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Nonadiabatic effects induced by the coupling between vibrational modes via Raman fields
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We study the effect of coupling between molecular vibrational modes attendant the excitation of Raman
transitions using ultrafast chirped laser pulses. We model Raman-active vibrational modes by two-level systems
(TLSs) with nondegenerate ground states and a predetermined initial relative phase. Chirp of the pump and Stokes
pulses is the same in magnitude and opposite in sign for the whole pulse duration. To reveal the nonadiabatic
effects induced by the coupling between the vibrational modes, we compare the model of two uncoupled TLSs
with the one of two TLSs coupled by the external fields. The first model shows population inversion. Within
the second model, the coupling induces nonadiabatic effects leading to a mixed population distribution. By
introducing the time delay between the Stokes and pump pulses, nearly complete population transfer is realized
in both coupled TLSs.
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I. INTRODUCTION

Advances in laser technology hold a treasure for controlled
optical excitations in atoms and molecules. In a simplistic
picture, any transitions in a molecule may be described by
a model of a multilevel system interacting with light and,
often, by a two-level system (TLS) [1]. In the resonantly
driven TLS, it is possible to obtain the desired population
transfer by applying a driving pulse that provides a specific
value of the pulse area. The population inversion takes place
when the pulse is in resonance with the TLS and satisfies
the condition that the pulse area is equal to π . However, in
real molecular systems, existence of multiple transitions with
various coupling strengths and frequencies makes it impossible
to use the pulse area solution to achieve a predetermined
population transfer (e.g., population inversion). One is likely to
find the inversion in one transition and a complete population
return in another transition, as well as arbitrary population
distribution in other transitions. Another drawback of the
π -pulse method is that it requires precise control over the
pulse area. Besides, certain constraints have to be imposed
on a system of interest; for example, the orientation of the
transition dipoles related to the impinging field. All of these
restricts the application of the π -pulse approach to specific
molecular systems only.

For a molecular system characterized by a vibrational
spectrum composed of very close transition frequencies, the
problem of robust population inversion is a big challenge. Var-
ious quantum control techniques, however, demonstrated suc-
cessful generating of ultrafast amplitude- or phase-modulated
laser pulses that steer a molecular system to the desired
quantum yield. One of the most interesting features of these op-
tically modulated pulses is the chirp. Chirping the pulse causes
temporal variation of the carrier frequency. It has become
evident that positively and negatively chirped laser pulses are
crucial for achieving population inversion. Malinovsky et al.
[2] and Cao et al. [3] suggested a population inversion scheme
based on positively chirped pulses in TLSs. Upon application
of ultrafast chirped laser pulses, population inversion was
demonstrated by Bergmann et al. [4] in a three-level system
and in the case of a more complex multilevel system by Kobrak
and Rice [5] and also by Moon et al. [6]. Using linearly chirped

picosecond pulses, Amstrup and coworkers [7] demonstrated
the feasibility of adiabatic inversion in I2 vapor. Meanwhile,
Ruhman and Kosloff [8] showed that negatively chirped pulses
are more efficient than their unchirped counterparts. Following
this study, Cerullo et al. [9] observed strong chirp dependence
for high-power femtosecond pulse excitation of dye molecules
in solution and found that the process is enhanced by
negatively chirped pulses and suppressed by positively chirped
pulses.

Adiabatic passage is known to involve a dynamic variable
(for example, the field amplitude or field-state detuning) which
changes sufficiently slowly compared to other time-dependent
parameters of the light-matter system. The evolution of states
in this case is subject to an effective Hamiltonian. Adiabatic
passage may be accomplished when an atom or a molecule
remains in a single eigenstate (the dressed state) of that
effective Hamiltonian at all times. It has been efficiently used
to adiabatically invert population starting from the pure initial
state. This task is of key importance in experimental and
theoretical work addressing problems in quantum computing,
atomic and molecular spectroscopy, etc.

In this article, a semiclassical theory is developed to
study the interaction of the Raman-active vibrational modes,
described by TLSs, with femtosecond chirped laser pulses.
An exact solution is obtained by numerically solving the
time-dependent Schrödinger equation using the Runge-Kutta
method. The primary goal is to reveal the nonadiabatic effects
induced by the coupling between the vibrational modes. Two
cases are considered: first, when two Raman-active vibrational
modes are uncoupled while interacting with external fields
and, second, when they are coupled via an external field. The
coupling leads to a nonzero probability of population transfer
from one TLS to another via the pump and Stokes pulses.
Further, the dressed-state analysis is carried out to compare
the adiabatic approximation with the exact solution obtained
from the Schrödinger equation and to reveal the strength of the
nonadiabatic effects induced by the coupling. Finally, the time
delay between the pump and Stokes pulses is introduced as a
tool to compensate for the nonadiabatic effects and to achieve
a complete population transfer in both coupled vibrational
modes.
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II. THEORY

A semiclassical theory is developed that describes the
interaction of femtosecond chirped laser pulses with two
TLSs representing two Raman-active vibrational modes in a
molecule. Relaxation or collisional dephasing effects are not
taken into account. Two TLSs have nondegenerate energies
of the ground states, as shown in Fig. 1. The energy levels
of each TLS are chosen in accordance with the solution for a
one-dimensional harmonic oscillator. Here the |1〉-|2〉 TLS has
transitional frequency ω21 and the |3〉-|4〉 TLS has transitional
frequency ω43 such that ω43 − ω21 = δ. Our prime interest is to
learn how the coupling between TLSs impacts the population
dynamics and if it is possible to achieve a population inversion
in both the |1〉-|2〉 and |3〉-|4〉 TLSs when they are coupled
through the fields.

The femtosecond pump and Stokes laser pulses have
Gaussian envelopes and are linearly chirped. They have carrier
frequencies ωp and ωs respectively, and are defined as

Ep(t) = Ep0(t) cos

(
ωpt − αt2

2

)
,

Es(t) = Es0(t) cos

(
ωst − βt2

2

)
, (1)

Ep0(t) = Ep0e
− t2

2τ2 , Es0(t) = Es0e
− t2

2τ2 ,

where Ep0(t) and Es0(t) are the time-dependent pump and

Stokes field envelopes, Ep0 = E0/(1 + α′2
τ 4

0
)1/4 is the peak value

of the pump pulse, Es0 = E0/(1 + β ′2

τ 4
0

)1/4 is the peak value

of the Stokes pulse, α, β and α′, β ′ are the linear temporal
and respective spectral chirps of the pump and Stokes pulse,
τ = τ0

√
1+α′2/τ 4

0 is the chirp-dependent pulse duration assumed
to be the same for the pump and Stokes pulses since |α′| = |β ′|,
(pulse chirping is known to elongate the pulse duration). Let
us look first at the case when two TLSs interact with the
pump and Stokes fields without interacting with each other,
which means that the TLSs are uncoupled. Within the field-
interaction representation, a semiclassical Hamiltonian that
describes the interaction of each of two uncoupled TLSs with
ultrafast chirped laser pulses reads

H =
(−δ/2 − αd (t)/2 − �d (t) −�3(t)

−�3(t) δ/2 + αd (t)/2 + �d (t)

)
.

(2)

It is obtained by adiabatic elimination of the virtual electronic
excited state |b〉 and in the rotating-wave approximation
(RWA). Here, the two-photon detuning δ is zero for the
resonant TLS. When the coupling between the resonant and
detuned TLS is switched on, the Hamiltonian for the coupled
TLSs, obtained in the field-interaction representation and the
RWA after adiabatic elimination of the virtual state |b〉, reads

H =

⎛
⎜⎜⎜⎝

−αd (t) − �d (t) −�3(t) −�1(t) −�3(t)

−�3(t) αd (t) + �d (t) −�3(t) −�2(t)

−�1(t) −�3(t) δ/2 − αd (t) − �d (t) −�3(t)

−�3(t) −�2(t) −�3(t) 3δ/2 + αd (t) + �d (t)

⎞
⎟⎟⎟⎠ , (3)

Here �d (t) = [�1(t) − �2(t)]/2, αd (t) = (β − α)(t − tc),
�1(t) = µ2

4h̄2�
E2

p0 exp[− (t − tc)2

τ 2 ], �2(t) = µ2

4h̄2�
E2

s0 exp[− (t − tc)2

τ 2 ]
are the ac Stark shifts originated from the two-photon
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FIG. 1. (Color online) Schematic of two TLSs having frequencies
ω21 and ω43. Ground states are equally populated initially. The
vibrational modes interact with the pump and Stokes pulses having
frequencies ωp and ωs respectively, and � is the one-photon detuning
from the excited state |b〉.

transition, tc is the central time when the pump and
Stokes pulse amplitude comes to the peak value, µ is
the dipole moment (for simplicity we considered all the
dipole moments to be equal to 1 Debye; µij = µ), � is
the detuning from the electronic excited state |b〉, and
�3(t) = µ2

4h̄2�
Ep0Es0 exp[− (t−tc)2

τ 2 ] is the effective Rabi
frequency. The diagonal elements of the Hamiltonian describe
bare-state energies in the field-interaction representation; they
depend on the chirp parameters α and β and also on detuning
δ. The off-diagonal elements represent coupling of the bare
states through the effective Rabi frequency �3(t) and also
through the ac Stark shifts.

III. NUMERICAL RESULTS FOR THE MODEL
OF TWO UNCOUPLED TWO-LEVEL SYSTEMS

The Hamiltonian in Eq. (2) is used in the Schrödinger equa-
tion to solve for the evolution of the probability amplitudes
a1(t) and a2(t) for the resonant TLS and for the probability
amplitudes a3(t) and a4(t) for the detuned TLS (see Fig. 1).
The numerical solution was obtained using the Runge-Kutta
method [10] and performed under the initial condition that
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only the ground state of the resonant TLS and the detuned
TLS is populated. This is likely to be the case for population
distribution in molecules at room temperature. The population
is chosen to be 0.5, so the total population in two TLSs is
unity. If two TLSs are uncoupled, a single state population
can reach the maximum value of 0.5; however, if two TLSs
are coupled (for details see the next section) a single state
population can range from zero to 1. The parameters of the
fields and the systems used in numerical calculations correlate
with experimental conditions discussed in [11,12] and also
used in [13]. We addressed two Raman-active vibrational
modes ω21 = 84.9 THz (2840 cm−1), the symmetric stretch,
and ω43 = 87.6 THz (2930 cm−1), the asymmetric stretch,
in methanol. (They are an equally good fit for vibrational
modes of the CHn molecular species, found in abundance
in biological samples [14].) The intensity of the laser fields
is 2 × 1012 W/cm2, and the transform-limited pulse duration
is τ0 = 176 fs. The magnitude of the spectral chirp used in
calculations is fixed and is |α′| = |β ′| = 3 × 10−4/cm−2, giv-
ing the chirped pulse duration equal to τ = 1.8 ps. Under the
condition of the same magnitude of the chirp for both the pump
and Stokes pulses, the chirp rate is positive for the pump pulse
(α > 0) and negative for the Stokes pulse (β < 0). Besides, at
the instant tc when the pump- and Stokes-pulse amplitudes
reach their peak value, the frequency difference (ωp − ωs)
comes into resonance with the transitional frequency ω21.
The resonance with the ω43 transitional frequency is achieved
somewhat later, at t = tc + δ/(2α), (where α is the positive
chirp parameter of the pump pulse). The detuning δ, that
features the |3〉-|4〉 TLS, is much less than the transition
frequency of the resonant TLS (i.e., δ � ω21), and is equal
to 2.7 THz in our calculations. Figure 2 shows the population
dynamics in the resonant TLS. The population is being
smoothly transferred from the ground state to the excited state,
the even population distribution is achieved at the central time
and the inversion occurs at the end of the pulse duration.
In Fig. 3, the population dynamics in the detuned TLS is
shown. In this case, the even population distribution is achieved
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FIG. 2. (Color online) The population dynamics in the resonant
TLS as a function of time for parameters α′/τ 2

0 = 10 and the
peak pulse intensity 2 × 1012 W/cm2. The black (solid) and red
(dot-dashed) curves show the exact solution for population in states
|1〉 and |2〉, respectively.

0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

Po
pu

la
tio

n

t ω10
-3

ρ ρ33
44

FIG. 3. (Color online) The population dynamics in the detuned
TLS as a function of time for parameters α′/τ 2

0 = 10 and the peak
pulse intensity 2 × 1012 W/cm2. The green (dotted) and blue (dashed)
curves show the exact solution for populations in states |3〉 and |4〉,
respectively.

at time t = tc + δ/(2α) and the population inversion takes
place at the end of the pulse. Simultaneously applied, the
negatively chirped Stokes pulse and the positively chirped
pump pulse compose the field having the beat frequency
continuously changing from a lower to higher value. Since
frequency difference of the detuned TLS is ω21 + δ, the field
beat frequency comes into resonance with this TLS after the
central time, so inversion in the |3〉-|4〉 TLS occurs later than
in the |1〉-|2〉 TLS.

To gain an insight into the adiabaticity of the population
transfer, the dressed-state analysis was carried out. We numer-
ically diagonalized the Hamiltonian in Eq. (2) and obtained
the time-dependent energy of the dressed states and their
respective eigenvectors. Figure 4 shows the dressed -state
energies (solid lines) and the bare-state energies (dashed lines)
as a function of time for the resonant TLS. Dressed state I is
populated initially because it coincides with the bare state |1〉,
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FIG. 4. (Color online) Time-dependent picture of the energies of
the dressed states I and II (solid lines) and the energies of the bare
states (dashed lines) for the resonant TLS as a function of time for
parameters α′/τ 2

0 = 10 and a peak pulse intensity 2 × 1012 W/cm2.
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FIG. 5. (Color online) Time-dependent picture of the energies of
the dressed states III and IV (solid lines) and the energies of the bare
states (dashed lines) for the detuned TLS as a function of time for
parameters α′/τ 2

0 = 10 and a peak pulse intensity 2 × 1012 W/cm2.

which is the ground state of the resonant TLS. Thus, dressed
state I is the state within which the adiabatic dynamics takes
place. As the pulses evolve in time and the intensity of the fields
increases, this dressed state becomes a superposition of two
bare states with the same probability amplitude. Asymptoti-
cally, the energy of dressed state I coincides with the energy of
bare state |2〉, manifesting the population inversion. The plots
for the dressed-state energies of the detuned TLS are shown in
Fig. 5; they are labeled III and IV. Note that here the crossing
of the bare states occurs after the central time because of the
detuning in the system. At the end of the pulse duration, almost
complete population inversion is observed in this TLS as well.

Figure 6 shows the population distribution among the bare
states obtained from the eigenvectors related to dressed states
I, II, III, and IV. The population of the bare states within
dressed state I shows an adiabatic transfer of all the population
from state |1〉 to state |2〉. However, the reverse is observed for
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FIG. 6. (Color online) Population dynamics of bare states within
the four different dressed states is shown in four inserts for parameters
α′/τ 2

0 = 10 and a peak pulse intensity of 2 × 1012 W/cm2. Black
(solid), red (dot dashed), green (dotted), and blue (dashed) curves
show population of the bare states |1〉, |2〉, |3〉, and |4〉, respectively.

dressed state II’s population dynamics. For dressed state III,
plots depict an inversion from bare state |3〉 to bare state |4〉
and, for dressed state IV, the population dynamics are reversed
compared to dressed state III. The crossings of the bare-state
populations are consistent with Figs. 4 and 5 and occur after the
central time for the detuned TLS and at the central time for the
resonant TLS. Thus, we have demonstrated that an adiabatic
control leading to the population inversion is possible in a
resonant or slightly detuned TLS by implementing the same in
magnitude and opposite in sign chirp to the pump and Stokes
fields.

IV. NONADIABATIC EFFECTS INDUCED BY THE
COUPLING BETWEEN TWO-LEVEL SYSTEMS

Naturally, the Raman-active vibrational modes get coupled
via external fields when pulses strike the molecules. When
modeled, the coupling is fulfilled by the effective Rabi
frequency �3, the strength of which is determined, in par-
ticular, by the excitation fields [15]. Studying the effects of
coupling may play an important role in interpreting the results
observed in the laboratory. Most of the time, constraints are
imposed on the coupling, implying weak dipole transition
moments between specific states. However, in our studies, we
have taken the most general approach where all the transitions
are allowed (i.e., all four states are coupled to each other
through the fields). Figure 7 shows the exact solution obtained
by solving the Schrödinger equation with the Hamiltonian
in Eq. (3) for the two coupled TLSs using the Runge-Kutta
method [10]. The final population of the excited state of the
detuned TLS is nearly 60% and that of the excited state of the
resonant TLS is nearly 20%. It can be implied from the com-
parison with the previous results that the coupling between the
modes has induced nonadiabatic effects in the system and has
resulted in the mixed population distribution among the TLSs.

To gain more insight into the physics behind the evolution of
the systems and the nonadiabaticity induced by the coupling,
we performed a dressed-state analysis. By diagonalization
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FIG. 7. (Color online) The population dynamics for two coupled
TLSs as a function of time for parameters α′/τ 2

0 = 10 and a peak
pulse intensity of 2 × 1012 W/cm2. Black (solid), red (dot dashed),
green (dotted), and blue (dashed) curves represent populations of
states |1〉, |2〉, |3〉, and |4〉, respectively.
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FIG. 8. (Color online) Time-dependent picture of the energies
of the dressed states I, II, III, and IV for two coupled TLSs
and the energies of the bare states (dashed lines) as a function
of time for parameters α′/τ 2

0 = 10 and a peak pulse intensity of
2 × 1012 W/cm2.

of the Hamiltonian in Eq. (3), we obtained the dressed-
state energies presented in Fig. 8. We observe two avoiding
crossings between different dressed states. They are placed
very close and are relatively narrow, providing population
flow from one dressed state to another. Initially, dressed states
I and III are populated due to their coincidence with the
energy of the bare states |1〉 and |3〉. As both the pump and
Stokes pulses evolve in time, the energy of dressed states
II and III approach one avoiding crossing that is followed
by another avoiding crossing for states II and IV. These
two avoiding crossings are not really separated in time, so
they cannot be considered independently. Such a complex
picture results in essentially nonadiabatic population transfer
between all the dressed states. It implies that, by including
the coupling in the system, we loose control over Raman
transitions and are unable to obtain a population inversion
in the modes. Population dynamics between the bare states
within each of four dressed states is shown in Fig. 9. For the
dressed states I and III, the population inversion is observed
in the resonant and detuned TLSs, respectively. However, in
the Schrödinger picture, owing to the nonadiabatic nature of
light-matter interaction, all the dressed states are mixed and
the population inversion is not reachable, as is seen in Fig. 7.
Thus, the coupling between the modes leads to nonadiabaticity.
However, a possibility of an efficient population transfer may
exist if to apply suitably delayed pulses as it was first fulfilled
by Oreg, Hioe, and Eberly [16]. Their method was realized
experimentally by Gaubatz et al. [17] and many others. In
this approach, controlling the pulse delay between the pump
and Stokes pulses leads to the desired population inversion
in both TLSs. Introducing the time delay between the pulses
separates the dynamics in the coupled TLSs. It was shown
by Gaubatz that the lowest losses from nonadiabatic coupling
between the states are achieved when the delay is equal to the
pulse bandwidth.

Following this approach, we introduced the 100-fs time
delay between the Stokes pulse and the pump pulse, with
the Stokes pulse running first. This pulse sequence re-
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FIG. 9. (Color online) Population dynamics in the bare states
within four different dressed states is shown in four inserts for
parameters α′/τ 2

0 = 10 and a peak pulse intensity of 2 ×
1012 W/cm2. Black (solid), red (dot dashed), green (dotted), and
blue (dashed) curves show the time evolution of population of bare
states |1〉, |2〉, |3〉, and |4〉, respectively.

sembles the stimulated Raman adiabatic passage (STIRAP)
scheme. We have seen earlier that the crossing between
the bare-state populations in the detuned TLS occurs after
the central time. Now that we have introduced the time
delay, the crossing will occur further away from the cen-
tral time associated with the Stokes pulse. Control over
the population dynamics is achieved by the two frequency
components arising in the continuously changing beat fre-
quency of the chirped pump and Stokes pulses. The lower-
frequency component leads the higher-frequency component.
This inverts the resonant TLS first since the transition
frequency of this TLS is lower than that of the detuned TLS.
After a 100-fs time delay, the detuned TLS gets inverted. At this
time the lower-frequency vibrational mode is already inverted
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FIG. 10. (Color online) Population dynamics in two coupled
TLSs as a function of time for parameters α′/τ 2

0 = 10, a 100-fs
time delay between the Stokes and pump pulses, and a peak pulse
intensity of 2 × 1012 W/cm2. The black (solid), red (dot dashed),
green (dotted), and blue (dashed) curves represent populations of the
bare states |1〉, |2〉, |3〉, and |4〉, respectively.
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and there will be no transition possible. Thus, we observe
a population inversion in both TLSs in the presence of the
coupling between them. Figure 10 shows the exact solution of
population dynamics in the two coupled TLSs.

V. CONCLUSION

We have discussed a theory of the interaction between the
chirped pump and Stokes laser pulses with vibrational modes
with the goal to reveal the effect of the coupling between modes
via external fields on the population dynamics and to explore a
possibility for population inversion under these conditions. We
have examined the effects of coupling by studying two cases:
first, when the coupling between the modes is zero and, second,
when the coupling is switched on. The two uncoupled TLSs
give a robust population inversion in the resonant and detuned
TLSs. However, in two coupled TLSs, a mixed distribution

of population is observed owing to the nonadiabatic nature
of the pump- and Stokes-pulse interaction with molecules.
The performed dressed-state analysis revealed a possibility
for strong nonadiabatic effects in this case. Upon exploring
the coherent control mechanisms of light-matter interaction,
we found that, by adding the time delay between the pump and
Stokes pulse, one can achieve the desired population inversion
in both coupled vibrational modes. The exact solution with
the pump pulse delayed by 100 fs shows nearly complete
population inversion in both coupled TLSs.
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