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Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium
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We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses
by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response
using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-
dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing
pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of
the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption
cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm
and intensities up to 1012 W/cm2. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes
splitting of the 1s → 2p transition that can potentially lead to transparency for absorption of XUV light tuned to
this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the
time-frequency approach into a solution of the coupled Maxwell-Schrödinger equations. We find rich temporal
reshaping dynamics when a 61-fs XUV pulse resonant with the 1s → 2p transition propagates through a helium
gas dressed by an 11-fs, 1600-nm laser pulse.
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I. INTRODUCTION

The advent of ultrafast XUV and even x-ray light sources
that can be synchronized to optical or IR laser pulses has given
rise to several recent studies of the transient absorption of
such radiation by laser-dressed atoms, both experimental [1–5]
and theoretical [6–8]. For example, many of the experiments
done in attosecond physics involve the transient absorption
of attosecond XUV radiation by atoms interacting with an IR
laser field. This is because the strong-field process of high
harmonic generation (HHG), which is used to produce the
attosecond XUV radiation as either single pulses or trains of
pulses, results in the XUV field being precisely synchronized
with the driving IR field [1,9]. It is then possible to perform
experiments using the XUV field and a replica of the original
IR field with attosecond precision [10]. Glover et al. also
showed that it is possible to overlap pulses of synchrotron-
produced soft-x-ray radiation with an 800-nm dressing laser
in a study of laser-induced transparency in neon [2].

In this paper we explore how an ultrafast XUV pulse
interacts with a simple atom, helium, in the presence of
a moderately strong IR field that may be either shorter or
longer in duration than the XUV pulse. We have as our
goal to formulate theoretical methods that can be used to
calculate the absorption and emission of XUV radiation by
strongly dressed atoms even when the XUV pulses are on the
femtosecond time scale, and may include multiple frequencies
in a comb. In addition, we want to be able to study the transient
absorption and reshaping of radiation as it propagates through
a macroscopic amount of gas. We will restrict ourselves
in this study to cases where the IR laser dresses the atom
without appreciably exciting it, leaving higher IR intensities
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for a future paper. We will also restrict ourselves to XUV
wavelengths and intensities where single excitations below
the first ionization threshold at 24.6 eV dominate the XUV
absorption. Even given these restrictions, the IR laser has a
substantial impact on the Rydberg and continuum states of the
atom and, in this way, enables profound control over resonant
XUV absorption [7,11–14].

In the calculations we present we will consider the simplest
case, where there are just two radiation fields, one that dresses
the atom and one that is absorbed and possibly reshaped. The
fundamental problem of a two-color field such as this has
been studied before in the context of x-ray absorption by neon
[2,7,15–17], argon [18], and krypton [19] atoms. Specifically,
the examination of laser-dressed atoms led to the discovery of
electromagnetically induced transparency (EIT) for x rays [7],
better characterized as Autler-Townes splitting [12] because
the transparency is not predominantly caused by destructive
interference. Also, there have been several studies of helium in
the context of the two-color problem we are discussing. It was
investigated with an optical laser and the XUV free-electron
laser in Hamburg [20–22], and the impact of laser-dressing
helium on the production of XUV radiation via HHG was
studied theoretically in Ref. [23].

We begin by characterizing the single-atom response in
terms of the cross section for absorption of XUV radiation
of frequency ωX. First we calculate the linear, frequency-
dependent XUV absorption cross section using a Floquet-like
method [non-Hermitian perturbation theory (NHPT)] that
treats the XUV field as a monochromatic source. This method
has been extensively tested in the context of x-ray absorption
on the 1s → 3p resonance of laser-dressed neon, alluded to
above [7,19]. Next, we outline a method using direct inte-
gration of the time-dependent Schrödinger equation (TDSE),
which achieves essentially the same goal by using pulses of
finite duration. The cross section is extracted by projecting
out the initial state from the final-state wave function. The
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two methods, NHPT and the TDSE-projection method, are
shown to agree when the XUV pulse bandwidth is very small.
The TDSE-projection approach is, however, potentially more
flexible in dealing with situations where the dressing laser
couples many states of the atom. We find that the TDSE-
projection method can be used with a reasonable amount of
effort to study laser-dressed absorption over a wide range of
XUV frequencies and dressing wavelengths. As an example of
the usefulness of the method, we show representative results
for several dressing wavelengths between 0.4 and 2.0 µm.

Next we extend the treatment of the XUV interaction to deal
with cases where the atomic response varies as a function of
time or frequency in a nontrivial way. This could, for instance,
be because the IR dressing pulse is so short that nonadiabatic
effects cause the cross section to vary substantially over the
bandwidth of the pulse. Another interesting situation is when
the IR pulse is so strong that multiphoton processes cause
the atom to exchange energy with the light field over a large
range of frequencies in many different orders of nonlinearity,
so that it is no longer practical to (artificially) separate the
linear (nonlinear) absorption from the driven linear (nonlinear)
emission. We therefore develop a time-frequency approach
to the atomic response, based on the time-dependent energy
exchange between the atom and the light fields. Our method
is similar in spirit to the treatment provided by, for instance,
Tannor [24] and Pollard and Mathies [25], with the important
difference that we are not separating the atomic response
into different linear and nonlinear orders but we are keeping
everything in one frequency-dependent response function.
We find that when we use long (∼30 fs) XUV pulses we
get good agreement between linear absorption cross sections
calculated using the time-frequency and the TDSE-projection
cross section. Having obtained this good agreement over
a range of frequencies and dressing laser intensities gives
us confidence that we can calculate the full time-frequency
response of the dressed atom.

Finally we show how this time-frequency approach is
consistent with our solution of the coupled Maxwell wave
equation (MWE) and the TDSE. This allows for a generalized,
ab initio description of linear and nonlinear absorption,
emission, and phase matching in a macroscopic medium. We
apply this formalism to studying the propagation of an XUV
pulse in a macroscopic helium gas dressed by a moderately
intense 11-fs, 1600-nm laser pulse. We find that the XUV
pulse, which is resonant with the 1s → 2p transition in
the undressed atom, undergoes rich temporal absorption and
reshaping dynamics.

The paper is structured as follows. In Sec. II, we first discuss
the three formalisms for calculating absorption cross sections
of laser-dressed atoms. In Sec. III we present our framework
for the macroscopic calculations. Then we use the methods to
study laser-dressed helium; computational details are given in
Sec. IV and results are presented in Sec. V. We end the paper
with a brief conclusion in Sec. VI.

II. SINGLE-ATOM RESPONSE

This section contains three derivations of the one-photon
absorption cross section for XUV light interacting with an
atom in the presence of a long-wavelength dressing field. All

three formalisms are based on the single-active-electron (SAE)
approximation, and in all cases we use linearly polarized fields
where the IR and XUV polarization vectors are parallel. We
use atomic units throughout this section [26].

A. Non-Hermitian Rayleigh-Schrödinger perturbation theory

Our NHPT treatment of dressed XUV absorption is dis-
cussed in detail in Refs. [18,19,27]. Here we provide a brief
account to highlight the essential steps in the derivation and to
facilitate a discussion of the other two formalisms.

In the NHPT formalism, the one-photon XUV absorption
cross section follows from

σ = 2
�I

JX
, (1)

where JX is the constant XUV photon flux of a continuous-
wave XUV light source [19], and �I is the transition rate from
the initial state to Rydberg orbitals or the continuum. The
factor of 2 accounts for the number of electrons in the atomic
orbital, which is used as the initial state |I〉.

To determine �I with NHPT, the full Hamiltonian of
an atom in two-color light Ĥ = Ĥ0 + Ĥ1 is decomposed
into a strongly interacting part Ĥ0 = ĤAT + ĤEM,L + ĤI,L +
ĤEM,X that contains the atomic electronic structure ĤAT in
a Hartree-Fock-Slater approximation [28,29]. The interaction
with light is expressed in terms of nonrelativistic quantum
electrodynamics [18,19,27]; the free IR laser and XUV fields
are ĤEM,L and ĤEM,X, respectively, and the interaction of
the atomic electrons with the laser field is ĤI,L. The weak
interaction with the XUV light is represented by Ĥ1 = ĤI,X

[19].
Next we represent Ĥ0 in a complex-symmetric direct-

product basis of electronic states—without the initial state
|I〉—and photonic number states. In doing so, we assume that
the initial state and its energy EI are not noticeably influenced
by the laser dressing. The matrix representation of Ĥ0,

H (m)
0 �c (m)

F = E
(m)
F �c (m)

F , (2)

is diagonalized, yielding eigenvectors �c (m)
F that represent the

expansion coefficients of new laser-dressed states |F (m)〉 for
eigenvalues E

(m)
F [19]. Here, m is the magnetic quantum

number that is conserved for linearly polarized light.
When the Hamiltonian Ĥ0 is represented in the new

basis of laser-dressed states [Eq. (2)], the excitation or
ionization of a ground-state electron of an atom owing to XUV
photoabsorption is described as a resonance in the spectrum
of the non-Hermitian, complex-symmetric representation of
the Hamiltonian in the basis {|I〉,|F (m)〉| ∀ F,m} [30–32]. The
complex energy of the resonance state that |I〉 becomes owing
to the coupling to excited states and the continuum via XUV
light is usually referred to as the Siegert energy [30,33] and
satisfies

Eres = ER − i �I/2 . (3)

The real part of the resonance energy is ER , and �I stands
for the transition rate from the ground state to a laser-dressed
Rydberg orbital or the laser-dressed continuum [Eq. (2)] via
photoabsorption. We determine the Siegert energy [Eq. (3)] of
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the initial state |I〉 in second-order NHPT. The total transition
rate out of |I〉 is given by

�I = 2 Im

[∑
m,F

〈I|Ĥ1|F (m)〉〈F (m)|Ĥ1|I〉
E

(m)
F − EI

]
, (4)

and the absorption cross section is finally obtained from Eqs.
(4) and (1) as

σ (ωX) = 8παωX Im

{∑
m,F

[
D(m)

F

]2

E
(m)
F − EI − ωX

}
. (5)

Here α denotes the fine-structure constant and D(m)
F is a

complex-scaled transition dipole matrix element between the
initial state |I〉 and the F th laser-dressed atomic state with
projection quantum number m [19].

B. Projection treatment of XUV absorption

As an alternative to the treatment above, we can obtain the
linear absorption cross section by a direct solution of the TDSE
in the SAE approximation [34]. The cross section is extracted
by projecting the final-state wave function obtained at the end
of a finite pulse onto the initial wave function. As such, we
avoid calculating the dressed states directly, making explicit
use of only the laser-free initial and final states.

To simplify the treatment of finite duration pulses when
using the projection method, we replace the quantum elec-
trodynamic treatment of XUV radiation in Sec. II A by a
semiclassical description of light [35]. We begin by choosing
the vector potential of the XUV light of carrier frequency ωX

to be

�AX(t) = −EX(t)

ωX

sin(ωXt) �ex. (6)

The electric field of the XUV light field is then given by the
derivative with respect to time, �EX(t) = −∂ �AX(t)/∂t :

�EX(t) =
[
EX(t) cos(ωXt) + 1

ωX

∂EX(t)

∂t
sin(ωXt)

]
�ex. (7)

Here, EX(t) = √
8παIX(t) is the envelope of the XUV pulse

and IX(t) is its cycle-averaged intensity. Our specification
of the vector potential in Eq. (6) ensures that the integrated
electric field and the vector potential at the end of the pulse,
A(tf ), are zero when EX(t) is zero at the initial and final times.
It leads to the second term on the right-hand side of Eq. (7),
which is a small correction of order �ωX/ωX near the center
of the pulse, for pulses with a bandwidth of �ωX. By ensuring
that A(tf ) = 0, we obtain results that are independent of the
electromagnetic gauge.

For a Gaussian envelope pulse with a full width at half
maximum (FWHM) duration of τX, the bandwidth of the pulse
is given by �ωX = 4 ln 2/τX. In our calculations, we first
specify �ωX and this dictates the value of τX. The Gaussian
envelope is then approximated by a trigonometric pulse [36]:

IX(t) = IX,0 cos2n

(
πt

Tn

)
θ

(
Tn

2
− |t |

)
≡ IX,0gn(t), (8)

with an integer n > 0 and the Heaviside θ function [37]. The
total pulse duration is defined as

Tn = πτX

2 arccos 2− 1
2n

, (9)

The envelope (8) converges rapidly to a Gaussian function in
the limit lim

n→∞ gn(t) → exp[−4 ln 2( t
τX

)2]. Using the approxi-

mative function (8) instead of a true Gaussian function has the
advantage that it goes to zero on a finite support, which allows
us to satisfy the requirement A(tf ) = 0 exactly.

In the TDSE-projection formalism we also need to dress
the atom with a laser field with frequency ωL. We do this by
using a laser field of the form

�EL(t) = EL(t) sin(ωLt) �eL. (10)

The envelope function EL(t) is now a trapezoidal pulse with a
linear ramp of one optical cycle at each end and a flat section
that completely spans over the XUV pulse. The pulse contains
an integer number of laser cycles, so we again obtain zero
vector potential at the end of the dressing pulse. We assume
this field is too weak to excite or ionize the atom on its own,
an assumption that we can explicitly check by running the
calculation once without the XUV field.

To calculate the cross section for absorption, we begin with
the atom in its ground state |ψI〉 at time t0 and use the grid-based
methods of Ref. [34] to propagate the wave function forward
in time until the end of the combined XUV and dressing pulse
at time tf . At this time we calculate the probability that the
atom has remained in its ground state PI(tf ) by projecting the
final wave packet |ψ(tf )〉 onto the initial wave packet:

PI(tf ) = |〈ψI|ψ(tf )〉|2. (11)

Given PI (∞) = PI (tf ) from the TDSE calculation, we obtain
the probability that the atom is excited or ionized from
1 − PI (tf ). Because we are dealing with a one-photon ab-
sorption process where we assume the intensity is well below
saturation, a linear relation between the XUV absorption rate
and XUV photon flux holds: �(t) = σ (ωX) JX(ωX,t). We use
this assumption to transform the probability to absorb an XUV
photon into an expression for the cross section:

2[1 − PI (∞)] = σ (ωX)
∫ ∞

−∞
JX(ωX,t) dt. (12)

This is equivalent to the steady-state expression in Eq. (1):
The factor 2 again stems from the two electrons in the spatial
orbital I that contribute equally.

The underlying assumption in Eq. (12) is that we can
calculate the absorption cross section σ (ωX) for a small range
of frequencies �ωX around ωX by calculating the response
of the atom to a pulse of bandwidth �ωX. For Eq. (12) to
be meaningful, the cross section needs to be approximately
constant over the bandwidth �ωX of the pulse. For a low-
bandwidth pulse, we can further use the relation IX(t) ≈
ωXJX(ωX,t) between photon flux and intensity. Then, the time
integral on the right-hand side can be solved analytically for
the pulse shape (7). In this way, we find the XUV absorption
cross sections σ (ωX) from Eq. (12) by dividing the probability
to excite an atom out of the ground state 1 − PI (tf ) by the
integral over the XUV flux.
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As we stated in the Introduction, though we expect that
the two methods for calculating the frequency-dependent
absorption cross section should agree, the TDSE projection
approach is potentially more flexible in dealing with situations
where the dressing laser couples many states of the atom,
which forces the Hamiltonian matrix in Eq. (2) to be very
large.

C. Time-frequency treatment of ultrafast XUV absorption

In this section we extend the treatment of the XUV
interaction to deal with cases where the atomic response
varies as a function of time or frequency in a nontrivial way.
This could be because the dressing IR pulse is substantially
shorter than the XUV pulse, or when nonlinear interactions
would cause the atom to exchange energy with multiple XUV
frequency components in different nonlinear orders.

We start by deriving a frequency-dependent response
function S̃(ω) from the time-dependent energy exchange
between the atom and the light field. S̃(ω) is defined so
that when integrated over all frequencies, it yields the total
excitation probability. This includes excitation to continuum
states, i.e., ionization. We can then express the total energy
gained by the atom from the light fields, �E, as the sum over
the frequency-dependent excitation probability S̃(ω) times the
photon energy:

�E =
∫ ∞

−∞
ω S̃(ω) dω. (13)

To calculate the response function, we use that the total
atomic energy gain also can be expressed as a sum over the
rate at which energy is gained:

�E =
∫ ∞

−∞
ω S̃(ω) dω =

∫ ∞

−∞

dE

dt
dt. (14)

We calculate this rate directly from our one-electron Hamilto-
nian, H = HA + E(t) z, as

dE

dt
= d

dt
〈ψ |H |ψ〉 =

〈
ψ

∣∣∣∣∂H

∂t

∣∣∣∣ψ〉
= 〈z〉∂E

∂t
. (15)

We note that E(t) is the full electric field consisting of the
sum of the dressing laser and the XUV fields. This means
that we are simultaneously treating the exchange of energy
between the atom and all frequencies of the light field. In the
following we will denote 〈z〉(t) by z(t). The time-dependent
dipole moment is related to z(t) by d(t) = −z(t) for a single
electron. We now calculate �E:

�E =
∫ ∞

−∞
z(t)

∂E
∂t

dt (16)

= −
∫ ∞

0
ω 2 Im[z̃(ω)Ẽ∗(ω)] dω. (17)

In this derivation we have used that both z(t) and E(t) are real
functions of time so that z̃(−ω) = z̃∗(ω) and Ẽ(−ω) = Ẽ∗(ω).
Using Eq. (14) we then have an expression for the response
function:

S̃+(ω) = −2 Im[z̃(ω)Ẽ∗(ω)], ω > 0, (18)

where the + subscript on S̃+(ω) explicitly indicates that we
are only integrating over positive frequencies.

We calculate the dipole spectrum in the SAE approximation
d̃SAE(ω) via the time-dependent acceleration a(t):

a(t) = d2z

dt2
= −〈ψ(t)|[H,[H,z]]|ψ(t)〉. (19)

The dipole spectrum is then given by d̃SAE(ω) = ã(ω)/ω2,
where ã(ω) denotes the Fourier transform of a(t). The full
(two-electron) dipole moment is d̃(ω) = 2d̃SAE(ω).

In the weak-IR limit, where it is meaningful to talk about
an absorption cross section, we can write the frequency-
dependent energy-exchange function ωS̃(ω) by means of
a generalized cross section σ̃ (ω) and the spectral energy
density of the electric field, ωJ̃ (ω). The spectral flux J̃ (ω)
is defined as [our Fourier transformation convention is E(t) =

1√
2π

∫ ∞
−∞ Ẽ(ω)e−iωt dω and Ẽ(ω) = 1√

2π

∫ ∞
−∞ E(t)eiωt dt]

J̃ (ω) = 1

4παω
|Ẽ(ω)|2, (20)

This means that once we calculate the response function S̃(ω),
the generalized cross section is given by

σ̃ (ω) = 4παωS̃(ω)

|Ẽ(ω)|2 . (21)

Inserting the response function from Eq. (18), we obtain the
cross section, now defined for both positive- and negative-
frequency components,

σ (ω) = 8παω Im

[
d̃SAE(ω)

Ẽ(ω)

]
. (22)

This equation is the generalized, time-frequency, multimode
equivalent of Eq. (1), which was derived for the steady-state
case.

To calculate the generalized cross section in Eq. (22), and
the macroscopic polarization field described in the following
subsection, we multiply the time-dependent acceleration in
Eq. (19) with a window function W (t), aW (t) = a(t)W (t),
and calculate d̃SAE(ω) from the Fourier transform of aW (t). In
Eq. (22) we also calculate Ẽ(ω) from W (t)E(t) for normal-
ization purposes. The window function on the time-dependent
acceleration is necessary in particular in those cases where the
XUV light is resonant with an atomic transition. The XUV light
then induces a strong coherence between the ground state and
the excited state, which in the numerical calculation will go on
“ringing” until long after the XUV pulse is over. This ringing
does not correspond to stimulated emission or absorption of
XUV radiation. The window function we use is a trigonometric
function as given in Eq. (8), and is in general chosen to have
the same FWHM duration as the longer of the IR and XUV
pulses. The choice of window function has some influence on
the value of the cross section for the undressed atom around the
field-free resonances. When the atom is laser dressed so that
the XUV light is no longer absorbed as strongly, the ringing is
strongly suppressed by the laser field and the influence of the
window function is very small.

It is interesting to note here that for intense or few-cycle
IR fields, and/or for multimode XUV fields, the sign of
the response function S̃+(ω) (and therefore the sign of the
generalized cross section) for a particular frequency ω in
Eq. (18) can be positive or negative. When S̃+(ω) is positive,
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the atom will predominantly absorb light of that frequency,
and when S̃+(ω) is negative, the atom will predominantly emit
light of that frequency. This makes the response function a
powerful tool for studying the dynamics of the light-atom
energy exchange, in particular, in combination with a sliding
time window on the time-dependent acceleration. This would
in principle allow for the time resolution of when different
frequencies are absorbed or emitted during a dynamical
process. We will discuss a simple application of this in
connection with the macroscopic reshaping of an XUV pulse
presented in Sec. V.

III. MACROSCOPIC RESPONSE, INCLUDING
ABSORPTION

As we will show at the end of this section, the relationship
derived in the previous section, between the dipole spectrum
driven by an arbitrary pulse and the absorption cross section
for the frequencies contained in that pulse, is consistent with
our general framework for the interaction between an ultrafast,
multicolor pulse and a macroscopic medium. This framework
consists of the coupled solutions of the MWE and the TDSE
for all frequencies ω of the electric field Ẽ(ω) of the multicolor
pulse. We will express all quantities in SI units in this section.
In a frame that moves at the speed of light, and in the slowly
evolving wave approximation that works well even for few-
femtosecond pulses [38], the MWE takes the following form:

∇2
⊥Ẽ(ω) + 2iω

c

∂ Ẽ(ω)

∂z
= − ω2

ε0c2
[P̃ (ω) + P̃ion(ω)]. (23)

The electric field Ẽ(ω) and the source terms P̃ (ω) and P̃ion(ω)
are also functions of the cylindrical coordinates r and z. We
solve this equation by space marching through the helium gas,
at each plane z in the propagation direction, calculating the
response terms P̃ (ω) and P̃ion(ω) via numerical integration of
the TDSE, and then using them to propagate to the next plane
in z. The macroscopic polarization field P̃ (ω) is calculated
from two times the one-electron single-atom dipole moment
d̃SAE(ω):

P̃ (ω) = 2ρd̃SAE(ω) = 2ρe

ω2
√

2π

∫ ∞

−∞
a(t)W (t)eiωt dt, (24)

where ρ is the atomic density, and a(t) is the time-dependent
acceleration calculated as described in Sec. II C. As the driving
field for the TDSE calculation, we use the evolving electric
field E(t) at the plane z. This means that P̃ (ω) in general
includes both the linear and nonlinear response of the atom
to the multicolor field. The term P̃ion(ω) is related to the
space- and time-dependent free-electron contribution to the
refractive index and is also calculated within the SAE-TDSE
(see Ref. [39]). This term is very small in the cases considered
in this paper and we will ignore it hereafter.

By calculating the source terms in each z plane and using
them to propagate to the next z plane, we are coupling both
the linear and nonlinear response generated in one step back
into the full electric field so that it can contribute to the
driving electric field in the next step. In much of the work
described in the literature (see, for instance, Refs. [38–42]),
the nonlinear response is separated from the linear response,
and the propagation of the newly generated radiation (via

nonlinear processes) is separated from the propagation of the
driving field. Absorption and dispersion of different frequency
components of the light fields are then added separately,
typically using tabulated, frequency-dependent values. It has
been shown in a number of papers that such an approach
offers a very complete description of both the generation of
new frequencies via nonlinear processes, and the macroscopic
effects of phase matching and ionization-driven reshaping of
the ultrafast propagating pulse [38–42]. However, it cannot
describe ultrafast or dynamical reshaping of the XUV pulses
driven by, for instance, absorption, dispersion, or laser-induced
transparency. More generally, processes that are owing to the
combined response to the strong dressing or driving laser
field and the weaker XUV fields are not described in a
self-consistent manner because the generated radiation is not
included into the driving field.

In the following we will argue that the approach presented in
this paper, which allows us to calculate the nonlinear response
of the dressed atom, also allows us to describe the absorption
and dispersion of the ultrafast pulses in a self-consistent
manner, to within the SAE approximation. Let us first rewrite
the macroscopic polarization field as

P̃ (ω) = ρd̃(ω) = ρ

{
Re

[
d̃(ω)

Ẽ(ω)

]
+ i Im

[
d̃(ω)

Ẽ(ω)

]}
Ẽ(ω).

(25)

The last term on the right-hand side is proportional to
the generalized cross section in Eq. (22). By inserting this
expression into the MWE in Eq. (23) we get

∇2
⊥Ẽ(ω) + 2i

∂ Ẽ(ω)

∂z

= − ω

ε0c
ρ Re

[
d̃(ω)

Ẽ(ω)

]
Ẽ(ω) − iρσ̃ (ω)Ẽ(ω). (26)

The second term on the right-hand side clearly will lead to
absorption at frequency ω with absorption coefficient ρσ̃ (ω)
when σ̃ (ω) is positive, which is the case in the weak-field
limit when the atomic response is linear. In this linear case,
the first term on the right-hand side likewise can be interpreted
as a generalized expression for the dispersion experienced
in the gas medium, with the frequency-dependent correction
to the refractive index given by �ñ(ω) = ρ

2ε0
Re[ d̃(ω)

Ẽ(ω)
]. The

strength of our time-dependent approach is that even when the
driving field is strong enough to induce nonlinear processes,
we are able to treat all of the linear and nonlinear processes
within one time-dependent calculation, rather than artificially
separating processes of different nonlinearities and assigning
them a frequency- and intensity-dependent weight.

IV. COMPUTATIONAL DETAILS

Computations with the time-independent theory of Sec. II A
were carried out with the DREYD computer program from the
FELLA suite [43]. The computational parameters are specified
in analogy to Ref. [19]. However, in this work, we do not rely
on the Hartree-Fock-Slater mean-field approximation [28,29]
to describe the atomic electronic structure. Instead, we use a
pseudopotential for helium, constructed from the ground-state
Hartree-Fock potential, calculated on a very fine radial grid
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by standard iterative methods [44]. We set the K edge of
helium to the value of E1s = −24.5786 eV. Next, the radial
Schrödinger equation is solved with the pseudopotential where
the solution, the radial part of the atomic orbitals, is represented
on a grid with a radius of 60a0 using 3001 finite-element
functions. From its eigenfunctions we choose, for each orbital
angular momentum l, the 100 functions that are lowest in
energy to form atomic orbitals [19]. In doing so, we consider
spherical harmonics with up to l = 7 [37,45]. Continuum
electrons are treated with a smooth exterior complex scaling
complex absorbing potential [46–48] which is parametrized
with the complex scaling angle θ = 0.13 rad, a smoothness of
the path of λ = 5a−1

0 , and an exteriority of r0 = 10a0 [19].
There is only radiative decay of singly excited states of
helium with comparatively long lifetimes to all other time
scales in the problem; therefore, we set the linewidth of a K

vacancy in helium to zero. Finally, we diagonalize the involved
Floquet-type matrices to obtain the cross section. Without the
laser field this is done exactly; when the laser is present we
use 4000 Lanczos iterations [18].

Computations with the TDSE-projection method of
Sec. II B were carried out with a one-electron TDSE solver
code that is based on the algorithms described in Ref. [34]. The
same potential used above is transferred to a radial grid with a
spacing of 0.2a0 and used for the TDSE-projection and fully
time-dependent computations (see below). The interpolation
of the Hartree-Fock potential onto the coarse grid used for the
TDSE propagation introduces a small error in the helium 1s
ionization potential, which we correct by slightly changing the
potential at the first grid point [34]. The pulse shape is given by
Eqs. (7)–(9) with n = 6. This means that the total propagation
time is 4.67τX. Typically we use a box of 200 a.u. in size,
with a 50 a.u. absorbing boundary at the outer edge [34]. The
maximum angular momentum and time step size are adjusted
to achieve convergence. We use �max = 8 and 1500 steps per
dressing-laser cycle. In some cases where the XUV pulse
was very long or the XUV wavelength was very close to the
ionization threshold, the box size was increased to 1000 a.u.
to ensure that no wave-function amplitude that might reflect
from the absorbing boundary could interfere with amplitude
excited at a later time. We specify the bandwidth �ωX of the
XUV pulse instead of the FWHM duration τX as in Eq. (8).
For our (approximately) Gaussian pulse, we use the time-
bandwidth product τX�ωX = 4 ln 2 to convert between the
two quantities [49] with �ωX = 0.05 eV, which corresponds to
a duration of τX = 36.5 fs. We investigated the dependence of
the absorption cross sections on the intensity of the XUV light;
to a very good approximation, we find a linear relationship as
should hold for a one-photon absorption process (1). An XUV
intensity of 1010 W/cm2 is employed in Figs. 1–4.

The calculations with the time-frequency method of
Sec. II C were performed with the TDSE solver described
above. For the calculations in Figs. 1(b) and 1(c) and the inset
in Fig. 2, we have used �max = 8 and ∼4000 steps per cycle of
the dressing-laser field. The size of the radial grid was 150a0

(using 750 points) with a 250-point absorbing boundary. The
intensity envelope of the IR pulse is cos4(βt/τIR), where τIR is
the FWHM duration of the IR pulse and β = 2 arccos(0.51/4).
The intensity envelope of the XUV is usually chosen to be
the fourth power of the IR envelope (to be consistent with the
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FIG. 1. (Color online) The XUV absorption cross section of a
helium atom. (a) The dashed red lines were obtained with DREYD [43]
and the solid black lines were obtained using the TDSE-projection
method. (b) and (c) show closeups of the cross section around the
(b) 2p and (c) 6p and 7p states calculated with the time-frequency
method [Eq. (22)] for different XUV pulse durations. The results
obtained using 30-, 15-, and 7.5-fs XUV pulses are shown in black
(circles), red (squares), and green (open diamonds), respectively.

XUV being a high-order harmonic produced by the IR pulse).
This gives a FWHM pulse duration for the XUV pulse of
approximately half that of the IR pulse. The window function
discussed in Sec. II C is a Hann window with a FWHM duration
very close to that of the IR pulse. The window function was
chosen such that the long-pulse calculations in Fig. 1(b) can be
compared to those in Fig. 1(a): The FWHM bandwidth of the
windowed acceleration spectrum ãW (ω) has the same 0.05-eV
bandwidth as the TDSE-projection approach.

For the MWE-TDSE calculations in Fig. 6 we employ two
time scales. One time scale defines the spectral resolution of
the macroscopic, propagating electric fields. This time scale
typically extends to ±3× the FWHM of the longest of the IR
and XUV pulses and contains ∼5500 time points. The other
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FIG. 2. (Color online) The XUV absorption cross section of a
helium atom dressed by an intense 800-nm IR laser pulse with a peak
intensity of 1012 W/cm2. The dashed red lines were obtained with
DREYD [43]; the cross section obtained from the TDSE projection is
plotted with dashed black lines. The inset shows the cross section
calculated using Eq. (22), using an XUV pulse duration of 7.5 fs, and
a 764-nm IR pulse with a duration of 15 fs and a peak intensity of 108

W/cm2 (solid black curve), 1011 W/cm2 (dashed red curve), 5 × 1011

W/cm2 (dotted-dashed green curves), or 1012 W/cm2 (dotted blue
curve), respectively.
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FIG. 3. (Color online) Laser-dressed XUV absorption cross
section of helium for 400-, 500-, and 620-nm laser wavelengths at a
laser intensity of 1012 W/cm2.

time scale is used for the TDSE solution and extends only over
the finite duration of the longest pulse, and typically contains
6000 points per IR laser cycle. The macroscopic length scales
cover 160 µm in the radial direction, with 200 grid points,
40 of which contain an absorber that prevents reflections from
the edge of the grid, and 1 mm in the propagation direction,
with 600 grid points. In the propagation direction we only
evaluate the dipole moment every 20 steps, and rescale the
response to the appropriate density and phase in between (see
Ref. [39] for details). The initial spatial distribution of both
the XUV and the dressing-laser beam is Gaussian. The XUV
beam has a confocal parameter of 10 cm and a corresponding
focal diameter of 60 µm. The 1600-nm dressing pulse has a
confocal parameter of 2 cm and a focal diameter of 140 µm.
This means that in the spatial dimension, the XUV beam is
always overlapped with the IR beam. The IR beam changes
only marginally during the propagation in the helium gas.
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FIG. 4. (Color online) Laser-dressed XUV absorption cross
section of helium for 1400-, 1600-, and 2000-nm laser wavelengths
at a laser intensity of 1012 W/cm2 (red solid curves). The results of
the simple three-level model of Fig. 5 are indicated by the dashed
black curves for �1s−12p = 0.1 eV and �1s−12s = 0.05 eV.

V. RESULTS AND DISCUSSION

A. Single-atom absorption cross sections

The helium absorption cross section for linearly polarized
XUV light, in the absence of laser light, is displayed in Fig. 1.
In Fig. 1(a), we compare results from DREYD [43] with results
of the TDSE-projection method [Eq. (12)]. To be able to
compare these two results, we have convoluted the DREYD

cross sections with a Gaussian with the same bandwidth of
�ωX = 0.05 eV that was used in the TDSE calculation. This
leads to good agreement between the two results. We note
that the presence of a spectral bandwidth in both calculations
means that we are only able to resolve spectral features
to within 0.05 eV. The peaks at 21.1068 eV, 23.0416 eV,
23.7162 eV, 24.0273 eV, . . . stem from 1s2 → 1snp transitions
with n ∈ {2,3,4,5, . . .}. In Figs. 1(b) and 1(c) we show cross
sections calculated using the time-frequency approach leading
to Eq. (22), around the 2p and the 6p and 7p states. These
calculations were done using an extremely weak 764-nm IR
pulse and harmonics 13 [Fig. 1(b)] or 15 [Fig. 1(c)] of the IR
frequency (the IR field is included as a technical convenience
for performing the low-IR intensity and high-IR intensity
calculations consistently, both for the time-frequency approach
and for the MWE-TDSE approach). Harmonic 13 is resonant
with the 2p state and harmonic 15 is in between the 6p and the
7p states. We show the results of using three different XUV
pulse durations (30, 15, and 7.5 fs). The IR pulse has twice the
duration of the XUV pulse and an intensity of 108 W/cm2 (low
enough that it does not influence the cross sections). The 30-fs
calculation leads to a 0.05-eV bandwidth of the dipole moment
around the 2p state, after applying the time-domain window
function discussed in Sec. IV. The calculated cross section is
in reasonably good agreement with the results in Fig. 1(a). The
shorter XUV pulses lead to broader absorption cross sections.
For the 15-fs XUV pulse the 6p and 7p states still can be
distinguished as separate features in the absorption spectrum.
Using a 7.5-fs XUV pulse, the cross section can be calculated
over a much larger frequency range, spanning both below and
above the ionization threshold, and as a consequence one can
no longer distinguish the 6p and 7p states. The value of the
cross section in this calculation is in good agreement with the
value in Henke et al. [50] of 7.5 Mb just above threshold, as we
expect when using pulses that span the ionization threshold.

In Fig. 2 we show how the XUV cross section changes when
the helium atom is exposed to an infrared laser field with an
intensity of 1012 W/cm2 and a wavelength of ∼800 nm. The
main figure again compares the results from DREYD [43] and
the TDSE-projection method (which have again both been
calculated or convoluted with a 0.05-eV bandwidth), and they
are found to be in good agreement over a broad energy range.

The absorption of the dressed atom in Fig. 2 changes
significantly from the undressed case, although many of the
field-free resonances still can be recognized. The peak owing to
the 2p state has broadened and shifted to lower energy, whereas
the higher np peaks are shifted to higher energies. In addition,
several new absorbing features have appeared between 21 and
22 eV. The inset in Fig. 2 shows cross sections for the dressed
helium atom calculated using the time-frequency approach of
Eq. (22), for an XUV pulse duration of 7.5 fs. The 764-nm
IR pulse duration is 15 fs and the IR peak intensity varies
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TABLE I. Correspondence between wavelength and photon en-
ergy for the involved laser light.

Wavelength (nm) 400 500 620 800 1400 1600 2000

Photon energy (eV) 3.10 2.48 2.00 1.55 0.89 0.78 0.62

between 108 W/cm2 [undressed, as shown in Fig. 1(b)] and
1012 W/cm2. The inset details the shift and broadening of the
2p resonance as the dressing-laser intensity is increased. We
have chosen to use the 7.5-fs XUV pulses for these calculations
in order to be able to cover the shift of the 2p resonance within
the bandwidth that can be addressed within Eq. (22).

The extra peaks in the 800-nm dressed-atom cross section
shown in Fig. 2 result from complex multiphoton effects and do
not have a straightforward interpretation. Other dressing-laser
wavelengths offer more insight into the nonlinear optics driven
by the two-color field. We first show two figures exploring
the impact of the dressing-laser wavelength on the XUV
absorption cross section. The wavelengths we have used are
listed in Table I, together with the corresponding photon
energies. All of these wavelengths can be produced from
standard Ti:sapphire high-power, short-pulse laser systems via
frequency mixing in nonlinear materials.

The laser-dressed XUV absorption cross section, calculated
using the TDSE-projection method, are displayed in Figs. 2–4
for several laser wavelengths at an intensity of 1012 W/cm2.
For 400- and 500-nm light, we see only a moderate impact
of the laser dressing. The impact is mostly on the 2p state,
as the largest dipole coupling exists to other close-by Rydberg
states. The 620- and 800-nm light exhibit complex multiphoton
effects that manifest in complicated multipeak structures in the
cross sections. The dressing pulses with longer wavelengths all
induce systematic behavior. In all three cases, the single 1s2 →
1s2p transition in Fig. 1(a) (without dressing) is split into two
lines by the laser in Fig. 3; the transitions from the 1s orbital
into higher Rydberg orbitals are replaced by a continuous,
weak absorption feature.

We would like to elucidate the origin of the double-peak
feature centered around 21 eV in the long-wavelength series
shown in Fig. 4. It is much simpler than the corresponding
feature for the wavelengths in Figs. 2 and 3. To this end, we
make a �-type model for helium that is shown in Fig. 5. It
comprises the ground state of helium and the 1s−1 2p and
1s−1 2s excited states. The laser photon energy is denoted
by ωL whereas �1s−1 2s and �1s−1 2p are parameters for the
laser-induced decay widths of the respective excited states.
The overall agreement of the model curves with the ab initio
data in Fig. 4 is satisfactory. The reason for the success of
the three-level model is—as in Ref. [7]—the fact that the
splitting between the 2s and 2p Rydberg orbitals in helium
is 0.84 eV, i.e., the laser is almost in resonance with this
transition, within the laser-induced linewidths, for midinfrared
wavelengths (Table I). Furthermore, the other levels of helium
couple only weakly.

The �-type model explains the double-peaked structure
in Fig. 4 in terms of a splitting of the 1s−1 2p and 1s−1 2s

states into an Autler-Townes doublet. This feature raises the
possibility that the dressing laser could be used to induce

FIG. 5. (Color online) �-type three-level model for helium. The
laser photon energy is ωL and the XUV photon energy is ωX. The
laser-induced decay widths of the 1s−12p and 1s−12s excited states
are denoted by �1s−12p and �1s−12s , respectively.

transparency to the XUV radiation tuned to the 1s2 → 1s2p

transition. A similar mechanism was found for the suppression
of resonant absorption of x rays in neon [7,15–17], argon [18],
and krypton [19] atoms and called EIT for x rays [7]. In the
next section we study the analogous effect in helium.

B. XUV pulse shaping in a macroscopic medium

In this section we present an application of the time-
frequency approach to absorption in a macroscopic nonlinear
medium. We study how the laser-induced transparency dis-
cussed above may be used to temporally control the XUV
pulse shape in a helium gas, in analogy with the EIT for x
rays discussed in Ref. [18]. In that x-ray study, the absorption
was exclusively described in terms of an intensity-dependent
absorption cross section, which then in turn enforces a one-to-
one mapping of the absorption to time through the intensity.
This does not allow for truly dynamical effects. In addition,
the intensities we explore here are much lower that those used
in the x-ray study, which means that ionization of the Rydberg
states does not play a large role.

We calculate the electric field of a combined two-color
XUV-IR pulse after propagation through a 1-mm-long helium
gas jet with a density of 1.5 × 1017 cm−3 (6 mbar at room
temperature). We solve the coupled MWE-TDSE in the form
of Eq. (23) as described in Sec. III (see also Ref. [39]). The
initial XUV pulse has a wavelength of 58.7 nm (21.1 eV,
resonant with the 1s2 → 1s2p transition), a pulse duration
of 61 fs, and a peak intensity of 107 W/cm2. The 1600-nm
dressing pulse has a peak intensity of 1012 W/cm2. We have
used different IR pulse durations between 122 and 11 fs. We
have checked that the reshaping discussed below is no different
when we use a higher XUV intensity of 1010 W/cm2.

Figure 6 shows (a) the radially integrated spectrum and (b)
time profile of the XUV pulse before and after propagation
through the helium gas. When the atoms are undressed, the
XUV radiation is strongly depleted via the resonant absorption,

013419-8



TRANSIENT ABSORPTION AND RESHAPING OF . . . PHYSICAL REVIEW A 83, 013419 (2011)

20.9 21 21.1 21.2 21.3
Photon energy (eV)

0

2

4

6

8

10

0

2

4

6

8

10

12

(a)

(b)

R
ad

ia
lly

 in
te

gr
at

ed
 s

pe
ct

ru
m

 (
ar

b.
 u

ni
ts

)

-100 -50 0 50 100
Time (fs)

Initial 
Final, un-dressed

R
ad

ia
lly

 in
te

gr
at

ed
 y

ie
ld

 (
ar

b.
 u

ni
ts

)

Final, IR 10    W/cm  12 2

Initial 
Final, un-dressed

Final, IR 10    W/cm  12 2

Final, 2x10    W/cm  12 2

FIG. 6. (Color online) IR-assisted XUV absorption in 1-mm-long
macroscopic helium gas with a density of 4 × 1016 cm−3. The initial
61-fs XUV pulse is resonant with the 2p state of the undressed helium
atom. We show the XUV spectrum in (a) and time profile in (b), both
before (solid lines) and after propagation. Final profiles at the end of
the undressed medium are shown as dotted red lines, and final profiles
at the end of the medium dressed by an 11-fs, 1600-nm IR pulse with
a peak intensity of 1012 W/cm2 are shown as dashed blue lines. In (b)
we also show the final time profile when the intensity of the dressing
pulse is 2 × 1012 W/cm2 (thin green line).

as is shown by the dotted red lines (we note that a weak 61-fs
IR pulse with a peak intensity of 108 W/cm2 was present
in this calculation for computational consistency with the
dressed-field calculation; we have checked that the presence
of this pulse does not alter the results). The absorption length
at this atomic density is less than 0.1 mm. During the first few
absorption lengths, the XUV yield decreases exponentially.
The large dispersion across the resonance, and to a lesser extent
the frequency dependence of the absorption cross section,
subsequently leads to reshaping of the depleted beam upon
further propagation in the gas. This causes the double-peaked
shape of the spectrum emerging at the end of the medium. The
time profile of the final XUV field is correspondingly irregular,
as seen by the red dotted line in Fig. 6(b).

We then apply a 1600 nm, 1012 W/cm2 dressing pulse
that is much longer than the XUV pulse (123 fs versus 61
fs). This means that the XUV pulse encounters a sample of
strongly dressed atoms that are no longer resonant with the

XUV energy (see Fig. 4), and the gas is therefore transparent
to the XUV light. The spectrum of the final XUV pulse is
nearly indistinguishable from the initial spectrum and is not
shown in Fig. 6(a). The final XUV pulse shape is also nearly
identical to the initial pulse shape except for a 1.6-fs delay
caused by the different group velocities of the IR and the XUV
pulses (also not shown in the figure).

Next, we apply an 11-fs dressing IR pulse that is sub-
stantially shorter than the XUV pulse. This means that the
dressing pulse turns on and off within the FWHM duration of
the XUV pulse, thereby strongly coupling the 2s and 2p states
in a dynamical manner. The final spectral and temporal XUV
profiles at the end of the medium are shown with dashed blue
lines in Figs. 6(a) and 6(b). The XUV time profile at the end of
the medium is dominated by an ∼10 fs pulse, superimposed
on a much weaker longer pulse, and the corresponding XUV
spectrum has broad shoulders at frequencies substantially
beyond the initial XUV bandwidth. We note that the final XUV
pulse is not symmetric around time zero and that, in particular,
the short subpulse is delayed by ∼4 fs from the center of
the dressing IR pulse. We attribute this to the complicated
absorption and emission dynamics driven by the two-color
pulse, as explored in more detail next.

The time-dependent acceleration driven by the initial two-
color pulse is shown in Fig. 7 (solid black line). We are showing
the envelope of the acceleration to avoid the fast oscillations at
the resonance frequency. On the rising edge of the XUV pulse,
before the IR pulse turns on, this acceleration represents the
absorption of the XUV light via population transfer to the 2p
state. This means that when the IR pulse arrives there is already
population in the 2p state that will couple strongly to the 2s
state. This causes the suppression of the acceleration, which
starts at approximately t = −5 fs. The acceleration then has a
revival around 4 fs before it is suppressed again. By calculating
the generalized cross sections of Eq. (22) separately for the
peaks around t = −9 fs and around t = +4 fs, we find that
they have opposite signs. This means that whereas the dipole
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FIG. 7. (Color online) Single-atom time-dependent acceleration
driven by the initial XUV-IR pulse in Fig. 6. The durations of the
two pulses are 61 and 11 fs, respectively, and the XUV intensity is
107 W/cm2. The result of using an IR intensity of 1 × 1012 W/cm2

is shown as a solid black line, and as a dotted red line when the IR
intensity is 3 × 1012 W/cm2.
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response early in the pulse and up until t ≈ −5 fs is owing to
the absorption of the XUV light, the peak in Fig. 7 around
t = +4 fs corresponds to emission of XUV radiation. We
interpret this behavior as coming from Rabi-like oscillations
of the excited-state population between the 2s and the 2p
states, driven by the IR field. The emission happens when
the population returns to the 2p state while the strong IR field
is still on. This interpretation would predict that at higher IR
intensity the Rabi cycling should be faster. Indeed, we find that
if we increase the IR intensity to 3 × 1012 W/cm2, the time-
dependent acceleration has two revivals within the IR pulse
duration, both corresponding to emission (dashed red line in
Fig. 7). The Rabi oscillation period for resonant population
transfer between the 2s and the 2p states is ∼10 fs (6 fs) for a
constant intensity of 1 × 1012 W/cm2 (3 × 1012 W/cm2). This
is in good agreement with the time scale of the oscillations in
the acceleration seen in Fig. 7, especially considering that
the IR intensity is changing rapidly between t = −10 fs and
t = 10 fs.

Finally, returning to Fig. 6(b) and the XUV pulse that
emerges from the helium gas dressed by the 11-fs IR pulse,
we can now attribute the delay of the short XUV pulse to
the excited-state dynamics in the strongly dressed atomic
gas. Figure 8 shows the evolution of the XUV time profile
shown in Fig. 6 as a function of propagation distance. The
complicated atomic response shown in Fig. 7, which includes
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FIG. 8. (Color online) Evolution of XUV time profile during
propagation through the macroscopic helium gas. The time profiles
at different propagation distances have been displaced vertically,
starting with z = 0 at the bottom to z = 1.0 mm at the top, in
increments of �z = 0.01 mm.

absorption at early times and emission at approximately t = 4
fs, is reflected in the propagating XUV electric field. After
the first few hundred micrometers of propagation, the XUV
time profile has been substantially depleted on the rising edge,
and is dominated by a much shorter pulse peaking shortly after
t = 0. We note that this in turn will change the atomic response
from that plotted in Fig. 7 because the dressing IR pulse and
the XUV pulse are then more comparable in duration.

VI. CONCLUSION

In this paper, we have investigated the response of laser-
dressed helium atoms to XUV radiation, within the SAE ap-
proximation. In particular, we have focused on the calculation
of absorption cross sections and their application to absorption
in a macroscopic medium.

First, we introduced a time-independent method based on
NHPT. The interaction with the XUV light was treated in terms
of a one-photon process while a Floquet-like approximation
was used to describe the impact of the dressing laser. Second,
we devised a time-dependent method to compute the cross sec-
tion by using a direct integration of the TDSE and projection of
the final wave packet onto the initial atomic state. We showed
that the projection-based approach, which was implemented
using finite pulses, yields the same results compared with
the time-independent results. Third, we presented a versatile
time-frequency approach to evaluating an atomic response
function that can be used even when the dressing-laser pulse is
so short that it introduces transient effects, or in cases where the
atom exchanges energy with multiple frequency components
of the multicolor light field. We showed that this method, when
used to calculate linear absorption cross sections, agrees with
the first two. Finally, we showed that this third approach can be
implemented in a combined MWE-TDSE solver to describe
absorption and ultrafast pulse reshaping in a macroscopic
medium.

We used the TSDE-projection method to investigate the
dependence of the XUV absorption cross section on the
wavelength of the laser dressing at 1012 W/cm2 laser intensity.
We found complex multiphoton physics for 800-nm light
and shorter wavelengths. For longer, midinfrared wavelengths,
however, we showed that the impact of the laser dressing on
the 1s → 2p transition in helium can be described in terms
of a �-type three-level model previously used to describe EIT
for x rays [7]. As in the earlier study, the transparency in
helium is caused predominantly by Autler-Townes splitting
brought about by the strong one-photon coupling induced by
the dressing laser, in this case between the 2p and 2s states.
We investigated the macroscopic reshaping of an ultrafast
XUV pulse resonant with this transition, for the case when
the transparency is induced by an IR pulse that is substantially
shorter than the XUV pulse. This means that the absorption
properties of the helium atom change dynamically during
its interaction with the XUV light. We found rich temporal
reshaping dynamics in which the atoms both absorb and
subsequently emit the XUV radiation in a process strongly
influenced by Rabi oscillations between the 2s and 2p states.
This leads to an XUV pulse emerging from the macroscopic
medium that has been shortened from 60 to 10 fs and whose
peak intensity has increased by approximately a factor of 2.
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The increase in the peak intensity, which results from the
coherent population pumped into the 2p state before the
dressing pulse arrives, is a truly dynamical effect that cannot
be described in terms of a single absorption cross section only.

Our results open up several possibilities for future research
on ultrafast quantum optics. The control of XUV absorption by
laser dressing of helium enables, for example, the possibility
for postgeneration ultrafast shaping of XUV pulses [7]. And
although we have confined ourselves in this work to the case of
one XUV field with a dressing laser, it is a straightforward ex-
tension of the method to treat multiple XUV frequencies, some
of which could be resonant with dressed atomic transitions, and
the complex interferences that would result from this [1,3].
Also, we have used moderately strong IR fields that do not
cause any excitation on their own, but the time-dependent
treatment is not limited to these intensities. Using higher IR
intensities will lead to generation of harmonics in the nonlinear
medium. Harmonics with energies below and slightly above
the ionization threshold, for which absorption dynamics plays

the largest role, have recently attracted much attention, for
instance, as a source of vuv and XUV frequency combs [51]
or as a seed for free-electron lasers [52]. The treatment of
these processes necessitates using methods we have developed
in this paper, because the atomic absorption and emission
properties will be changing on an ultrafast time scale.
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