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Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser
fields: The momentum-space approach and time-dependent generalized pseudospectral method
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We present an approach in momentum (P) space for the accurate study of multiphoton and above-threshold
ionization (ATI) dynamics of atomic systems driven by intense laser fields. In this approach, the electron wave
function is calculated by solving the P-space time-dependent Schrödinger equation (TDSE) in a finite P-space
volume under a simple zero asymptotic boundary condition. The P-space TDSE is propagated accurately and
efficiently by means of the time-dependent generalized pseudospectral method with optimal momentum grid
discretization and a split-operator time propagator in the energy representation. The differential ionization
probabilities are calculated directly from the continuum-state wave function obtained by projecting the total
electron wave function onto the continuum-state subspace using the projection operator constructed by the
continuum eigenfunctions of the unperturbed Hamiltonian. As a case study, we apply this approach to the
nonperturbative study of the multiphoton and ATI dynamics of a hydrogen atom exposed to intense short-
wavelength laser fields. High-resolution photoelectron energy-angular distribution and ATI spectra have been
obtained. We find that with the increase of the laser intensity, the photoelectron energy-angular distribution
changes from circular to dumbbell shaped and is squeezed along the laser field direction. We also explore
the change of the maximum photoelectron energy with laser intensity and strong-field atomic stabilization
phenomenon in detail.
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I. INTRODUCTION

Multiphoton and above-threshold ionization (ATI) of an
atom exposed to intense laser fields has been an attractive
topic for decades [1,2] since it is first discovered in 1979 [3].
Owing to the advance of the intense and short pulse laser
technology, the study of ATI phenomenon continues to attract
much attention [4,5]. The multiphoton ATI can be attributed
to two distinct regimes based on the Keldysh parameter [6],
γ = √

IP /2UP , where IP is the ionization potential of the
atom, UP = ε2

0/4ω2 (atomic units are used throughout this
paper unless otherwise indicated) is the ponderomotive energy,
ε0 is the amplitude of the laser field, and ω is the laser angular
frequency. For a fixed laser frequency ω, in the weak laser fields
when γ � 1, the multiphoton absorption is the dominating
mechanism for the ATI, while in the intense laser fields when
γ � 1, the tunneling ionization is the primary mechanism.
At the transition region when γ ≈ 1, both the multiphoton
ionization and tunneling ionization contribute to the ATI.
The photoelectrons induced directly by the laser fields have
a classical cutoff energy 2UP , while the electrons produced
by the rescattering can extend to the maximum energy up to
10UP [7–10].

Extensive investigations have been performed both the-
oretically [11–18] and experimentally [7,12,14,19–31] for
a comprehensive understanding of the laser-induced atomic
ATI for laser fields with wavelengths from visible lights
(4×102 nm) to infrared radiations (1×105 nm). With the
recent development of intense and ultrashort-wavelength
free-electron lasers [32–34], the study of multiphoton
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processes in the high-frequency and strong-field regime
becomes increasingly important [35–37]. In such a regime, the
electron can achieve very high energy by absorbing photons
from the fields and can go very far from the nucleus. Likewise,
the electron wave function will extend to a very large distance,
even to infinity. To solve the time-dependent Schrödinger
equation (TDSE) in spatial coordinate (R) space, the boundary
has to be set at a very large distance to avoid the reflection of the
wave function. This will require the use of a very large number
of grid points to cover a large range of spatial space, rendering
the R-space calculation difficult to perform accurately and
efficiently.

The difficulty in the R-space numerical calculation may
be overcome by the computation in momentum (P) space
instead. In any physical process, the momentum of an electron
is always finite and less than a certain maximum value kmax.
The probability of electron is negligible or zero when its
momentum is greater than kmax. Thus, in the P space, the
wave function of the electron is localized (e.g., the wave
function of a free electron is a δ function in the P space)
and can be calculated in a finite P-space volume with a
simple zero boundary condition as long as the boundary of
the volume is set at the place with a properly large momentum
kmax. This ensures that all the information with regard to the
continuum-state physical processes are included in the electron
wave function, and at the same time makes the computation
simple and efficient.

The P-space approach has been considered in the past
for several different time-dependent problems, including, for
example, atomic photoionization [38–40] and electron quan-
tum transport in the molecular device [41]. Most of these
earlier studies were performed for the one-dimensional sys-
tems, apart from the recent calculation [40]. This calculation
that used the modified kernel was confined in a finite-sized
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R-space box with a small value of kmax, and it could predict
the main features of the ATI spectra for the hydrogen atom
in intense laser fields. However, for precise calculation and/or
intense short-wavelength laser fields, both the size of the box
and the value of kmax have to be increased to avoid the wave
function reflection on the boundary and to calculate the ATI
spectra at high energy.

In this paper, we present an efficient computational ap-
proach in the P space for the accurate study of multiphoton
processes of atomic systems driven by intense laser fields. This
approach is free of boundary reflection because the basic equa-
tion of the approach is theP-space TDSE that is obtained from
the Fourier transform of the R-space TDSE in the whole R
space. The electron wave function is calculated within a finite
P-space volume under a simple zero boundary condition by
solving the P-space TDSE. The P-space TDSE is propagated
accurately and efficiently by means of the time-dependent
generalized pseudospectral (TDGPS) method together with
the optimal momentum discretization and a split-operator time
propagator in the energy representation [42–45]. The differ-
ential ionization probabilities are calculated directly from the
total electron wave function at the end of the laser field with the
help of a continuum-state projection operator. The continuum-
state projection operator is constructed by the continuum
eigenfunctions of the unperturbed Hamiltonian. The proposed
approach has been applied to the accurate study of multiphoton
ATI processes of the hydrogen atom driven by intense short-
wavelength laser fields where the R-space methods cannot
work efficiently and effectively. The high-resolution photo-
electron energy-angular distribution and ATI spectra have
been obtained. The changes of the energy-angular distribution,
ATI spectra, the maximum photoelectron energy, and total
ionization probability with laser intensity have been explored
in detail. Some distinctive phenomena have been predicted.

II. THEORETICAL AND NUMERICAL METHODOLOGY

A. P-space time-dependent Schrödinger equation

In the velocity gauge, the R-space TDSE in the dipole
approximation for an atom interacting with a laser field is
given by

i
∂

∂t
�(r,t) =

[
p̂2

2
+ 1

c
A(t) · p̂ + U (r)

]
�(r,t), (1)

where c is the light speed, A(t) is the vector potential of the
laser field, and U (r) is the Coulomb potential of the atom.
The P-space wave function �(k,t) can be calculated from the
Fourier transform of the R-space wave function �(r,t) in the
whole R space,

�(k,t) = 1

(2π )3/2

∫
�(r,t) exp(−ik · r) dr. (2)

Applying Eq. (2) to (1), one obtains the P-space TDSE for the
P-space wave function �(k,t), which is an integro-differential
equation given by

i
∂

∂t
�(k,t) = k2

2
�(k,t) + 1

c
A(t) · k�(k,t)

+
∫

V (k,k′)�(k′,t) dk′, (3)

where, V (k,k′) is the P-space Coulomb potential defined by

V (k,k′) = 1

(2π )3

∫
U (r) exp[i(k′ − k) · r] dr. (4)

For a hydrogenic atom, theP-space Coulomb potential is given
by [46,47]

V (k,k′) = − Z

2π2

1

|k − k′|2 . (5)

Because the integral in Eq. (2) is over the whole R space,
the P-space wave function contains all the information
of the electron in physical processes of the whole R space
and the P-space calculation does not suffer from the reflection
of the wave function on the boundary.

B. Partial wave expansion and radial wave function

Assume that a hydrogenic atom in the ground state is
exposed to the laser field along z axis. In this case, the system
is axially symmetric about the z axis during evolution, and the
wave function �(k,t) can be expanded in the partial waves as

�(k,t) = 1

k

lmax∑
l=0

ϕl(k,t)Yl0(θ,φ), (6)

where lmax is the maximum number of the partial waves, ϕl(k,t)
is the radial wave function, and Ylm(θ,φ) is the spherical
harmonic. For the hydrogenic atom, the Coulomb potential
Eq. (5) can also be expanded in the partial waves as [46–48]

V (k,k′) = 1

kk′

lmax∑
l=0

l∑
m=−l

Vl(k,k′)Ylm(θ,φ)Y ∗
lm(θ ′,φ′), (7)

where k = |k| and

Vl(k,k′) = −Z

π
Ql

(
k2 + k′2

2kk′

)
. (8)

Here Ql(z) is the Legendre function of the second kind.
Applying Eqs. (6) and (7) to (3), we obtain an integro-

differential equation for the P-space radial wave function
ϕl(k,t)

i
∂

∂t
ϕl(k,t) = k2

2
ϕl(k,t) +

∫
Vl(k,k′)ϕl(k

′,t) dk′

+ 1

c
kA(t)[αl+1ϕl+1(k,t) + αlϕl−1(k,t)], (9)

where

αl = l√
(2l − 1)(2l + 1)

. (10)

C. Landé subtraction technique

The partial wave form of the P-space Coulomb potential
Vl(k,k′) has a logarithmic singularity at k = k′ because the
Legendre function of the second kind is logarithmically
singular at k = k′. This singularity makes it difficult to
accurately calculate the wave function and is one of the
most troublesome issues for numerically solving the P-space
Schrödinger equation. To remove this singularity, the Landé
subtraction technique has been proposed [49]. Following this

013405-2



PRECISION CALCULATION OF ABOVE-THRESHOLD . . . PHYSICAL REVIEW A 83, 013405 (2011)

technique, the term involving Coulomb potential in Eq. (9) is
calculated by∫

Vl(k,k′)ϕl(k
′,t) dk′

= kSlϕl(k,t) +
∫

Vl(k,k′)
[
ϕl(k

′,t) − ϕl(k,t)

Pl(z)

k

k′

]
dk′,

(11)

where z = (k2 + k′2)/2kk′, Pl(z) is the Legendre polynomial,
and Sl is defined by

Sl =
∫

Vl(k,k′)
Pl(z)

dk′

k′ , (12)

and can be calculated numerically [50]. In Eq. (11), the terms
in the square bracket tend to zero faster than the Coulomb
potential Vl(k,k′) tends to infinite when k′ → k. Thus the
integral is zero at k′ = k and the singularity is removed. The
Landé subtraction technique has been applied to the hydrogen
atom [46–48] and produced quite accurate eigenvalues and
eigenfunctions for any angular momentum [48] compared to
the analytical ones [51]. The Landé subtraction technique has
also been applied successfully to the numerical calculations of
relativistic Klein-Gordon equations [49], Dirac equations [49],
and Bethe-Salpeter equations [47,52].

For further simplification, we introduce

vl(k,k′) =
{

0, k′ = k,

Vl(k,k′), k′ �= k.
(13)

Substituting Eq. (11) into Eq. (9) and using Eq. (13), we gain a
singularity-free equation for the P-space radial wave function
ϕl(k,t),

i
∂

∂t
ϕl(k,t) =

[
k2

2
+ kSl − kql(k)

]
ϕl(k,t)

+
∫

vl(k,k′)ϕl(k
′,t) dk′

+ 1

c
kA(t)[αl+1ϕl+1(k,t) + αlϕl−1(k,t)], (14)

where

ql(k) =
∫

vl(k,k′)
Pl(z)

dk′

k′ . (15)

D. Generalized pseudospectral method

Because the electron momentum is always finite and the
P-space electron wave function can be set to zero on the
boundary with a sufficiently large value of kmax, we will
confine our calculation in the volume of k ∈ [0,kmax]. To solve
Eq. (14), we extend the generalized pseudospectral (GPS)
method [42–45] to the P-space calculation. We first map the
P-space domain k ∈ [0,kmax] to a new domain x ∈ [−1,1] by
a mapping function

k(x) = γ
1 + x

1 − x + xm

, (16)

where γ is the mapping parameter and xm = 2γ /kmax. The
smaller the value of γ , the denser the grid points at small
k. By changing the mapping parameter, the grid points can

be adjusted in some way so as to improve the calculation of
the wave function. On the new domain x ∈ [−1,1], Eq. (14)
is discretized by using the Gaussian quadrature with N grid
points (x1,x2, . . . ,xN ) and is converted to a time-dependent
symmetric matrix equation

i
∂

∂t
y

j

l (t) =
N∑

j ′=1

h
jj ′
l y

j ′
l (t) +

lmax∑
l′=0

h
j

ll′y
j

l′ (t), (17)

where

y
j

l (t) =
√

k̇jwjϕ
j

l (t), (18)

h
jj ′
l =

(
k2
j

2
+ kjSl − kjq

j

l

)
δjj ′ + v

jj ′
l

√
wj k̇jwj ′ k̇j ′ , (19)

h
j

ll′ = 1

c
kjA(t)(αl+1δl+1l′ + αlδl−1l′ ). (20)

Here, kj = k(xj ), ϕ
j

l (t) = ϕl(kj ,t), q
j

l = ql(kj ), v
jj ′
l =

vl(kj ,kj ′ ), k̇j ′ = dk/dx|xj ′ , and wj is the weight
of the Gaussian quadrature, h

jj ′
l is the unperturbed

Hamiltonian matrix element, and h
j

ll′ is the interaction
matrix element. The GPS method associated with the
mapping technique allows for nonuniform and optimal
discretization with the use of only a modest number of
grid points. It has been shown that the GPS method is a
very effective and efficient numerical algorithm for the
high-precision solution of the Schrödinger equation and
has been widely applied to the R-space calculations with
Coulomb potentials [42–45].

The wave function can be achieved by numerical calculation
of the time-dependent matrix equation (17) step by step in time
by using the second-order split-operator method in the energy
representation [44]. Because the unperturbed Hamiltonian
matrix in the first term on the right-hand side of Eq. (17),
H0 = {hjj ′

l δll′ }, and the laser-atom interaction matrix in the
second term, H1 = {hj

ll′δjj ′ }, are diagonal with respect to l

and j , respectively, the propagation of the wave function is
constrained in the subspace with the same l for the first term
and the subspace with the same j for the second term. This will
save computer resources (CPU time and memory) and speed
up the wave function time propagation.

E. Differential ionization probability and photoelectron spectra

In the intense laser field, an electron can be ionized by ab-
sorbing energy from the laser field directly and/or gaining the
energy from rescattered electrons. The differential ionization
probabilities and photoelectron energy-angular distribution
can be extracted from the wave function �(k,tf ) at the end of
the laser field. The conventional method for the calculation of
these quantities is to project the wave function to the continuum
states constructed by the Coulomb wave function [53,54]. This
method can also be extended to the P-space calculation of the
differential ionization probabilities [55]. However, just as the
R-space wave function represents the probability amplitude of
an electron at the spatial position r, the P-space wave function
characterizes the probability amplitude of an electron having
the momentum k and kinetic energy k2/2. Thus the P-space
wave function itself offers a very effective method for direct
calculation of the differential ionization probability. The key
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point is how to extract the continuum-state wave function from
the total electron wave function.

To isolate the bound-state and continuum-state wave func-
tions from the total wave function, we introduce a bound-state
projection operator by

P̂B =
∑

all Eα<0

|ψα〉〈ψα|, (21)

and a continuum-state projection operator by

P̂C =
∑

all Eα�0

|ψα〉〈ψα|, (22)

respectively, where Eα and |ψα〉 are the eigenvalue and
eigenfunction of the unperturbed Hamiltonian. Obviously
P̂B + P̂C = I .

Using the projection operators, the total wave function
�(k,tf ) can be divided into two parts as

�(k,tf ) = �B(k,tf ) + �C(k,tf ), (23)

where

�B(k,tf ) = P̂B�(k,tf ) =
∑

all Eα<0

cα|ψα(k)〉 (24)

and

�C(k,tf ) = P̂C�(k,tf ) =
∑

all Eα�0

cα|ψα(k)〉 (25)

are the bound-state and continuum-state wave functions,
respectively, and

cα = 〈ψα(k)|�(k,tf )〉 (26)

is the coefficient.
The triple differential ionization probability, which is the

probability density of an photoelectron at k = (k,θ,φ) having
a kinetic energy E = k2/2, is computed from

∂3P

∂E ∂�
= k|�C(k,tf )|2, (27)

where d� = sin θ dθ dφ. Using Eq. (23), the triple differential
ionization probability can also be calculated by

∂3P

∂E ∂�
= k{|�(k,tf )|2 − |�B(k,tf )|2

− 2 Re[�∗
B(k,tf )�C(k,tf )]}. (28)

In this equation, the first term on the right-hand side is the
total probability density, the second term is the probability
density of the bound-state electron, and the third term is
the interference between the bound-state and continuum-state
electrons. This expression can be used to study the contribution
of each individual process to the ionization probability.

Because the atomic system is axially symmetric, the triple
differential ionization probability is independent of φ. Thus
the photoelectron energy-angular distribution is described by
the double differential ionization probability (DDIP)

∂2P

∂E sin θ ∂θ
= 2π

(
∂3P

∂E ∂�

)
. (29)

The photoelectron ATI spectra is characterized by the differ-
ential ionization probability (DIP)

dP

dE
=

∫ π

0

(
∂2P

∂E sin θ ∂θ

)
sin θ dθ. (30)

Finally, the total ionization probability (TIP) can be calculated
by

P =
∫ ∞

0

(
dP

dE

)
dE. (31)

The proposed P-space approach, together with the method
for the calculation of the differential ionization probabilities,
can be extended easily to many-electron atomic and molecular
systems within a single-active electron approximation (SAE).
In the SAE, only a single active electron responds to the laser
fields while all other electrons remain unaffected [56], and
the active electron moves in the Coulomb fields of nuclei and
other electrons as well as laser fields. The basic equation for
the active electron [56] is very similar to the TDSE given by
Eq. (1) apart from additional electron-electron Hartree and
exchange-correlation potentials in the Hamiltonian [45,57].
Thus the techniques and methods for numerically solving the
TDSE and calculating the differential ionization probabilities
depicted above can be applied directly to the many-electron
systems in the presence of laser fields in the SAE.

III. RESULTS AND DISCUSSION

A. Multiphoton ionization rates of hydrogen atom
in laser fields

The P-space radial eigenfunction tends to 1/kl+4 when
k → ∞ rather than falls off exponentially [51]. Thus to
accurately calculate the eigenfunction of the electron with
a smaller angular momentum l, such as s states with l = 0,
the value of kmax cannot be too small. Indeed, we find that
the eigenvalues and eigenfunctions with larger l can be more
easily and accurately calculated using smaller kmax. This can
be understood from the uncertainty principle of quantum
mechanics. Higher excited states usually have larger distances
and smaller momenta than the ground and lower excited
states. Thus the wave functions of the higher excited states are
relatively more easy to compute in P space than R space [58].

As a test of the P-space time-dependent wave function, we
calculate ionization rates of a hydrogen atom initially in the
ground state exposed to intense laser fields. The laser field is
turned on with a sine-squared ramp of the amplitude in 10
optical cycles and then is kept a constant. The vector potential
of the laser field is given by

A(t) = ez

cε0

ω
f (t) sin(ωt + α), (32)

with the envelope shape factor given by

f (t) =
{

sin2
(

πt
2τR

)
, 0 � t � τR,

1, t > τR,
(33)

where τR = 10Toc, Toc = 2π/ω is the optical cycle of the
laser field, α is the carrier-envelope phase, and ez is the
unit vector of the z axis. To achieve accurate eigenfunctions,
especially for the states with small l, we take kmax to be 104 a.u.
Although a quite large kmax is adopted, it does not mean a very
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TABLE I. Ionization rates of a hydrogen atom exposed to intense
laser fields with peak intensity I0 = 1.75 × 1014 W/cm2. [x] denotes
multiplication by 10x .

Present Floquet R-space
ω0(a.u.) work calculation [62] calculation [44]

0.6 3.14[−3] 3.14[−3] 3.14[−3]
0.3 1.62[−3] 1.61[−3] 1.63[−3]
0.2 3.49[−3] 3.50[−3] 3.50[−3]

large number of grid points has to be used because the GPS
method and mapping technique are employed in the P-space
calculation. In this calculation, the mapping parameter γ = 2,
and 256 grid points are employed. The survival probability on
the initial state decays slowly at the beginning of the laser field
and exponentially after the amplitude of the laser field becomes
constant [59,60]. The ionization rate can be estimated from the
exponential decay rate of the survival probability on the initial
state [61].

In Table I, we give the ionization rates of one-photon, two-
photon, and three-photon ionization for the laser peak intensity
I0 = 1.75 × 1014 W/cm2 and α = 0, together with the results
of the time-independent Floquet calculation [62] and R-space
TDSE calculation [44] for comparison. It is shown that our
numerical results are in good agreement with those of the
time-independent Floquet calculation [62] and R-space TDSE
calculation [44].

B. Multiphoton above-threshold ionization of hydrogen atom in
intense longer-wavelength laser fields

For a further test, we apply the P-space approach to the
study of the multiphoton ATI of a hydrogen atom initially in
the ground state exposed to a longer-wavelength sine-squared
laser pulse. The vector potential of the laser field is given by
Eq. (32) with the shape factor

f (t) = sin2

(
πt

T

)
, (34)

where T is the laser pulse duration. We consider a 20-optical-
cycle laser pulse with a peak intensity I0 = 5 × 1013 W/cm2,
a wavelength λ = 800 nm, and α = 0. In this high-precision
calculation, kmax is taken to be 104 a.u., γ = 2, lmax = 15,
and 2000 grid points are employed. In the propagation, the
number of eigenfunctions involved can be reduced based on
the maximum energy of electrons during the process. Only the
eigenfunctions whose eigenenergies are less than the maxi-
mum energy (e.g., 40UP ) are included in the calculation. This
truncation greatly reduces the number of eigenfunctions in the
propagation and speeds up the calculation. The convergence
is inspected by checking both the normalization constant and
ATI spectra.

In Fig. 1, we show the high-resolution color contour of
the DDIP. The radial distance and the angle denote the
photoelectron energy and direction with respect to the laser
field, respectively. The color density is plotted in logarithmic
scale and represents the values of the DDIP. The photoelectron
energy-angular distribution displays complex interference
patterns. It consists of a series of rings with fine structures. The
rings represent the angular distribution of the photoelectron

FIG. 1. (Color online) Photoelectron energy-angular distribution
(DDIP) for the 20-optical-cycle laser pulse with a peak intensity of
5 × 1013 W/cm2 and a wavelength of 800 nm.

ATI peaks. The spacing of the adjacent rings equals to the
photon energy. The first ring corresponds to the angular
distribution of the first ATI peak. It comprises several radial
stripes spreading out from the center. These stripes are induced
by the long-range Coulomb potential and are related to the fact
that the ATI peak is determined by one dominant partial wave
in the final state [15,17]. The number of the stripes equals the
angular momentum quantum number of the dominant partial
wave in the final state plus one [15,17,18,63]. In Fig. 1, the first
ring contains six stripes. Thus the dominant final state for the
first ATI peak has the angular momentum quantum number
of 5. The pattern of the energy-angular distribution and the
stripe number of the first ring are in good agreement with those
in the literature [15,18,63]. As for the fine structures, one kind
of explanation is that they are produced by the rapidly changing
ponderomotive potential in the short laser pulse [16]. Another
explanation, which is suitable for both short and long pulses, is
that the fine structures are induced by the coherence of the two
contributions from the leading and trailing edges of the pulse
envelope [18,64]. Furthermore, Fig. 1 shows that the photo-
electron energy-angular distribution is primarily ring shaped.
This indicates that the photoelectron distribution does not de-
pend strongly on the direction, and the photoelectron is emitted
isotropically in the multiphoton ionization when γ > 1.

In Fig. 2, we show the photoelectron ATI spectra in a solid
curve and we show the whole spectra in logarithmic scale in
the inset. The energy spectra display the typical ATI spectra
structures: The peaks are separated by the photon energy; the
first cutoff occurs at 2UP for the direct ionization, and the
second cutoff occurs at 10UP for the rescattering. Each ATI
peak is accompanied by several subpeaks on the right-hand
side. These subpeaks correspond to the fine structures in
Fig. 1 and again are produced by the coherence of the two
contributions from the leading and trailing edges of the pulse
envelope [18,64]. For direct comparison, we also show the ATI
spectra of Ref. [18] in the dashed-dotted curve in Fig. 2. It is
shown that the structure and substructure of the ATI spectra
as well as the ATI peak positions and heights obtained in our
calculation are in good agreement with those in Ref. [18].

C. Above-threshold ionization of hydrogen atom in intense
short-wavelength laser fields

As an application of the proposed approach, we apply
the method to the nonperturbative study of multiphoton ATI
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FIG. 2. (Color online) Photoelectron ATI spectra for the
20-optical-cycle laser pulse with a peak intensity of 5 × 1013 W/cm2

and a wavelength of 800 nm. The solid curve is the result of present
work and the dashed-dotted curve is the result of Ref. [18]. The inset
is the ATI spectra plotted in logarithmic scales.

of atomic hydrogen in the presence of a 10-optical-cycle
short-wavelength λ = 91.13 nm laser pulse. The pulse shape
is the same as that used in the previous subsection and is
given by Eq. (34). The angular frequency of this laser is
ω = 0.5 a.u. The dipole approximation is expected to be a
good approximation when the laser intensity is not very high.
In Figs. 3(a)–3(d), the high-resolution color contours of the
photoelectron energy-angular distribution are plotted for the
laser fields with ε0 = 0.3, 0.5, 1.0, and 1.5 a.u., respectively.
As in Fig. 1, the radial distance and angle represent the
photoelectron energy and motion direction. The color density
is plotted in logarithmic scale and characterizes the value of
the DDIP.

It is shown that the energy-angular distribution consists
of a series of stripes with equal spacing. For the lower laser

intensity when γ � 1 in Figs. 3(a) and 3(b), the primary stripes
are ring shaped. The photoelectron distribution is close to
circular and almost does not depend on the direction. This
again demonstrates that the photoelectron angular distribution
is nearly independent of the direction in the multiphoton
ionization. However, for the higher laser intensity when
γ � 1 in Figs. 3(c) and 3(d), the stripes are no longer
ring shaped, particularly for the high-energy photoelectrons.
The photoelectron distribution is dumbbell shaped and thus
strongly depends on the direction. Such a kind of photoelectron
energy-angular distribution has been observed in the recent
experiment [30]. As expected, the photoelectron angular
distribution expands with the increase of the laser intensity.
However, the distribution in the direction parallel to the laser
field magnifies faster than in the direction perpendicular to the
laser field and thus is squeezed along the laser field direction.
This phenomenon is also found in the hydrogen molecule
driven by long-wavelength intense laser fields [65]. It seems
to be a typical feature of the photoelectron energy-angular
distribution in the tunneling ionization. Moreover, in all the
cases here, the first ring has two stripes. Thus the angular
momentum quantum number of the dominant final state for
the first peak is l = 1. This is not surprising. For the laser
frequency used in the calculation, the ionization threshold is
lowered [62] and the ground-state electron with l = 0 can be
ionized by absorbing one electron, making the electron in the
final state having l = 1.

The high-resolution photoelectron ATI spectra are dis-
played in Figs. 4(a)–4(d) for the laser fields with ε0 = 0.3,

0.5, 1.0, and 1.5 a.u., respectively. For all the cases, from the
multiphoton to tunneling ionization shown in these figures,
the ATI spectra exhibit well-resolved peaks with equal spacing.
Although the ionization threshold is lowered for the laser fields
used [62], the shift is quite small. Thus the ATI peaks do
not shift obviously [21]. However, owing to the interference
[18,64] there are several subpeaks followed by each ATI peak.

FIG. 3. (Color online) Photoelectron energy-angular distribution (DDIP) for the 10-optical-cycle laser pulse with a wavelength of 91.13 nm
and different peak intensities: (a) ε0 = 0.3 a.u., (b) ε0 = 0.5 a.u., (c) ε0 = 1.0 a.u., and (d) ε0 = 1.5 a.u.
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FIG. 4. (Color online) Photoelectron ATI spectra (DIP) for
the 10-optical-cycle laser pulse with a wavelength of 91.13 nm
and different peak intensities: (a) ε0 = 0.3 a.u., (b) ε0 = 0.5 a.u.,
(c) ε0 = 1.0 a.u., and (d) ε0 = 1.5 a.u.

The fine structures are particularly pronounced for the first
several ATI peaks. Owing to the fine structures, the first
several ATI peaks become blurred. In addition, the ratio of the
maximum photoelectron energy to the ponderomotive energy,
Emax/UP , changes with the laser intensity rather than remains
at a constant 10. The lower the laser intensity, the larger the
ratio.

In order to investigate the relation of the maximum
photoelectron energy Emax and laser field ε0, we plot the
scaled maximum photoelectron momentum defined by β =√

Emax/UP vs 1/ε0 in Fig. 5. The open circles are the
numerical results and the line is the result of linear fitting.
It is shown that β increases linearly with 1/ε0. The relation
between them can be well described by

β = 2.712 + 1.152

ε0
. (35)

This relation suggests that at the lower laser intensity, the
maximum photoelectron energy can be much larger than
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FIG. 5. (Color online) The scaled maximum photoelectron mo-
mentum β vs 1/ε0 for the 10-optical-cycle laser pulse with a
wavelength of 91.13 nm.
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FIG. 6. (Color online) Ionization probability vs laser field am-
plitude ε0 for the 10-optical-cycle pulse with a wavelength of
91.13 nm.

10UP , while at the higher laser intensity, the maximum
energy is smaller than 10UP . In the high-intensity limit, the
maximum energy is ∼7.35UP . This is totally different from the
classical prediction that the maximum photoelectron energy
is 10UP . Currently we do not have a reasonable theoretical
interpretation to this empirical relation.

In Fig. 6, the total ionization probability is plotted versus the
amplitude of the laser field ε0. It is shown that the ionization
probability increases with ε0 when ε0 � 2.5 a.u., decreases
with ε0 when 2.5 < ε0 � 5 a.u., increases with ε0 when 5 <

ε0 � 8 a.u., and decreases with ε0 when ε0 > 8 a.u. During
this process, the ionization rates decrease with ε0 when 2.5 <

ε0 � 5 a.u. and ε0 > 8 a.u. This is the well-known strong-field
atomic stabilization phenomenon [66–72]. This phenomenon
can occur at any frequency and can be enhanced by relativistic
effects [70]. Detailed discussions about the strong-field atomic
stabilization and various physical mechanisms have been given
in recent review papers [71,72].

In summary, based on the fact that the momentum of an
electron is always finite in any physical process and the wave
function of the electron is zero when its momentum is greater
than a certain maximum value, we have developed an efficient
and accurate P-space computational approach for the study
of ionization dynamics of atomic systems driven by intense
laser fields. This approach has the following features and
advantages. (a) Because the basic equation, theP-space TDSE,
is obtained from the Fourier transform of theR-space TDSE in
the whole R space, this approach is free of boundary reflection
and contains all the information related to the continuum-state
physical processes. (b) The wave function is computed in
a finite P-space volume under the zero boundary condition
by solving the P-space TDSE. This makes the computation
simpler and more efficient. (c) The GPS method and mapping
techniques are extended to the P-space calculations. This
allows for the nonuniform and optimal P-space discretization
with the use of only a modest number of grid points to achieve
the accurate wave function. (d) Because the unperturbed
Hamiltonian and laser-atom interaction operator transform the
wave function within two different subspaces, respectively,
the calculation of the time-dependent wave function using
the split-operator time propagators is more competent and
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economical. (e) Because theP-space wave function represents
the probability amplitude of an electron having the momentum
k, the differential ionization probabilities are calculated di-
rectly from the continuum-state wave function that is acquired
from the total electron wave function with the help of
the continuum-state projection operator. The continuum-state
projection operator is constructed by the eigenfunctions of the
unperturbed Hamiltonian with positive eigenenergies. For test
of the method, we first apply the approach to the calculation of
the multiphoton ionization rates, photoelectron energy-angular
distribution, and ATI spectra of a hydrogen atom exposed to
the intense laser fields. The results are in good agreement with
those from other R-space calculations. We then extend the
P-space approach to the study of the multiphoton ATI of the
hydrogen atom in the presence of the intense short-wavelength
laser fields, where the R-space methods are more difficult to
achieve the convergence because the electron may go very far
away from the nucleus. The high-resolution photoelectron ATI
spectra and energy-angular distribution have been achieved by
the present approach. We find that with the increase of the laser
intensity, the ATI regime shifts from multiphoton ionization
to tunneling ionization, and accordingly, the photoelectron

energy-angular distribution changes from circular to dumbbell
shaped and is squeezed along the laser field direction. We
also find that the ratio of the maximum photoelectron energy
to the ponderomotive energy UP varies with the laser field.
For the lower laser intensity, the maximum energy is larger
than 10UP , and for the higher laser intensity the maximum
energy is smaller than 10UP . An empirical expression has been
obtained to depict the relation of the maximum photoelectron
energy and laser field strength. Finally, the total ionization
probabilities are calculated for different laser field amplitudes
and the strong-field atomic stabilization is reproduced.
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B. Feuerstein, R. Moshammer, and J. Ullrich, J. Phys. B 37,
L407 (2004).

[28] A. Rudenko, K. Zrost, T. Ergler, A. B. Voitkiv, B. Najjari, V. L.
B. de Jesus, B. Feuerstein, C. D. Schröter, R. Moshammer, and
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