time-of-flight images depend on certain details of the
experiment and, in particular, the means used to produce the ef-
fective magnetic field. In the case of a rotating system, the
momentum in the stationary (laboratory) frame is equal, up to
a possible global rotation, to the symmetric-gauge canonical
momentum in the rotating frame.

With a Raman-induced gauge field, the results depend on
whether the Raman beams remain after release; we assume that
they are suddenly switched off simultaneously with the trap,
such as in the experiments of Lin et al. [11]. The trajectory of
an atom is determined by the momentum immediately after the
gauge field is switched off, which is equal, using the sudden
approximation, to the Landau-gauge canonical momentum
before switch-off [65].

Within the approximation of a ballistic expansion, the time-
of-flight image shows the continuum momentum occupation
N (k), defined by

N (k) = 〈�̃†(k)�̃(k)〉, (46)

where �̃(k) is the (continuum) momentum-space annihilation
operator [64]. The real-space operator �(r) can, after projec-
tion to the lowest Bloch band, be expressed in terms of the
lattice operator bj using the Wannier function Wj (r),

�(r) =
∑

j

Wj (r)bj . (47)

In the presence of a magnetic field, this expression cannot
generally be written as a convolution.

Combing Eqs. (46) and (47) and using Eq. (11) to express
bj in terms of bk gives

N (k) =
∫

k1,k2∈BL

W̃ ∗(k,k1)
〈
b
†
k1

bk2

〉
W̃ (k,k2), (48)

where, for brevity, the standard integration measure for both
integrals has been omitted. The kernel of this double integral
transform, analogous to a matrix similarity transformation, is
given by

W̃ (k,k′) =
∑

j

eik′ ·xj

∫
d3r e−ik·rWj (r), (49)

where r is integrated over all space. (The Wannier function
Wj restricts the integral to the neighborhood of the two-
dimensional plane.)

The kernel W̃ depends on experimental details, including
the optical lattice parameters and the effective gauge potential,
while theoretical analysis based on the Bose-Hubbard model
leads to predictions for the correlation function 〈b†k1

bk2
〉. We

will first outline the form of W̃ appropriate to experiments
using rotation and Raman-induced gauge fields, before giving
our results for the correlation function based on the Bogoliubov
theory.

In the absence of a magnetic field, the Wannier function at
site j is a function only of r − xj and so can be written in the
form W

(0)
j (r) = w(0)(r − xj ). Shifting the integration variable

r in Eq. (49) allows the sum to be evaluated, giving

W̃ (0)(k,k′) = (2π )2δ2([k − k′]BL
)w̃(0)(k), (50)

where w̃(0) is the Fourier transform of w(0). This leads to the
simple result

N (0)(k) = |w̃(0)(k)|2〈b†[k]BL

b[k]BL

〉
, (51)

so the time-of-flight image gives the lattice-momentum dis-
tribution, with an overall envelope given by the Wannier
function [64].
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With nonzero gauge potential A, one can instead express
the Wannier function as [20,22,51]

Wj (r) = w(r − xj ) exp

[
i

∫ r

xj

d r ′ · A(r ′)
]
, (52)

where the integral is taken along a straight-line path, as in
Eq. (3). In this case, the kernel W̃ is no longer diagonal in k
and k′ and will depend on the appropriate choice of gauge.

In the Landau gauge (with A parallel to ŷ), one can write
AL(r) = B × rx x̂, and the kernel is given by

W̃L(k,k′) =
∫

d3r e−ik·rw(r)e
1
2 i|B|rxry

× (2π )2δ2([k − k′ + B × rym ŷ]BL
). (53)

In the symmetric gauge, AS(r) = − 1
2B × r , leading to

W̃S(k,k′) =
∫

d3r e−ik·rw(r)

× (2π )2δ2

([
k − k′ + 1

4
B × r

]
BL

)
. (54)

It should be noted that, in both cases, w(r) differs from the
Wannier function w(0)(r) in the absence of a magnetic field.

For our purposes, it is sufficient to note that the kernels both
give contributions to N (k) from a range of lattice momenta
[k]BL

+ δk. The scale is determined by |δk| <∼ |B|d = 2παd,
where d is the characteristic size of the Wannier function w.
This point-spreading effect can be understood as resulting from
the position-dependent impulse A(r) imparted to the atoms
when the gauge potential is switched off.

We now discuss the form of the correlation function
〈b†k1

bk2
〉, which also depends on the gauge. As in previous

sections, we will focus on the Landau gauge, appropriate for
experiments with Raman-induced gauge potentials.

The symmetry under T q
x and T q

y implies that 〈b†k1
bk2

〉
vanishes unless [k1 − k2]BN

= 0. We therefore define
Nn�,n′�′ by

(2π )2δ2(k − k′)Nn�,n′�′(k) = 〈b†k+nX+�Ybk′+n′ X+�′Y 〉, (55)

for k,k′ ∈ BN . (The formally infinite factor when k = k′

corresponds physically to system volume.)
The dominant contribution to Nn�,n′�′(k) is a δ-function peak

at k = 0, coming from the first term in Eq. (33),

Nn�,n′�′(k) = (2π )2δ2(k)
∑
γ γ ′

A∗
�γ ψ∗

γ n(0)A�′γ ′ψγ ′n′ (0). (56)

The corresponding peaks in 〈b†k1
bk2

〉, at momenta such that
[k1]BN

= [k2]BN
= 0, are separated by multiples of X and Y .

If they are to be resolved in time-of-flight images, we require
that their separation, 2π/q, be greater than the point-spread
2παd of the kernel W̃ . The condition is then simply that
the Wannier function w(r) be well localized compared to the
lattice spacing.

If this condition is satisfied, then the time-of-flight intensity
N (k) consists of sharp peaks near each of the reciprocal lattice
vectors nX + �Y of the reduced Brillouin zone BN . These
extra Bragg peaks in fact result from two separate physical
effects.

The first is the enlargement of the unit cell of the
Hamiltonian to q × 1 sites, as a result of the phases appearing
the hopping term Ht . States with momentum differing by
X are therefore mixed at the single-particle level, leading
to additional Bragg peaks at momenta 2π x̂n/q even in the
absence of interactions [16]. The observation of such peaks in
an experiment is a clear sign that the flux per plaquette is at
(or sufficiently close to) a rational value.

The second effect occurs only in the presence of interactions
and is due to the spontaneous breaking of spatial symmetry
in the superfluid. As discussed in Sec. III, the condensate
contains contributions from the q degenerate minima of the
single-particle dispersion, and therefore enlarges the unit cell
to q × q sites. Peaks at momenta 2π ŷ�/q are clear indications
of the formation of such an ordered state.

Importantly, the kernel for the Landau gauge, W̃L(k,k′) in
Eq. (53), does not change the y component of the momentum,
and so the point-spreading effect is entirely in the x direction.
The second class of Bragg peaks, resulting from interaction
effects, are therefore not affected, increasing the likelihood that
they can be observed in experiment. Note that this separation
does not apply in the symmetric gauge, appropriate for the
case of rotation, and furthermore that the spacing of the Bragg
peaks is reduced, as a result of the 2q × 2q unit cell of Ht ,
making their observation considerably more challenging.

Finally, it should be noted that in many cases, including
α = 1

2 and 1
3 , the condensate has equal amplitude (but not

phase) for all values of �. Bragg peaks with the same value of
n therefore have the same intensity, apart from the envelope
coming from the on-site Wannier wave function. This is in
contrast to the case of strictly vanishing interactions, when any
distribution of particles between the q minima of the single-
particle dispersion has equal probability.

B. Spectroscopy

Developments in spectroscopic measurements for ultracold
atomic systems [66–72] have allowed experimental access
to dynamic correlation functions within these systems. We
consider two such techniques, Bragg spectroscopy [66,67,73]
and lattice-modulation spectroscopy [70,71], and describe the
information regarding the quasiparticle spectrum that can be
determined from both.

Bragg spectroscopy [66,67,73] involves applying a weak
periodic perturbation of the form cos(K · x − �t) to the
system, using two laser beams at an angle and with frequencies
differing by �. One then measures, usually through time-of-
flight imaging, the total momentum or energy imparted to
the system. The response is given by the dynamical structure
factor S(K ,�), the density correlation function in momentum
and frequency space.

Lattice-modulation spectroscopy [70,71] involves oscil-
lating the lattice depth at frequency �; using time-of-flight
imaging to determine the imparted energy then gives S(0,�).
It is also possible to measure S(K ,�) at certain high-symmetry
points K in the lattice Brillouin zone BL by the application of
lattices with enlarged periods. (Each point in BL corresponds
to a point in BN in a way that depends on q.) Even if only the
point K = 0 is accessible, the presence of multiple Hofstadter
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bands should be clear, and the splitting of the Goldstone mode
from the rest of the first band is also measurable.

In either case, the coupling to the perturbation can be
expressed in terms of the momentum-space density operator,

ρ(K ) =
∫

k∈BL

d2k
(2π )2

b
†
k−K bk =

∑
j

e−ixj ·K nj , (57)

which, being a function only of nj , is gauge invariant. The
dynamic structure factor is given in spectral representation by

S(K ,�) = 1

Z
∑

�1,�2

e−E�1 /T δ(E�2 − E�1 − �)

×|〈�2|ρ(K )|�1〉|2, (58)

where Z = ∑
� e−E�/T is the partition function and |�1,2〉 are

eigenstates of the Hamiltonian H with energy E�1,2 .
While S(K ,�) is given by a four-point correlation function,

it can be factorized into two-point functions within the
quadratic Bogoliubov theory. In the condensed phase, and
assuming depletion is not too large, the dominant contribution
to the integral in Eq. (57) in fact comes from the points where
either [k]BN

= 0 or [k − K ]BN
= 0. (For [K ]BN

= 0 these
cases coincide, and there is an extra term in ρ(K ) which,
however, contributes only at � = 0.) The structure factor is
therefore given by a two-point correlation function multiplied
by the condensate density.

Within this approximation, the density operator can be
expanded in terms of the operators dkζ and d

†
kζ :

ρ([K + N X + LY ]BL
)

=
∑

ζ

{
r

ζ

NL(K )dKζ + ω−2y0L
[
r

ζ

NL(K )
]∗

d
†
−Kζ

}
, (59)

where

r
ζ

NL(k) =
q−1∑
n,l=0

∑
γ γ ′

[
ω−n�+(n−N)(�−L)A∗

[�−L]qγ ψ∗
γ [n−N]q (0)ψγ ′n

× (k)Xζ

k�γ ′ + ωn�−(n+N)(�+L)A[�+L]qγ ψγ [n+N]q

× (0)ψ∗
γ ′n(−k)Y ζ

k�γ ′
]
. (60)

A subdominant third term involving two dkζ operators has
been dropped from Eq. (59).

The dynamic structure factor defined in Eq. (58) is
calculated using the eigenstates of H, which, at the level
of the quadratic approximation of Sec. IV, are eigenstates
of the occupation numbers of each Bogoliubov mode. The
matrix elements of Eq. (59) between any pair of states can be
expressed in terms of these occupation numbers, giving

S([K + N X + LY ]BL
,�)

=
∑

ζ

|rζ

NL(K )|2{δ(� + ξKζ )nB(ξKζ )

+ δ(� − ξKζ )[1 + nB(ξKζ )]}. (61)

The structure factor at frequency � therefore has resonances at
each quasiparticle mode ζ , allowing the quasiparticle spectrum
to be measured directly.

VI. DISCUSSION

We have studied the effect of a synthetic magnetic field
on the superfluid phase of bosons in a lattice. Our theoretical
approach is based on Bogoliubov theory, which determines
the condensate configuration and allows interactions to be
taken into account within an expansion in terms of fluctuations.
We predict broken spatial symmetry in the condensed phase,
leading to qualitative changes compared to the Hofstadter
spectrum for noninteracting particles.

This analysis leads to several clear predictions that should
be testable in experiment. The density modulations in the
superfluid phase, illustrated in Fig. 4, may be directly measur-
able using recently developed real-space imaging techniques
[56,57]. Our order-of-magnitude estimate for the extent of
superfluidity given in Sec. IV B, which is in agreement
with independent theoretical approaches [27,39,40] can be
tested in experiments analogous to those performed in the
absence of a magnetic field [74]. Predictions for spectroscopic
measurements have been detailed in Sec. V B.

Our approach also provides predictions for time-of-flight
imaging, the most well-established technique in cold-atom
experiments. As described in Sec. V A, we predict extra Bragg
peaks due to the spatial symmetry breaking. In experiments
using Raman-induced gauge fields, these result from two
distinct physical effects. The gradient in the applied synthetic
vector potential (due to a gradient in the physical magnetic
field in the experiments of Lin et al. [11]) breaks translation
symmetry explicitly, leading to an extra set of Bragg peaks
in the direction of the gradient. By contrast, symmetry
under translation in the perpendicular direction is broken
spontaneously when the bosons condense, and this leads to
further Bragg peaks, in the direction of propagation of the
applied Raman lasers (x̂ in our convention, but ŷ in the
experiments). The appearance of these latter peaks is therefore
a clear signature of many-body effects.

Among the approximations made in the present work is the
assumption that thermal equilibrium can be reached on the time
scale of the experiments. Previous studies of closely related
systems [43] have shown that the process of vortex formation
can exhibit hysteresis, and experiments with effective gauge
potentials exhibit a considerable dependence of the vortex
density on hold times [11]. In the model considered here,
two-body scattering is sufficient to populate modes of nonzero
� and hence generate nontrivial spatial structures, but further
work is required to provide quantitative estimates of the rate
for these processes.

We have also neglected the influence of higher lattice
bands and hopping between pairs of sites other than nearest
neighbors. Neither is expected to have qualitative effects on
our conclusions, as long as the magnetic symmetries described
in Sec. II A are preserved. (This is certainly the case with
a synthetic magnetic field due to rotation or Raman lasers,
but not necessarily so when hopping phases are induced by
other methods [12–16].) As already noted in Sec. I B, weak
interactions between bosons on different sites will also have
only quantitative effects.

As discussed in Sec. III, the broken spatial symmetry
implies the existence of multiple degenerate configurations
in the superfluid phase. This allows for the possible formation
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of real-space domains, especially on shorter time scales, on
which the effect of the external trapping potential is likely to
be important.

Besides the simplifications inherent in our starting model,
our analysis has made the approximation of truncating the Bo-
goliubov expansion at quadratic order, neglecting interactions
between quasiparticles. Consequences of these interactions
include finite quasiparticle lifetimes and also the possibility
of spectrum termination at the point where decay into the
two-particle continuum is allowed by kinematics. These are
likely to have implications for spectroscopy experiments; an
understanding of these is left for future work.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

In this appendix, we will show that to diagonalize H(2),
given in Eq. (38), one must find the eigenvalues and -vectors
of the matrix ηMk for each k ∈ BN , where

η�γ,�′γ ′ = δ��′δγ γ ′

(
1 0
0 −1

)
, (A1)

and the matrix product is taken treating both η and Mk as 2q2 ×
2q2 matrices. While ηMk is not Hermitian, it can be shown [58]
that, since Mk is nonnegative-definite, the eigenvalues of ηMk

are all real. Furthermore, for k �= 0, when Mk is positive-
definite, the eigenvalues are all nonzero and come in pairs
with equal magnitude and opposite sign. In this case, the q2

positive eigenvalues ξkζ and the corresponding eigenvectors
Vζ

k,

V
ζ

k�γ =
(

X
ζ

k�γ

Y
ζ

k�γ

)
, (A2)

defined by ηMkVζ

k = ξkζ Vζ

k, describe the Bogoliubov quasi-
particles.

Section A 3 treats separately the special case of k = 0,
allowing us to develop a series expansion for the properties
near this point.

1. Inversion symmetry

The Bogoliubov transformation, which mixes annihilation
operators at momentum k with creation operators at −k,
requires the existence of an inversion symmetry in the
condensed phase. Because of broken translational symmetry
in the presence of a condensate, it is not necessarily the
case that P , inversion about the origin x = 0, remains a
good symmetry. Instead, define the operator Py0 = T 2y0

y P
representing inversion about the real-space point x = y0 ŷ (a
lattice site if y0 is an integer or the center of a bond if y0 is a
half integer).

Using Eqs. (21) and (26), Py0 can be shown to obey

Py0ak�γ = e−2iy0ky e−2iφγ ω−2y0�a(−k)[−�]qγPy0 , (A3)

so the condensate is invariant under this transformation if A�γ

obeys

A�γ = A[−�]qγ e−2iφγ ω−2y0�. (A4)

The following assumes that the condensate has an inversion
point, and hence there exists some value of y0 for which this
relation holds.

Corresponding to this inversion symmetry, and analogous
to the matrix η, define the 2q2 × 2q2 matrix π ,

π �γ,�′γ ′ = δ[�+�′]q ,0δγ γ ′e−2iφγ

(
ω−2y0� 0

0 ω2y0�

)
. (A5)

It is also convenient [58] to define γ ,

γ �γ,�′γ ′ = δ��′δγ γ ′

(
0 1
1 0

)
, (A6)

which has the effect of exchanging creation and annihilation
operators: γαk = (α†

−k)T . (The matrices η, π , and γ are all
both Hermitian and unitary and obey ηπ = πη, πγ = γπ∗,
and γ η = −ηγ .)

Under the assumption that A�γ obeys Eq. (A4), one can
show that πMkπ = M−k and, furthermore, γπMkπγ = M∗

k.
These symmetries imply that for every eigenvector Vζ

k of
ηMk with a positive eigenvalue ξkζ , there is a corresponding

eigenvector Wζ

k = πγ Vζ

k

∗
with eigenvalue −ξkζ . The corre-

sponding eigenvector of ηM−k is Wζ

−k = γ Vζ

k

∗
, so ξ−kζ =

ξkζ .

2. Nonzero momentum

For nonzero k, the matrix Mk is positive-definite, and all
eigenvalues of ηMk are real and nonzero. The eigenvalues
then come in pairs of equal magnitude and opposite sign, as
claimed previously. It can furthermore be shown [58] that one
can normalize the q2 vectors Vζ

k so

Vζ

k

†
ηVζ ′

k = δζζ ′ , (A7)

and hence Wζ

k

†
ηWζ ′

k = −δζζ ′ and Wζ

k

†
ηVζ ′

k = 0.
These orthonormality relations immediately lead to the

results used in Sec. IV A. First, they imply that the operators

dkζ = Vζ

k

†
ηαk = −α

†
−kηWζ

−k obey the canonical commuta-
tion relations,

[dkζ ,d
†
k′ζ ′] = (2π )2δ2(k − k′)δζζ ′ . (A8)

Second, they lead to the inverse expression

αk =
∑

ζ

(
Vζ

kdkζ + Wζ

kd
†
−k ζ

)
, (A9)

giving

α
†
kMkαk =

∑
ζ

ξkζ (d†
kζ dkζ + dkζ d

†
kζ ), (A10)

from which Eq. (41) follows.

3. Near-zero momentum

The invariance of the mean-field energy h0 under changes of
phase of A�γ leads to a vanishing eigenvalue of the matrix M0,
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which is by assumption the only zero eigenvalue (generically
the case when no further continuous symmetries are broken).
The corresponding eigenvector is given by

P�γ = 1√
2|A|2

(
iA�γ

−iA∗
�γ

)
(A11)

and is obviously also an eigenvector of ηM0 with zero
eigenvalue. We choose the normalization and phase of P so
P†P = 1 and P = πP = γ P∗.

It is convenient to define the vector Q satisfying

ηM0Q = −iνP (A12)

Q†ηP = i (A13)

Q†P = 0, (A14)

where ν is a constant with dimensions of energy. The vector
Q is specified uniquely by these three equations, because M0
has only one zero eigenvalue, and so its inverse can be defined
in the subspace orthogonal to P. One can therefore write Q =
−iνM−1

0 ηP, because ηP is orthogonal to P and so is Q by
Eq. (A14); Eq. (A13) simply fixes the normalization of Q, and
thus the constant ν, which can be shown [58] to be positive
and given by

ν−1 = P†ηM−1
0 ηP. (A15)

The vectors P and Q are “conjugate” in the sense that they
obey Eq. (A13) along with

P†ηP = Q†ηQ = 0, (A16)

so operators constructed using the vectors P and Q obey
the commutation relations of momentum and position. These
operators, however, apply only precisely at the zero-measure
point k = 0 and so are not directly relevant for the properties
in the thermodynamic limit.

Together with the eigenvectors Vζ

0 and Wζ

0 corresponding to
nonzero eigenvalues, P and Q span the 2q2-dimensional vector
space and can therefore be used as a basis for a perturbative
description of the region near k = 0. For small k (along x̂,
say), the matrix Mk can be expanded as

Mkx x̂ 
 M0 + kxM(1) + k2
xM(2), (A17)

and M(1,2) can be treated as perturbations. The coefficient ma-
trices can themselves be calculated using perturbation theory
for the wave functions ψγn(k). The resulting expressions are
analytic functions of the momentum k, implying the important
symmetry property that P†M(1)P = Q†M(1)Q = 0.

In the following, we restrict to cases where the condensate
is sufficiently symmetric that the phonon velocity is isotropic.
This requires a symmetry of A under either R or Ixy (see
Appendix B), and as seen in Table I, is always the case for
q � 5. (The extension to general symmetry is straightforward.)

Because of the non-Hermitian nature of the matrix ηMk,
standard Rayleigh-Schrödinger perturbation theory cannot be
applied directly to this problem, and the resulting expressions
for the eigenvalues and -vectors are not analytic in k. Instead,
the smallest eigenvalue ξk1 is linear in |k|,

ξk1 = c|k| + O(|k|2), (A18)

with phonon velocity c given by

c2

ν
= P†M(2)P − 2

∑
ζ

|P†M(1)Vζ

0 |2
ξ0ζ

. (A19)

As described in Sec. A 2, away from k = 0 all eigenvectors
have nonzero eigenvalues and can be normalized so that

Vζ

k

†
ηVζ

k = −Wζ

k

†
ηWζ

k = 1. As k approaches 0, the vectors
V1

k and W1
k corresponding to the smallest eigenvalue both

approach P, the unique zero-eigenvector of M0. Since this
eigenvector satisfies P†ηP = 0, the normalization of both V1

k
and W1

k must diverge as k → 0. To leading order, one finds

V1
k = v0|k|−1/2P + O(|k|1/2), (A20)

with coefficient v0 = √
ν/(2c). The omitted higher-order

terms maintain the appropriate normalization: P†ηV1
k =

v0|k|1/2c/ν + O(|k|3/2).

APPENDIX B: SYMMETRIES AND DEGENERACIES

In Sec. II A, the magnetic symmetry group was introduced,
and the operators corresponding to various elementary op-
erations were defined. In this appendix, we will present in
detail the consequences of these symmetries for the condensate
configurations and the quasiparticle spectrum.

We denote the full group of symmetries of the Hamiltonian
H as G, which includes the translations, rotations, and
reflections considered in Sec. II A. As noted in Sec. III, the
mean-field condensate configuration breaks a subset of G; the
subgroup of symmetries that are preserved will be denoted
H. Examples are given in Table I, which lists the symmetries
preserved in the configurations illustrated in Fig. 4. We will
discuss the various properties of the spectrum, including
symmetries and degeneracies, that result from H.

A general spatial transformation, such as an element of G,
is represented by the (anti-)unitary operator S, under which
ak�γ transforms as

Sak�γ =
∑
�′,γ ′

s�γ,�′γ ′ (k)a(Sk)�′γ ′S. (B1)

It should be recalled that reflection operators must be combined
with time reversal to give symmetries of the Hamiltonian
and are hence represented by antiunitary operators. The
coefficients in Eq. (B1), which can be written as a q2 × q2

matrix sk, are diagonal in γ (with possible exceptions at points
where two bands touch). Preservation of the commutation
relations requires that sk be a unitary matrix, including for
antiunitary S.

Under the general operation S, the condensate configura-
tion A is mapped to s−1(0)A(∗), with complex conjugation if
S is antiunitary. (The inverse matrix arises from considering
transformations of states versus operators.) The mean-field
energy h0, defined in Eq. (34), is therefore symmetric under
the same transformations of A�γ as the full Hamiltonian is
under transformations of a0�γ . A given configuration that
minimizes h0 will in general have lower symmetry, however,
being invariant only under (a group of mappings isomorphic
to) H. As argued in Sec. III, the superfluid therefore breaks
spatial symmetries as well as the U(1) phase symmetry.
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As usual, the broken symmetries, comprising the subset
G \ H, imply the existence of multiple degenerate configu-
rations. For example, h0 is invariant under A�γ → A[�−1]qγ

and under A�γ → ω−�A�γ , corresponding to Tx and Ty

respectively [see Eqs. (21) and (22)]. These two mappings do
not commute, and so there is no configuration A that preserves
both symmetries. This leads to the conclusion that the number
of distinct configurations that minimize h0 is always a multiple
of q (by the same argument that implies the degeneracy of the
single-particle states with different �).

The consequences of the symmetries H for the quasiparticle
spectrum can be determined by considering the transfor-
mations of the quadratic matrix Mk. The single-particle
contribution to Mk, given by the first term in Eq. (39),
commutes with any operation S in the full symmetry group
G, while the second term results from interactions with the
condensate, and so is symmetric only under the elements of H.

These preserved symmetries imply constraints on the
matrix Mk. In particular, defining s as in Eq. (B1) and taking
S to be (anti-)unitary, one can show that if s−1

0 A(∗) = σA, then
�kM(∗)

k = MSk�k, where

�k =
(

σ ∗s†k 0
0 σ sT

−k

)
. (B2)

In the presence of a condensate that is symmetric under a
transformationS, the quasiparticle energies are therefore equal
at k and Sk (including in the case where S is antiunitary).
For antiunitary operators, it is convenient to use the notation
�̌ for the operation of complex conjugation followed by
multiplication by the matrix �.

Applied to momenta near k = 0, this leads to constraints
on the phonon speed c, calculated in Sec. A 3. In all four cases
listed in Table I, the symmetry is sufficient to have isotropic
phonon speed, as assumed in Eq. (A18). For α = 1

2 and 1
3 , the

relevant symmetry is the (antiunitary) reflection Ixy , while for
α = 1

4 and 1
5 , it is the rotation R. (For α = 1

2 , there is also
symmetry under rotation by π

2 about a plaquette center, TxR.)
In all cases, the spectrum is of course symmetric only under,

at most, the fourfold rotation symmetry of the square lattice.
The symmetry under continuous rotations of k in Eq. (A18) is
a simple example of an emergent low-energy symmetry.

In many cases (for example, α = 1
2 , 1

3 , and 1
5 ; see Fig. 4 and

Table I), the condensate configuration preserves a nontrivial
translation symmetry. In particular, suppose translation TR by
a displacement R is unbroken, where R is not a lattice vector of
the enlarged unit cell. (Because Tx and Ty do not commute, one
must specify the path to define TR precisely.) Since translation
does not change k, one can define an operator using Eq. (B2)
that commutes with Mk. For each k, the modes ζ can therefore
be labeled according to their eigenvalue under �k. Modes
with different eigenvalues are allowed to have (unavoided)
crossings, as visible for example in Fig. 6.

1. High-symmetry points

Points in momentum space separated by the reciprocal
lattice vectors 2π x̂ and 2π ŷ are physically equivalent, so
the full Brillouin zone BL has the topology of a torus. The
same applies, with some modifications, to the doubly reduced
Brillouin zone BN .

With momentum shift operators defined by Kx k = [k +
2π
q

x̂]BL
and Ky k = [k + 2π

q
ŷ]BL

, the matrix Hnn′ (k), defined
in Eq. (17), obeys

Hnn′ (Kx k) = H[n+p̄]q [n′+p̄]q (k) (B3)

Hnn′ (Ky k) = ω−p̄(n−n′)Hnn′ (k), (B4)

so one can extend the definition of ψγn(k) beyond BN by

ψγn(Kx k) = ψγ [n+p̄]q (k)eiθx
γ (k) (B5)

ψγn(Ky k) = ω−p̄nψγn(k)eiθ
y
γ (k). (B6)

The phases θ
x,y
γ (k), corresponding to the flux threaded

through the holes of the torus, are arbitrary apart from con-
straints due to symmetry. These can be found by considering
the commutation relations of the operatorsKx,y with each other
and with the symmetry operators and by requiring that ψγn(k)
be continuous (apart from possibly at degeneracy points). The
definitions in Eqs. (B5) and (B6) are particularly useful on the
boundary of BN , where the number of constraints on θ

x,y
γ (k) is

larger and especially at the high-symmetry points at the corner
(X) and edge-center (M) of BN .

The relations between the eigenvectors at k andKµk lead to
corresponding relations for Mk, given by Kµ

k Mk = MKµkKµ

k ,
where

Kx
�γ,�′γ ′(k) = δ��′δγ γ ′ω−p̄�

(
e−iθx

γ (k) 0

0 eiθx
γ (k)

)
(B7)

Ky

�γ,�′γ ′(k) = δγ γ ′

(
e−iθ

y
γ (k)δ�′,[�+p̄]q 0

0 eiθ
y
γ (k)δ�′,[�−p̄]q

)
.

(B8)

These immediately imply that the mode energies are equal at
points on opposite sides of BN .

2. Kramers degeneracy

For α = 1
2 , there is a twofold degeneracy at every point

along the line from M to X, as can be seen in Fig. 5 and
by symmetry at every point on the edge of BN . (The same
degeneracy also occurs for α = 1

4 .)
This is in fact a Kramers degeneracy and is a consequence

of the symmetry under the glide reflection TxIy (for α = 1
2 ; the

corresponding symmetry for α = 1
4 is T 2

y T 2
x Iy). Its action in

momentum space is to map k to Ix k, so a point k = π
q

x̂ + ky ŷ,
on the line from M to X, is mapped to −π

q
x̂ + ky ŷ, on the

opposite side of BN . The quadratic matrix Mk at such a point
therefore obeys [�̌k,ηMk] = 0, where

�k = Kx
Ix k�

TxIy

k , (B9)

with �
TxIy

k defined in Eq. (B2) and Kx
k in Eq. (B7).

The antiunitary operator �̌k has the property

�̌2
k = �k�

∗
k = −1, (B10)

which implies, by Kramers’ theorem, that all eigenvalues of
ηMk are twofold degenerate. Note that, in the case α = 1

4 ,
this Kramers degeneracy exists despite the explicit breaking
of time-reversal symmetry by the applied magnetic field. (For
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α = 1
2 , ω = −1 is real, and the Hamiltonian preserves time-

reversal symmetry. The condensate configuration nonetheless
breaks this symmetry, as shown in Fig. 4.)

APPENDIX C: ANALYTICS FOR α = 1
2

The simplest nontrivial case is α = 1
2 , and it is then possible

to perform many of the calculations analytically. In this case,
the matrix H(k) defined in Sec. II B is given by

H(kx x̂ + ky ŷ) = −2t

(
cos kx cos ky

cos ky − cos kx

)
, (C1)

with eigenvalues

εk = ±2t

√
cos2 kx + cos2 ky. (C2)

Note that the spectrum has a Dirac cone at the corner of BN ,
where |kx | = |ky | = π

2 . At k = 0, the eigenvectors are, for
bands γ ∈ {1,2},

ψγ (0) = 1√
4 + 2(−1)γ

√
2

(
1 + (−1)γ

√
2

1

)
. (C3)

The mean-field condensate configuration can be determined
by calculating h0, given in Eq. (34), and minimizing with
respect to A�γ at fixed average density. In this case, however,
the appropriate configuration is more easily found by inspec-
tion. With the choice A�,1 = i�

√
ρ/2 and A�,2 = 0, direct

calculation shows that the real-space wave function, given by
Eq. (35), has uniform magnitude,

〈bj 〉 = √
ρ exp

{
i(−1)yj

[
(−1)xj

π

4
− 5π

8

]}
. (C4)

This configuration, in which the condensate is restricted to the
lower band, therefore has uniform density of ρ particles per
lattice site. Calculation of the currents using Eq. (36) gives
configurations as illustrated in Fig. 4, with the current on
each link having magnitude |〈J 〉| = √

2tρ. Replacing A�γ by
its complex conjugate gives the equivalent configuration with
currents reversed on each link.

Since these configurations have uniform density, they
simultaneously minimize both terms in Eq. (34) globally,
and are therefore global minima of h0, at fixed density

ρ. (They minimize the kinetic energy because they contain
contributions only from the degenerate minima of the lowest
band, and they minimize the potential energy because they
have uniform density.) The case α = 1

2 is unique in this
regard, with the condensate configuration minimizing both
terms simultaneously and so insensitive to the value of the
interaction strength U . For q > 2, the density modulations can
be reduced by including higher bands in the condensate config-
uration, and the extent to which they contribute is determined
by U/t .

These two configurations are in fact the only minima (up to
a redundant overall phase rotation) and provide an example
of the general result that there is always a discrete set of
degenerate minima, whose number is a multiple of q. Either
of the translation operators Tx and Ty relates one of the two
configurations to the other, up to an overall phase (using the
transformation of A�γ specified in Appendix B).

Both configurations are symmetric under TyTx , as noted in
Table I, with the first obeying∑

��′
(sTyTx )−1

��′ A�′,1 = iA�,1, (C5)

where

sTyTx =
(

0 1
−1 0

)
is the matrix defined by Eq. (B1) for the transfor-

mation TyTx (at k = 0 and restricted to γ = 1). One
can therefore construct the matrix �TyTx according to
Eq. (B2); it has eigenvalues ±1, allowing the quasiparticle
modes to be labeled as even or odd under TyTx .

1. Quasiparticle dispersion

To find the dispersion, one must construct the 8 × 8 matrix
Mk given in Eq. (39). Rather than using the single-particle
basis labeled by k, �, and γ , it is somewhat easier to find
analytic results by starting in the basis of k, �, and n as in
Eq. (16). While the first term in Eq. (39) is not diagonal in
this basis, the second has a considerably simpler expression,
as a result of the simple form of the on-site interaction in
momentum space.

After transforming to the basis of eigenvectors of �TyTx , the
matrix Mk splits into two 4 × 4 blocks,

M(±)
k =

⎛
⎜⎜⎜⎜⎝

Uρ + 2t(
√

2 + cos kx) 2t cos ky ±Uρ/
√

2 Uρ/
√

2

2t cos ky Uρ + 2t(
√

2 − cos kx) Uρ/
√

2 ∓Uρ/
√

2

±Uρ/
√

2 Uρ/
√

2 Uρ + 2t(
√

2 + cos kx) 2t cos ky

Uρ/
√

2 ∓Uρ/
√

2 2t cos ky Uρ + 2t(
√

2 − cos kx)

⎞
⎟⎟⎟⎟⎠ , (C6)

corresponding to the eigenvalues ±1. It is then straight-
forward to calculate the eigenvalues of ηMk as discussed
in Sec. A1. They come in pairs of opposite sign, and

so their squares are given by the roots of a quadratic
equation.

The quasiparticle energies ξk are finally given by

ξ 2
k = 8t2 + 4

√
2tUρ + ε2

k ±
√

(32t2 + 16
√

2tUρ + 2U 2ρ2)ε2
k ± 16t2U 2ρ2 cos kx cos ky, (C7)
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where the two choices of ± are independent, giving the q2 = 4
modes of the interacting dispersion. Taking the first sign as −
and the second as + gives the Goldstone mode, which has

ξk = |k|
√√

2ρUt + O(|k|3) near k = 0.
Using Eq. (C7), one can confirm the twofold degeneracy

along the line from M to X established in Sec. B 2. For these
points, cos kx = 0 and the second choice of ± is redundant.

2. Amplitude-phase description of gapless mode

The small-|k| dispersion of the Goldstone mode can be
derived by more elegant means if one restricts to long-
wavelength fluctuations of the condensate configuration.
Gradual variations of the real-space wave function can be
parametrized by writing

bj = 〈bj 〉eiϑj

√
1 + �j

ρ
, (C8)

where ϑj and �j describe deviations in the phase and ampli-
tude, respectively, and have canonical commutation relations
[ϑi,�j ] = iδij .

We now rewrite the Hamiltonian H in terms of these new
degrees of freedom. Assuming �j 	 ρ and that both �j and

ϑj vary only over distances large compared to the lattice scale,
one can expand to give

H = h0 + tρ√
2

∑
〈ij〉

(ϑi − ϑj )2 + U

2

∑
j

�2
j + · · · . (C9)

Note that the frustration in Ht implies that the kinetic energy
of each link is not separately minimized in the mean-field
configuration. Each link i → j therefore contributes a term
linear in ϑi − ϑj , but their sum vanishes, since the mean-field
configuration is a minimum of the total kinetic energy.

Writing this equation in terms of the Fourier components
of ϑj and �j , we obtain

H = h0 +
∫

d2k
(2π )2

(
tρ√

2
|k|2|ϑk|2 + U

2
|�k|2

)
+ · · · ,

(C10)

where the integral is restricted to small |k| by the assumption
of slowly varying fluctuations. This takes the form of a
harmonic oscillator for each momentum, so the dispersion

is ξk = 2
√

tρ√
2
|k|2 × U

2 , in agreement with the result given in

the previous section.
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[39] M. Ö. Oktel, M. Nita, and B. Tanatar, Phys. Rev. B 75, 045133

(2007).

013612-18

http://dx.doi.org/10.1080/00018730802564122
http://dx.doi.org/10.1103/PhysRevLett.97.240402
http://dx.doi.org/10.1103/PhysRevLett.97.240402
http://dx.doi.org/10.1103/PhysRevLett.93.060401
http://dx.doi.org/10.1103/PhysRevLett.93.060401
http://dx.doi.org/10.1103/PhysRevA.71.063607
http://dx.doi.org/10.1103/PhysRevLett.104.050404
http://dx.doi.org/10.1103/PhysRevLett.104.050404
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevA.79.063613
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1103/PhysRevLett.76.1788
http://dx.doi.org/10.1088/1367-2630/5/1/356
http://dx.doi.org/10.1103/PhysRevA.70.041603
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1088/1367-2630/12/3/033007
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevA.78.013609
http://dx.doi.org/10.1103/PhysRevA.78.013609
http://dx.doi.org/10.1103/PhysRevLett.103.105303
http://dx.doi.org/10.1103/PhysRevLett.103.105303
http://dx.doi.org/10.1103/PhysRev.84.814
http://dx.doi.org/10.1088/0370-1298/68/10/304
http://dx.doi.org/10.1088/0370-1298/68/10/304
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.134.A1602
http://dx.doi.org/10.1103/PhysRev.134.A1607
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.23.5185
http://dx.doi.org/10.1103/PhysRevB.23.5185
http://dx.doi.org/10.1103/PhysRevB.23.5191
http://dx.doi.org/10.1103/PhysRevB.23.5191
http://dx.doi.org/10.1103/PhysRevA.77.033629
http://dx.doi.org/10.1103/PhysRevA.77.033629
http://dx.doi.org/10.1103/PhysRevA.79.021602
http://dx.doi.org/10.1103/PhysRevLett.104.255303
http://dx.doi.org/10.1103/PhysRevLett.104.255303
http://dx.doi.org/10.1088/0953-4075/36/5/304
http://dx.doi.org/10.1103/PhysRevLett.100.130402
http://dx.doi.org/10.1103/PhysRevLett.100.130402
http://dx.doi.org/10.1103/PhysRevA.81.023404
http://dx.doi.org/10.1103/PhysRevB.81.014520
http://dx.doi.org/10.1103/PhysRevLett.104.145301
http://dx.doi.org/10.1103/PhysRevLett.104.145301
http://dx.doi.org/10.1103/PhysRevB.27.1541
http://dx.doi.org/10.1103/PhysRevLett.53.1845
http://dx.doi.org/10.1103/PhysRevLett.53.1845
http://dx.doi.org/10.1103/PhysRevLett.51.1999
http://dx.doi.org/10.1103/PhysRevB.31.5728
http://dx.doi.org/10.1103/PhysRevLett.95.010401
http://dx.doi.org/10.1103/PhysRevLett.95.010401
http://dx.doi.org/10.1007/s10909-007-9601-9
http://dx.doi.org/10.1103/PhysRevA.79.021604
http://dx.doi.org/10.1103/PhysRevA.79.021604
http://dx.doi.org/10.1103/PhysRevB.75.045133
http://dx.doi.org/10.1103/PhysRevB.75.045133


BOGOLIUBOV THEORY OF INTERACTING BOSONS ON A . . . PHYSICAL REVIEW A 83, 013612 (2011)
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