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in momentum space for a model based on separable potentials

H. M. Tetchou Nganso,1,2,* Yu. V. Popov,3 B. Piraux,1,† J. Madroñero,4 and M. G. Kwato Njock2

1Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, chemin du cyclotron,
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We consider the ionization of atomic hydrogen by a strong infrared field. By starting from the corresponding
time-dependent Schrödinger equation in momentum space, we develop a model in which the kernel of the
nonlocal Coulomb potential is replaced by a finite sum of separable potentials. Each separable potential supports
one bound state of atomic hydrogen. Here, we consider only the 1s, 2s, and 2p states. In this way, the full
three-dimensional Schrödinger equation reduces to a system of a few coupled one-dimensional linear Volterra
integral equations. The objective of this first contribution is to give a detailed account of the model and to validate
it in physical situations where the dynamics are well understood.
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I. INTRODUCTION

The study of the highly nonlinear interaction of one-
electron atoms with intense infrared laser pulses has stimulated
the development of numerous mathematical methods and
numerical algorithms to solve the corresponding time-
dependent Schrödinger equation (TDSE). The numerical
solution of the TDSE by means of spectral and finite difference
grid methods [1–8] has provided fundamental insights into
the basic processes that dominate laser-matter physics in
this regime, namely above-threshold ionization (ATI) and
high-order harmonic generation (HOHG). However, it is very
difficult to draw conclusions regarding the actual mechanisms
that lead to these two processes because it is always after the
laser turnoff that the relevant information is extracted from the
numerical solution of the TDSE [9]. Nevertheless, by means of
a simple model, Keldysh [10] has shown that depending on the
field intensity, we can distinguish two regimes where different
mechanisms take place: the perturbative regime at relatively
low intensity where multiphoton processes are dominant
and the tunneling regime in the strong field limit. More
precisely, Keldysh has introduced the adiabaticity parameter
γ = ω

E

√
2Ip where ω is the laser field frequency, E, the field

amplitude, and Ip, the ionization potential of the atom. For
γ � 1, ATI and harmonic generation occur via multiphoton
transitions while in the strong field limit, for γ � 1, tunnel
ionization takes place. In this latter case, the electron can
escape from the vicinity of the ion core by tunneling through
the barrier formed by the Coulomb attraction of the core
and the time-dependent electric field generated by the laser.
Once the electron is released, it is driven back and forth
by the external field. It can therefore experience multiple
returns to the nucleus. When the electron gets back to the
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nucleus, it can be scattered by the ion core or recombine
in the ground state of the atom leading to HOHG of the
driving field [11–13]. This picture is the basis of a well-known
theoretical model, the so-called “strong field approximation”
(SFA) where it is assumed that the dynamics are governed
by the coupling of the ground state with the continuum and
that the ejected electron is described by a Volkov state that
ignores the presence of the Coulomb potential.

In fact, for γ � 1 and a fortiori for γ ≈ 1, it is impossible
to make a clear-cut separation between the two mechanisms.
Both of them, multiphoton processes and tunnel ionization
play a role. This has been confirmed experimentally and
by numerical simulations. High-resolution fully differential
experimental data on single ionization of rare gases (He, Ne,
and Ar) by short laser pulses have been obtained by Rudenko
et al. [14]. Their data clearly show that deep in the tunneling
regime, the low-energy ATI peaks exhibit a fine structure that
is unambiguously attributed to a resonant multiphoton process.
From the theoretical point of view, de Bohan [15] has shown
that for γ < 1, the first ATI peaks corresponding to an electron
energy smaller than twice the ponderomotive potential do not
result from a tunneling process. This has been demonstrated
by carefully analyzing the behavior of the ionized wave
packet both in the momentum and configuration space. It is
important to note that it is precisely the low-energy part of the
ATI spectrum that provides the dominant contribution to the
ionization yield for a given photon energy. These results raise
the fundamental question of the actual role of the Coulomb
potential in the intensity regime where tunnel ionization is
supposed to take place. In order to address this question, we
have developed a model calculation which goes far beyond
the SFA. It is this mathematical model that we present in this
contribution.

de Bohan [15] has shown that in the present context it is
more “natural” to solve the TDSE in the momentum space.
By using Ehrenfest’s theorem, it is easy to show that in
the velocity gauge, the canonical momentum of continuum
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electrons becomes a constant of motion which, in atomic
units, is equal to the electron drift velocity. As a result,
working in the momentum space, provides direct informations
on the ionization dynamics and in particular on the time at
which the electron is emitted. In our model, we start from
the TDSE associated with the interaction (in the velocity
gauge) of atomic hydrogen with an intense infrared field. The
external electric field is supposed to be linearly polarized.
In the momentum space, the Coulomb potential is nonlocal.
The main idea of the present approach is to substitute the
kernel of the nonlocal Coulomb potential by a sum of N

separable potentials, each of them supporting one bound state
of atomic hydrogen. This approach which is widely used in
nuclear physics for short-range potentials, allows one to reduce
the three-dimensional TDSE to a system of N coupled one-
dimensional linear Volterra integral equations of the second
kind that we solve numerically. The present model presents
several advantages. First, it provides a rigorous solution for the
electron wave packet. Second, and by contrast with the SFA,
more than one bound state may be included in the model, third,
the continuum-continuum dipole matrix elements are treated
exactly, and finally, the theory is fully gauge invariant.

This contribution is organized as follows. In the second
section, we give a general formulation of the problem. In
the next section, we show how to construct the separable
potentials. In the fourth section, we describe our theoretical
treatment of the TDSE in momentum space. We consider
separately the case where the first two s states are included and
the case where the 1s, 2s, and 2p are taken into account. The
calculation of various observables at the end of the interaction
with the pulse, in particular, the ionization yield and the
electron energy spectrum, is given in the fifth section. In
the sixth section, we discuss the numerical implementation of
the method used to solve the linear Volterra integral equations
of the second kind. Finally, before the conclusions, and in order
to validate our model we consider in section seven, various
physical situations in which the dynamics is well known.
Unless stated, we use atomic units throughout this paper.

II. GENERAL FORMULATION

In the momentum space, the TDSE that governs the
dynamics of atomic hydrogen exposed to a laser field, linearly
polarized along the unit vector �e, reads[

i
∂

∂t
− p2

2
− 1

c
A(t)(�e · �p)

]
�( �p,t)

−
∫

d �p′

(2π )3
V ( �p, �p′)�( �p′,t) = 0. (1)

We work in the dipole approximation and use the velocity form
for the laser-atom interaction Hamiltonian. c is the velocity of
light and A(t), the vector potential given by

A(t) = A0f (t) sin(ωt + φ), (2)

where A0 is the vector potential amplitude, φ the carrier phase,
ω the field frequency, and f (t), the pulse envelope defined as
follows:

f (t) =
{

sin2(πt/T ), 0 � t � T ,

0, t > T ,
(3)

with T , the total pulse duration. In terms of the laser peak
intensity I , the amplitude A0 of the vector potential is
given by (c/ω)

√
I/I0 where the atomic unit of intensity

I0 = 3.51 × 1016 W/cm2. It is important to note that if the
total duration of the pulse is expressed as an integer number of
optical periods Tp, there is no static electric field component.
This prevents possible problems related to the gauge invariance
[16]. The second term of the left-hand side of Eq. (1) is the
Coulomb potential which, in the momentum space, is not local.
The kernel V ( �p, �p′) is given by

V ( �p, �p′) = − 4πZ

| �p − �p′|2 , (4)

where Z is the nucleus charge. Our model consists in replacing
this kernel by a sum of separable potentials, each of them
supporting one bound state of atomic hydrogen. The derivation
of these separable potentials is explained in the following
section.

III. CALCULATION OF THE SEPARABLE POTENTIALS

We write the kernel V ( �p, �p′) of the nonlocal Coulomb
potential as a sum of N symmetric separable potentials [17]:

V ( �p, �p′) = −
N∑

n=1

vn( �p)v∗
n( �p′). (5)

We demand that this new kernel supports N atomic hydrogen
bound eigenstates |ϕn〉 of eigenenergy εn. This means that

(
εj − 1

2
p2

)
ϕj ( �p) +

N∑
n=1

ajnvn( �p) = 0, (6)

where

ajn =
∫

d �p′

(2π )3
v∗

n( �p′)ϕj ( �p′). (7)

The coefficients ajn are the elements of an N × N matrix A.
Let us define the vector V consisting of the elements {vn( �p)},
and the vector � consisting of the elements {(εj − 1

2p2)ϕj ( �p)}.
In these notations, Eq. (6) writes

� = −AV, (8)

or, provided that A−1 exists,

V = −A−1�. (9)

We now introduce the symmetric N × N matrix � defined by

� = AAT, (10)

where AT denotes the transpose matrix of A. The elements of
� are given by

γij = −
∫

d �p
(2π )3

ϕ∗
i ( �p)

(
εj − 1

2
p2

)
ϕj ( �p)

=
∫

d�r
r

ϕ̃∗
i (�r)ϕ̃j (�r). (11)

This is a general scheme for the factorization of the Coulomb
potential. The integrals in (11) are well known. They only
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allow transitions ns → ms,np → mp,nd → md, and so on.
In addition, it is clear that the matrix � is block diagonal,
each l-block being associated with the value of the angular
momentum l. This and the angular structure of the hydrogen
eigenfunctions,

ϕnlm( �p) = Rnl(p)Ylm( �p), l � n − 1, (12)

allow one to rewrite the separable potential in the following
way:

V ( �p, �p′) = −V (s)( �p, �p′) − V (p)( �p, �p′) − V (d)( �p, �p′) − · · · ,
(13)

with

V (l)( �p, �p′) =
Nl∑

j=1

v
(l)
j (p)v(l)

j (p′)〈Yl( �p) · Yl( �p′)〉, (14)

where 〈Yl( �p) · Yl( �p′)〉 is the scalar product of spherical
harmonics, and Nl is an integer denoting the number of angular
momentum among the N atomic bound energies considered
in Eq. (5). As a result, Eq. (6) takes the form:

(
εj − 1

2
p2

)
Rjl(p) +

Nl∑
j ′=1

a
(l)
jj ′v

(l)
j ′ (p) = 0, (15)

where

a
(l)
jj ′ =

∫ ∞

0

p2dp

(2π )3
Rjl(p)v(l)

j ′ (p), (16)

and determines the form of the potential functions inside an
l-block.

According to Eq. (9), we have to solve a system of algebraic
equations for each l-block. Its solution, however, is not unique.
In the case of hydrogen atom Z = 1, let us consider for
instance, the (1s + 2s) potential whose components are given
by

v
(s)
1 (p) = α11

(
ε1 − 1

2p2
)
R1s(p) + α12

(
ε2 − 1

2p2
)
R2s(p),

v
(s)
2 (p) = α21

(
ε1 − 1

2p2
)
R1s(p) + α22

(
ε2 − 1

2p2
)
R2s(p),

(17)

with

R1s(p) = 16π

(p2 + 1)2
, ε1 = −1/2,

(18)

R2s(p) = 4
√

2π
(p2 − 1/4)

(p2 + 1/4)3
, ε2 = −1/8.

From Eq. (10), we obtain the following system of nonlinear
equations:

a2
11 + a2

12 = γ11, a2
21 + a2

22 = γ22,
(19)

a11a21 + a22a12 = γ12,

where

γ11 = 1, γ22 = 1

4
, γ12 = 4

√
2

27
. (20)

The general solution takes the form,

α11 = −cos(κ − θ )√
γ11 cos κ

, α12 = sin θ√
γ22 cos κ

,

(21)

α21 = sin(κ − θ )√
γ11 cos κ

, α22 = − cos θ√
γ22 cos κ

,

where θ is an arbitrary angle and κ can take two
possible values: κ1 = arcsin(γ12/

√
γ11γ22) and κ2 = π −

arcsin(γ12/
√

γ11γ22). Hence, we clearly see that there are
two families of solutions characterized by the two pairs
of parameters (κ1,θ ) and (κ2,θ ). Therefore, it is necessary
to determine some rules to select the unique potential. We
can, for instance, force the l-blocks of matrix A−1 to be
triangular. This particular choice fixes the value of θ to zero in
Eq. (21). In that case, α11 = −1/

√
γ11 and α12 = 0. In turn,

α21 = tan κ1/
√

γ 11 and α22 = −1/(
√

γ22 cos κ1). Note that if
instead of κ1 we use κ2, both coefficients α21 and α22 change
their sign. This, however, has no impact because it is only
the products v

(l)
j (p)v(l)

j (p′) that enter the separable potentials.
Instead of imposing a triangular structure to the matrix A−1,
we could equally well force this matrix to be symmetric which
implies that α12 = α21 in Eq. (21). Such a rule, however, does
not lead to a unique solution. This ambiguity is well known
from nuclear physics and has been discussed by Bargmann [18]
and Weinberg [19]. In the present case, we assume matrix A−1

symmetric and write

tanθ = sin κ

(
√

γ11/γ22 + cos κ)
,

with κ = κ2. Note that if we choose the l-blocks of matrix A−1

to be triangular or κ = κ1 in the last expression of tanθ , the
potential components v

(l)
j (p) have not always the same sign.

In that case, the corresponding separable potential (5) may
be positive (repulsive) in contrast to the kernel (4) associated
with the Coulomb potential. On the other hand it is important to
stress that irrespective of the choice of the separable potentials,
the wave function associated with the atomic hydrogen bound
state that these separable potentials support is exact. Therefore
the previous discussion shows that the unphysical effects
we observe in our final results with the wrong choice of
the separable potentials are linked to a very bad description
of the continuum wave functions. When our model atom
contains only the ground state, it is needless to say that
the previous argumentation about the choice of a separable
potential is irrelevant. This particular case has been treated
in [17,20].

IV. SOLUTION OF THE TDSE IN MOMENTUM SPACE

A. (1s + 2s) model potential

According to the previous scheme, the TDSE for the
“(1s + 2s) hydrogenlike atom” writes, in momentum space, as
follows:[

i
∂

∂t
− p2

2
+ (�e · �p)

(
∂

∂t
b(t)

)]
�( �p,t)

+ v
(s)
1 (p)Y00( �p)F1(t) + v

(s)
2 (p)Y00( �p)F2(t) = 0, (22)
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where

Fj (t) =
∫

d �p
(2π )3

v
(s)
j (p)Y ∗

00( �p)�( �p,t); j = 1,2. (23)

The initial condition is �( �p,0) = ϕ1s( �p) and we use for
convenience b(t) = −(1/c)

∫ t

0 A(τ ) dτ . Equation (22) can be
solved formally. Its solution which satisfies the initial condition
reads

�( �p,t) = exp [−itp2/2 + ib(t)(�e · �p)]

[
ϕ1s( �p) + i

∫ t

0
dξ

× [
v

(s)
1 (p)Y00( �p)F1(ξ ) + v

(s)
2 (p)Y00( �p)F2(ξ )

]

× exp [iξp2/2 − ib(ξ )(�e · �p)]

]
. (24)

If we define

Jµν(x,y) = 1

2(2π )3iy

∫ ∞

−∞
p Rµs(p)Rνs(p) exp(−ixp2

+ iyp) dp (µ,ν = 1,2), Jµν(0,0) = δµν,

(25)

we obtain from Eqs. (23) and (24), a system of time-dependent
linear Volterra integral equations which can be written in
matrix form as follows:

F(t) = F0(t) +
∫ t

0
K(t,ξ )F(ξ ) dξ. (26)

The elements of vector F0(t) are given by

F10(t) =
[
α11

(
ε1 − i

2

∂

∂x

)
J11(x,b(t)) + α12

(
ε2 − i

2

∂

∂x

)
J12(x,b(t))

]
x=t/2

,

(27)

F20(t) =
[
α21

(
ε1 − i

2

∂

∂x

)
J11(x,b(t)) + α22

(
ε2 − i

2

∂

∂x

)
J12(x,b(t))

]
x=t/2

.

The elements of the 2 × 2 matrix K are

K11(t,ξ ) = i

[
α2

11

(
ε1 − i

2

∂

∂x

)2

J11(x,y) + 2α11α12

(
ε1 − i

2

∂

∂x

)(
ε2 − i

2

∂

∂x

)
J12(x,y)

+α2
12

(
ε2 − i

2

∂

∂x

)2

J22(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

,

K12(t,ξ ) = K21(t,ξ ) = i

[
α11α21

(
ε1 − i

2

∂

∂x

)2

J11(x,y) + (α11α22 + α21α12)

(
ε1 − i

2

∂

∂x

)(
ε2 − i

2

∂

∂x

)
J12(x,y)

(28)

+α12α22

(
ε2 − i

2

∂

∂x

)2

J22(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

,

K22(t,ξ ) = i

[
α2

21

(
ε1 − i

2

∂

∂x

)2

J11(x,y) + 2α21α22

(
ε1 − i

2

∂

∂x

)(
ε2 − i

2

∂

∂x

)
J12(x,y)

+α2
22

(
ε2 − i

2

∂

∂x

)2

J22(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

.

From Eqs. (25)–(28), we easily obtain an expression of the amplitude of probability for the system to be in one of the two
bound states (1s or 2s) as a function of time:

C1s(t) = 〈ϕ1s |�(t)〉 = J11[t/2,b(t)] + i

∫ t

0
dξ F1(ξ )

[
α11

(
ε1 − i

2

∂

∂x

)
J11(x,y) + α12

(
ε2 − i

2

∂

∂x

)
J12(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

+ i

∫ t

0
dξ F2(ξ )

[
α21

(
ε1 − i

2

∂

∂x

)
J11(x,y) + α22

(
ε2 − i

2

∂

∂x

)
J12(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

,

C2s(t) = 〈ϕ2s |�(t)〉 = J12[t/2,b(t)] + i

∫ t

0
dξF1(ξ )

[
α11

(
ε1 − i

2

∂

∂x

)
J12(x,y) + α12

(
ε2 − i

2

∂

∂x

)
J22(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

+ i

∫ t

0
dξ F2(ξ )

[
α21

(
ε1 − i

2

∂

∂x

)
J12(x,y) + α22

(
ε2 − i

2

∂

∂x

)
J22(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

. (29)
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B. (1s + 2s + 2 p) model potential

Let us now introduce the 2p component of the separable
potential in the TDSE. In momentum space, the wave function
of the 2p state is given by

ϕ2pm( �p) = R2p(p) Y1m( �p) = 8π√
6

p

(p2 + 1/4)3
Y1m( �p). (30)

By using the same rule as before, we obtain for the 2p com-
ponent of the separable potential, the following expression:

v
(p)
1 (p) =

√
8πp

(p2 + 1/4)2
. (31)

In this condition, the TDSE becomes[
i
∂

∂t
− p2

2
+ (�e · �p)

(
∂

∂t
b(t)

)]
�( �p,t) + v

(s)
1 (p)Y00( �p)F1(t)

+ v
(s)
2 (p)Y00( �p)F2(t) + v

(p)
1 (p)

1∑
m=−1

Y1m( �p)F3m(t) = 0,

(32)

where

F3m(t) =
∫

d �p
(2π )3

v
(p)
1 (p)Y ∗

1m( �p)�( �p,t). (33)

Given the symmetry of the problem, we can write F3m(t) =
F3(t)Y ∗

1m(�e). This means that

F3(t) =
∫

d �p
(2π )3p

v
(p)
1 (p)(�e · �p)�( �p,t), (34)

and
1∑

m=−1

Y1m( �p)F3m(t) = 3

4π

(�e · �p)

p
F3(t). (35)

Consequently, the solution of Eq. (32) takes the following
form:

�( �p,t) = exp [−itp2/2 + ib(t)(�e · �p)]

×
[
ϕ1s( �p) + i

∫ t

0
dξ

(
v

(s)
1 (p)Y00( �p)F1(ξ )

+ v
(s)
2 (p)Y00( �p)F2(ξ ) + 3

4π
v

(p)
1 (p)

(�e · �p)

p
F3(ξ )

)

× exp [iξp2/2 − ib(ξ )(�e · �p)]

]
. (36)

As in the previous case, the functions Fj with j = 1,2,3 are
the solution of a system of three coupled time-dependent linear
Volterra integral equations which can be written in matrix form
as follows:

F(t) = F0(t) +
∫ t

0
K(t,ξ )F(ξ ) dξ. (37)

The new 3 × 3 matrix K includes three new elements:

Kj3(t,ξ ) = K3j (t,ξ ) = i

∫
d �p

(2π )3p
v

(s)
j (p)Y ∗

00( �p)v(p)
1 (p)

× (�e · �p) exp{−i(t − ξ )p2/2

+ i[b(t) − b(ξ )](�e · �p)}, j = 1,2, (38)

K33(t,ξ ) = i
3

4π

∫
d �p

(2π )3p2

[
v

(p)
1 (p)

]2
(�e · �p)2

× exp{−i(t − ξ )p2/2 + i[b(t) − b(ξ )](�e · �p)}.
The third element of F0(t) is given by

F30(t) =
∫

d �p
(2π )3p

ϕ1s( �p)v(p)
1 (p)(�e · �p)

× exp [−itp2/2 + ib(t)(�e · �p)]. (39)

As before, we introduce three new functions similar to those
defined by Eq. (25):

Jk3(x,y) =
√

3

2(2π )3iy

∫ ∞

−∞
Rks(p)R2p(p)

× exp (−ixp2 + iyp) dp, k = 1,2, (40)

J33(x,y) = 6

(2π )3iy

∫ ∞

−∞
R2

2p(p) exp (−ixp2 + iyp)
dp

p
.

In terms of these functions, the three new elements of matrix
K write:

K13(t,ξ ) = − ∂

∂y

(
ε2 − i

2

∂

∂x

)[
α11

(
ε1 − i

2

∂

∂x

)
J13(x,y)

+α12

(
ε2 − i

2

∂

∂x

)
J23(x,y)

]
,

K23(t,ξ ) = − ∂

∂y

(
ε2 − i

2

∂

∂x

)[
α21

(
ε1 − i

2

∂

∂x

)
J13(x,y)

+α22

(
ε2 − i

2

∂

∂x

)
J23(x,y)

]
,

K33(t,ξ ) = −i
3

4π

∂2

∂y2

(
ε2 − i

2

∂

∂x

)2

J33(x,y), (41)

where x = (t − ξ )/2, y = b(t) − b(ξ ) after performing all
differentiations. Similarly, we have

F30(t) = i

[
∂

∂y

(
ε2 − i

2

∂

∂x

)
J13(x,y)

]
x=t/2, y=b(t)

. (42)

Let us now calculate the population of the 2p state. The
corresponding amplitude reads

C2p,m(t) = 〈ϕ2pm|�(t)〉. (43)

As before, the symmetry of the problem allows us to write
C2p,m(t) = C2p(t)Y1m(�e) with

C2p(t) =
∫

d �p
(2π )3

(�e · �p)

p
R2p(p)�( �p,t)

= −i

√
π

3

[
∂

∂y
J13(t/2,y)

]
y=b(t)

+
√

π

3

∫ t

0
dξ F1(ξ )

×
[
α11

(
ε1 − i

2

∂

∂x

)
∂

∂y
J13(x,y)

+α12

(
ε2 − i

2

∂

∂x

)
∂

∂y
J23(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

+
√

π

3

∫ t

0
dξ F2(ξ )

[
α21

(
ε1 − i

2

∂

∂x

)
∂

∂y
J13(x,y)
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+α22

(
ε2 − i

2

∂

∂x

)
∂

∂y
J23(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

+ i

√
3

16π

∫ t

0
dξ F3(ξ )

×
[(

ε2 − i

2

∂

∂x

)
∂2

∂y2
J33(x,y)

]
x=(t−ξ )/2, y=b(t)−b(ξ )

.

(44)

Furthermore, we have

1∑
m=−1

|C2p,m(t)|2 = 3

4π
|C2p(t)|2. (45)

It is clear that the amplitudes C1s and C2s must be calculated
with the new wave packet (36). This leads to adding new
terms in (29), which include the integrals in F3(ξ ) and
the corresponding derivatives of the functions Jj3, j = 1,2.
Incidentally, our separable (nonlocal) potential can possibly
have more bound states than the selected amount. In this case,
it is necessary to determine all bound states beforehand. This
is done by setting in Eq. (32), b(t) = 0 and |�(t)〉 = e−iεs t |ϕs〉
(εs < 0), and by solving the system of algebraic equations for
the values fj = eiεs tFj (t).

In the momentum space, it is rather subtle to formulate
the gauge invariance of Eq. (22) or (32). Instead, it is more
convenient to go back momentarily to the configuration space.
As it is in momentum space, each component of the atomic
potential is nonlocal and separable. It therefore involves a
product of functions ṽ(�r)ṽ∗(�r ′). Within the dipole approxima-
tion, the unitary transformation that allows one to move from
the velocity to the length gauge must be applied to both the
functions ṽ(�r) and ṽ∗(�r ′) to guarantee the gauge invariance.

C. Methodological aspects

We show in the appendix that all basic functions Jµν

are expressed in terms of an analytical function denoted by
I (x,y,γ ) and its derivatives. In this section, we define and
analyze the properties of the successive derivatives of this
function. We first introduce the following expressions:

R± ≡ R(x, ± y; γ ) = exp (±y
√

γ ) erfc

(
exp (iπ/4)

√
xγ

± exp (−iπ/4)
y

2
√

x

)
, (46)

where

erfc(z) = 1 − 2√
π

∫ z

0
exp (−ξ 2) dξ, (47)

is the complementary error function [21]. We now define the
function I (x,y; γ ) as follows:

I (x,y; γ ) = iπ

2
exp (ixγ )[R− − R+]. (48)

The basic integrals entering the calculation of the kernels
may be expressed in terms of the derivatives of this function

I (x,y,γ ) with respect to γ :
∫ ∞

−∞

p dp

(p2 + γ )n+1
exp (−ixp2 + iyp)

= (−1)n
1

n!

∂n

∂γ n
I (x,y; γ ), (49)

∫ ∞

−∞

p dp

(p2 + γ )n+1(p2 + β)m+1
exp (−ixp2 + iyp)

= (−1)n+m

n!m!

∂n+m

∂γ n∂βm

1

(β − γ )
[I (x,y; γ ) − I (x,y; β)].

(50)

Taking into account the following equation,

∂R±
∂γ

= ± y

2
√

γ
R± −

√
x

πγ
exp [i(π/4 − xγ + y2/4x)],

(51)

it is straightforward to show that

∂I

∂γ
= ixI − iπy

4
√

γ
exp (ixγ ) [R− + R+], (52)

∂2I

∂γ 2
=

(
2ix − 1

2γ

)
∂I

∂γ
+

(
x2 + ix

2γ
+ y2

4γ

)
I

+ y
√

πx

2γ
exp [i(3π/4 + y2/2x)], (53)

and to generalize these results to the (n + 1)th derivative of I .
We obtain

∂n+1I

∂γ n+1
= an

∂I

∂γ
+ bn I + cn, (54)

with

an+1 = ana1 + ∂an

∂γ
+ bn, bn+1 = anb1 + ∂bn

∂γ
,

(55)

cn+1 = anc1 + ∂cn

∂γ
, n = 1,2, . . . ,

and

a1 =
(

2ix − 1

2γ

)
, b1 =

(
x2 + ix

2γ
+ y2

4γ

)
,

(56)

c1 = y
√

πx

2γ
exp [i(3π/4 + y2/2x)].

It is interesting to mention the following inequality:∣∣∣∣ ∂n

∂γ n
I (x,y; γ )

∣∣∣∣ � 2n!
∫ ∞

0

p dp

(p2 + γ )n+1

= (n − 1)!

γ n
, n � 1, (57)

which is valid for any values of the variables x and y.
Equation (57) shows that already the first derivative of I with
respect to the parameter γ is bounded and has no singularities.
In the appendix, we give the expression of Jµν in terms of
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the derivatives of I (x,y; γ ) with respect to the parameter γ .
Clearly, these expressions are free of singularities and have a
behavior that does not raise any numerical difficulty. In fact,
from the numerical point of view, the most problematic is the
behavior of the ratio I/y and its derivatives with respect to y.
From Eq. (48), we obtain the following limit:

lim
y→0

I (x,y; γ )

2iy
= 1

2
exp (−iπ/4)

√
π

x
− π

√
γ

2

× exp (ixγ ) erfc[exp (iπ/4)
√

γ x]. (58)

This expression is singular for x → 0, but this singular term
does not depend on γ and disappears after differentiating with
respect to this parameter. So, if we have to differentiate the
ratio I/y with respect to γ , the first singular term can be
simply omitted when x → 0.

Let us now investigate how to perform the derivatives with
respect to y in Eqs. (41)–(44). It is useful in that case to
introduce the following integral [22]:

B(x,y; γ ) =
∫ ∞

0

dp

(p2 + γ )
exp (−ixp2) cos yp

= π

4
√

γ
exp (ixγ )[R− + R+]. (59)

From Eqs. (49) and (52), we can write

I (x,y; γ ) = −2i
∂B

∂y
,

∂I

∂γ
= ixI − iyB.

Given the indefinite integral [22],∫
dx exp

(
− a2x2 − b2

x2

)
=

√
π

4a

[
exp (2ab) erf

(
ax + b

x

)

+ exp (−2ab) erf

(
ax − b

x

)]
+ const, (60)

we can rewrite the function B(x,y; γ ) in the following form:

B(x,y; γ )

=
√

π

2
exp (ixγ + iπ/4)

∫ ∞

x

dξ√
ξ

exp (−iξγ + iy2/4ξ ).

(61)

A simple change of variable in (60) namely ξ = x(η + 1) gives
another useful representation:

B(x,ζ ; γ ) =
√

πx

2
exp (iπ/4)

∫ ∞

0

dη√
η + 1

× exp

(
− ixγ η + i

η + 1
ζ 2

)
, ζ 2 = y2/4x.

(62)

The variable ζ in (62) is always finite because in all cases,
it reduces to b(t)/2

√
t or |b(t) − b(ξ )|/2

√
t − ξ . The integral

is of the order of x−1/2 when x → 0, but this behavior is
compensated by

√
x before the integral so that B(0,ζ ; γ ) exists

and is finite. We are now ready to calculate:

∂s

∂γ s

∂2

∂y2

(
I

y

)
=

√
π

2
exp [i(π/4 − πs/2)]xs−3/2

×
[

i

2
gs,2(x,ζ ) − ζ 2gs,3(x,ζ )

]
, (63)

where by definition,

gs,µ(x,ζ ) =
∫ ∞

0

ηsdη

(η + 1)µ+1/2
exp

(
−ixγ η + i

η + 1
ζ 2

)

= s!
∞∑

n=0

(iζ 2)n

n!
�(s + 1,s − n − µ + 3/2; ixγ ).

(64)

In Eq. (64), s,µ are integers, and � is the confluent hypergeo-
metric function with �(a,b; z) ∼ z−a for z → ∞. Therefore,
we have for large x,

gs,µ(x,ζ ) ≈ s!

(ixγ )s+1
exp (iζ 2). (65)

Taking into account the prefactor in (62), we obtain
xs−3/2gs,µ ∼ x−5/2, and this asymptotic behavior does not
depend either on s, or on µ. The limiting case x → 0 is more
delicate. Its investigation can be treated with the equation [21],

�(a,b; z) = �(1 − b)

�(1 + a − b)
�(a,b; z)

+ z1−b �(b − 1)

�(a)
�(a − b + 1,2 − b; z), (66)

which is always valid in our case (0 � s � 3, µ = 2,3).
Applying (66) to (64) and denoting z by z = ixγ , we obtain

xs−3/2�(s + 1,s − n − µ + 3/2; z)

= xs−3/2 �(n+ µ− s − 1/2)

�(n+ µ+ 1/2)
�(s + 1,s − n|,− µ+ 3/2; z)

+ xn+µ−2(iγ )n+µ−s−1/2 �(s − n − µ + 1/2)

�(s + 1)
×�(n + µ + 1/2,n + µ − s + 1/2; z). (67)

This expression is singular for x → 0 when s = 0,1. For s = 0,

x−3/2�(1, − n − µ + 3/2; z)

≈ x−3/2

n+ µ− 1/2
− iγ x−1/2

(n+ µ− 1/2)(n+ µ− 3/2)
+ O(1),

(68)

and for s = 1,

x−1/2�(2, − n − µ + 5/2; z)

≈ x−1/2

(n + µ − 1/2)(n + µ − 3/2)
+ O(1). (69)

In this case, the expression,

I = ∂s

∂γ s

∂2

∂y2

(
I (x,y; γ ) − I (x,y; β)

(γ − β)y

)
,

=
s∑

p=0

(−1)s−p s!

p!(γ − β)s−p+1

∂p

∂γ p

∂2

∂y2

×
(

I (x,y; γ ) − I (x,y; β)

y

)
, (70)
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is not anymore singular at x → 0. Furthermore, we can show
that for s � 1,

∂s

∂γ s

∂2

∂y2

(
I

y

)
= is

s∑
p=0

(−1)ps!

p!(s − p)!
xs−p

×
{

i

2
[θ (2 − p)A2−p + θ (p − 2)Gp−2] ,

− y2

4
[θ (3 − p)A3−p + θ (p − 3)Gp−3]

}
, (71)

is regular for s � 2. In this equation, θ (t) is the well-
known Heaviside function, Gm = (x + i ∂

∂γ
)mB(x,y; γ ) and

Am = (−2i
y

∂
∂y

)mB(x,y; γ ). Note that the compensation of the

singularity x−1/2 is reached if we take into account the second
term in Eq. (68) for p = 0 and for p = 1 in Eq. (69). As a result,
the second derivative with respect to y takes the following form
for x → 0:

∂2

∂y2

(
I

y

)
x→0

� x−3/2f1(ζ 2) + x−1/2γf2(ζ 2) + O(1), (72)

where both functions f1(ζ 2) and f2(ζ 2) are obtained from the
asymptotic behavior Eqs. (67), (68), and (71). Similarly, we
have

∂

∂y

(
I

y

)
x→0

� x−1f0(ζ 2) + O(1),

where f0(ζ 2) is a well-defined function. Note that the singular-
ity vanishes already after the first differentiation with respect
to γ .

V. CALCULATION OF THE OBSERVABLES

In addition to the population of the various bound states
calculated in the previous section, we show here how to
calculate the energy spectrum of the ejected electron. We
first note that, by contrast to the pure Coulomb potential,
our separable potential has a short range. This means that
we can use the Lippmann-Schwinger equation to build the
continuum state |ϕ±

k 〉 of wave vector �k. The normalization
which is adopted here is such that the scalar product of two
plane waves writes as follows:

〈 �p′| �p〉 = (2π )3δ( �p′ − �p). (73)

Upon this condition, the wave function in momentum space of
the continuum state |ϕ±

k 〉 writes

〈 �p|ϕ±
k 〉 = ϕ±

k ( �p) = (2π )3δ( �p − �k) + χ±
k ( �p), (74)

where

χ±
k ( �p) = 2

(k ± iε)2 − p2

∫
d �p′

(2π )3
V ( �p, �p′)ϕ±

k ( �p′). (75)

V ( �p, �p′) is given by Eq. (5). The upper scripts + and − refer to
an outgoing and an ingoing wave behavior, respectively. The
ionization amplitude writes

C(�k,t) = 〈ϕ−
k |�(t)〉. (76)

The differential probability for an electron having the energy
E is determined in terms of the spectral density D(E,t):

dP = D(E,t) dE, (77)

where

D(E,t) =
√

2E

(2π )3

∫
|C(�k,t)|2d�k, (78)

with �k denoting the solid angle under which the electron is
emitted. Obviously, the total ionization yield is equal to

P (t) =
∫ ∞

0
D(E,t) dE = 1 − |C1s(t)|2 − |C2s(t)|2

−
1∑

m=−1

|C2p,m(t)|2. (79)

VI. NUMERICAL IMPLEMENTATION

In this section, we briefly describe the technique im-
plemented to solve numerically the linear Volterra integral
equation:

f (t) = g(t) +
∫ t

0
dyK(t,y)f (y), 0 � t � T . (80)

This method which combines a block-by-block integration
technique and the Simpson interpolation formula, was devel-
oped several years ago by Linz [23]. However, its implemen-
tation in the present case, requires one to rewrite the kernel
K(t,y) as follows:

K(t,y) = CK + √
t − yK (c)(t,y), (81)

where K (c)(t,y) is a smooth and continuous function and CK

a constant. As a result, Eq. (80) becomes

f (t) = g(t) + CK

∫ t

0
dyf (y) +

∫ t

0
dy

√
t − yK (c)(t,y)f (y).

(82)

In order to implement the Linz method, we proceed as follows.
We first subdivide the time interval [0,t] into equal subintervals
[tj ,tj+2] of length 2h with j = 0, . . . ,N − 2, N being an even
number. Each subinterval [tj ,tj+2] is further subdivided into
equal subintervals [tj0,tj2] with tj l = tj + lh, l = 0,1,2. In
each subinterval [tj ,tj+2], we use a three-point (tj0,tj1 and tj2)
Lagrange interpolation to approximate the well-behaved part
of the integrand, namely K (c)(t,y)f (y). We then perform the
change of variable y = tj + uh and integrate analytically over
u in each subinterval [tj ,tj+2]. After some manipulations, we
obtain ∫ ti

0
dy

√
ti − yK (c)(ti ,y)f (y)

≈ h3/2
i−2∑
j=0

[α(ti − tj )K (c)(ti ,tj )f (tj )

+β(ti − tj )K (c)(ti ,tj+1)f (tj+1)

+ γ (ti − tj )K (c)(ti ,tj+2)f (tj+2)], (83)

013401-8



IONIZATION OF ATOMS BY STRONG INFRARED . . . PHYSICAL REVIEW A 83, 013401 (2011)

where the functions α, β, and γ take the following form:

α(k) = 1

2

∫ 2

0
(1 − u)(2 − u)

√
k − u du, (84)

β(k) =
∫ 2

0
u(2 − u)

√
k − u du, (85)

γ (k) = 1

2

∫ 2

0
u(u − 1)

√
k − u du. (86)

The remaining integral in Eq. (82) can be calculated by
means of the well-known Simpson’s rule. In order to sim-
plify the notations, we write gi ≡ g(ti), Fi ≡ f (ti), and
K (c)(ti ,tj ) ≡ K

(c)
i,j . After some manipulations, we obtain the

following system of equations to solve for the unknowns F2m+1

and F2m+2:

F2m+1 = g2m+1 + hCK

2m∑
i=0

�iFi

+ 1

6
hCK [F2m + 4F2m+1/2 + F2m+1]

+h3/2
m−1∑
l=0

[
α(2m + 1 − 2l)K (c)

2m+1,2lF2l

+β(2m + 1 − 2l)K (c)
2m+1,2l+1F2l+1

+ γ (2m + 1 − 2l)K (c)
2m+1,2l+2F2l+2

]

+
(

1

2
h

)3/2[
α(2)K (c)

2m+1,2mF2m + β(2)K (c)
2m+1,2m+1/2

×F2m+1/2 + γ (2)K (c)
2m+1,2m+1F2m+1

]
, (87)

F2m+2 = g2m+2 + hCK

2m∑
i=0

�iFi

+ 1

3
hCK [F2m + 4F2m+1 + F2m+2]

+h3/2
m−1∑
l=0

[
α(2m + 2 − 2l)K (c)

2m+2,2lF2l

+β(2m + 2 − 2l)K (c)
2m+2,2l+1F2l+1

+ γ (2m + 2 − 2l)K (c)
2m+2,2l+2F2l+2

]
+h3/2

[
α(2)K (c)

2m+2,2mF2m + β(2)K (c)
2m+2,2m+1F2m+1

+ γ (2)K (c)
2m+2,2m+2F2m+2

]
, (88)

where �i = 1
3 {1,4,2, . . . ,2,4,1} and t2m+1/2 = t2m + 1

2h. To
deal with the unknown value F2m+1/2 we approximate it by
quadratic interpolation, using values F2m,F2m+1,F2m+2, that
is, we write

F2m+1/2 � 3
8F2m + 3

4F2m+1 − 1
8F2m+2.

Starting with F0 = g0, we solve Eqs. (87) and (88) successively
for blocks of values (F1,F2),(F3,F4), . . . , using standard BLAS

and LAPACK library programs.

VII. VALIDATION OF THE MODEL

In order to validate our model and check the pertinence
of the present choice of the separable potentials, we consider
in this section several physical situations where the electron
dynamics in strong oscillating fields are well known. In
all our calculations, we take into account the three bound
states 1s, 2s, and 2p and assume that the model atom is
initially in its ground state. We first calculate by means of
Eq. (79), the probability of ionization of our model atom as
a function of the peak field intensity. We consider the case
of an eight-optical-cycle pulse of 0.6 a.u. photon energy. The
results are presented in Fig. 1. At low peak field intensity,
only one photon is necessary to ionize the atom. According
to the lowest order of the perturbation theory, the ionization
probability should be proportional to the peak intensity giving
a straight line on a log-log plot. At low peak intensity, our
results for the probability of ionization coincides with the
straight dashed line of slope exactly one. For higher peak
intensities, above 3 × 1014 W/cm2, multiphoton transitions
occur before reaching an intensity regime where saturation
takes place and nonperturbative effects are important. As a
matter of fact, nonperturbative effects become important when
the ponderomotive potential Up exceeds the photon energy ω.
In Fig. 1, the green vertical dashed line indicates the value of
the peak intensity, namely 3 × 1016W/cm2 that corresponds
to Up = ω. In Fig. 2, we show the spectrum resulting from the
interaction of our model atom with an eight-optical-cycle pulse
of 1015W/cm2 for the peak intensity and 1 a.u. for the photon
energy. The spectrum exhibits several ATI peaks separated by
the photon energy as expected. Among the ATI peaks, the first
one is by far the dominant one. It is due to the absorption of
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FIG. 1. (Color online) Probability of ionization of our model
atom initially in the 1s state, as a function of the peak field intensity
(solid line). The total duration of the pulse is eight-optical cycle and
the photon energy is 0.6 a.u. The blue dashed straight line has a
slope exactly equal to 1. The vertical brown dashed line delimits the
intensity region where one-photon processes dominate. The vertical
green dashed line corresponds to an intensity of 3 × 1016W/cm2 for
which Up = ω in a.u. For larger peak intensities, the interaction of
the atom with the field is predominantly nonperturbative.
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FIG. 2. Electron energy spectrum resulting from the interaction
of our model atom, initially in the 1s state, with an eight-optical cycle
sine square pulse. The peak intensity is equal to 1015W/cm2 and the
photon energy, to 1 a.u.

a single photon. The satellite peaks on both sides of the first
ATI peak result from the fact that the density of probability is
proportional to the square of the Fourier transform of the sine
square pulse [see Eq. (3)].

The third situation we are dealing with is the interaction of
our model atom with a long and intense pulse of 0.375 a.u.

photon energy. Since this photon energy corresponds to the
1s-2p transition frequency, the coupling of the external field to
the atom is resonant. Rabi oscillations and the Autler-Townes
effect are expected to manifest in the time evolution of the
atomic state populations and in the ATI spectrum, respectively.
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FIG. 3. Rabi oscillations of the 1s (black line) and 2p (gray line)
state populations as a function of time. Our model atom which is
assumed initially in the 1s state, interacts with a laser pulse whose
frequency is equal to the 1s-2p transition frequency. The pulse is
turned on and off linearly over two optical cycles and has a flat top of
36 optical cycles. The pulse shape (dashed line) is shown in arbitrary
units. The peak intensity is equal to 4 × 1014W/cm2.

In this case where only two states play a significant role,
it makes sense to compare the results of our model, both
qualitatively and quantitatively to those obtained by solving
the TDSE with no approximation on the Coulomb potential.
In the following, we assume that the laser pulse is turned
on and off linearly over two optical cycles and has a flat
top of 36 optical cycles. The peak intensity is equal to
4 × 1014W/cm2. In Fig. 3, we show the time evolution of
the population of the “bare” atomic states 1s and 2p. As
expected, these populations exhibit Rabi oscillations. Since
these oscillations occur during the time the field intensity is
constant and equal to the peak intensity, we can estimate the
corresponding Rabi frequency. We obtain �Rabi = 0.08 a.u.

Exactly at resonance, the expression of the Rabi frequency is
given by

�Rabi = E〈1s|z|2p〉, (89)

where E is the field amplitude. In the present case, we
find �Rabi = 0.0795 a.u. in very good agreement with the
estimated value. The Rabi oscillations shown in Fig. 3 are
damped. This is due to the coupling of both the 2s and
the 2p state to the continuum which is fully taken into
account in our model. This coupling to the continuum leads
to the well-known Autler-Townes effect in the electron energy
spectrum [24–26]. This effect is shown in Fig. 4 for the same
laser parameters. We clearly observe a splitting of each ATI
peak. We have checked that the energy separation between
the subpeaks of each Autler-Townes doublet is exactly equal
to the Rabi frequency. Let us now analyze the behavior of
each Autler-Townes doublet in more detail for increasing peak
intensities. In Fig. 5, we show the first ATI peaks for the
same laser parameters as before but for various peak field
intensities. As the peak intensity increases, the subpeaks of
the Autler-Townes doublets move apart. This of course is
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FIG. 4. Electron energy spectrum resulting from the interaction
of our model atom, initially in the 1s state, with a pulse whose
peak electric field is equal to E0 = 0.107 a.u. and the frequency
equal to ω = 0.375 a.u. The pulse has a trapezoidal shape with a
two-optical cycle linear turn on and off and a 36-optical cycle flat
top.
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FIG. 5. (Color online) Electron energy spectra resulting from the
interaction of our model atom, initially in the 1s state, with laser pulses
of 0.375 a.u. photon energy. All pulses have the same trapezoidal
shape as in Fig. 3 but various peak field intensities (given in the lower
left part of the graph) are considered.

expected since the Rabi frequency increases with the peak
intensity. Another interesting feature that we observe in the
energy spectra is the fact that while the intensity is increasing,
the left subpeak of each Autler-Townes doublet gets broader
in contrast to the right subpeak whose width hardly changes.
This effect of power broadening is clearly shown in Fig. 6
where the first Autler-Townes doublet is presented on a linear
scale for two different peak intensities.

Within a quantized field picture in which we assume for
the time being that the atom-field interaction is switched off,
the dressed state energy spectrum is made of a ladder of pairs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

45

Electron energy (a.u.)

E
le

ct
ro

n
 e

n
er

g
y 

sp
ec

tr
u

m
 (

a.
u

.)

I=1015 W cm−2

I=4×1014 W cm−2

ω=0.375 a.u.

40 optical cycle

FIG. 6. Electron energy spectrum resulting from the interaction
of our model atom, initially in the 1s state with the same laser pulse
as in Fig. 5, for two peak intensities: 1015 W/cm2 (dashed line) and
4 × 1015 W/cm2 (solid line). The figure shows the first ATI peak of
the electron energy spectrum on a linear scale.

of states |1s,(n + 1)ω〉 and |2p,nω〉 of the atom-field system.
n gives the number of photons involved at each step of the
ladder. If the field frequency is exactly on resonance with
the atomic transition frequency, these unperturbed dressed
states are degenerate in energy. If we now switch on the
atom-field interaction, the degeneracy is lifted up leading
to pairs of dressed states separated in energy by the Rabi
frequency. These dressed states are in fact linear superpositions
of the unperturbed |1s,(n + 1)ω〉 and |2p,nω〉 states. It is the
coupling of these dressed states to the atomic continuum that
leads to the Autler-Townes effect (i.e., to the splitting of each
ATI peak into a doublet). The width of the subpeaks of each
doublet depends on the coupling strength of the dressed states
to the continuum or in other words, on the ionization rate of
each of the dressed states. The results presented in Figs. 5 and
6 suggest that for each pair of dressed state energy levels, the
rate of ionization of the lower state is higher than the one of
the upper state.

In order to check that this result is not an artefact of
the present model, we have performed Floquet calculations
in the case of atomic hydrogen. These calculations have
been obtained by means of a representation in a basis of
Sturmian functions of the Floquet operator associated with the
Hamiltonian of atomic hydrogen interacting with a periodic
field of fixed frequency ω and intensity I in the velocity gauge
[27,28]. By complex rotating the Hamiltonian, it is possible
to identify the resonances of the system with the complex
eigenvalues E of the rotated Floquet operator: the energy is
given by Re(E) while the decay rate is −2Im(E) [27–29]. The
results are presented in Fig. 7 for the same intensity as before,
namely 4 × 1014 W/cm2. This figure is made of three panels.
In the top panel, we show the energy of the relevant Floquet
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FIG. 7. (Color online) Real parts of the complex Floquet energies
as a function of the frequency ω for a laser peak intensity of 4 ×
1014W/cm2 (top panel), the corresponding ionization rates (middle
panel), and the overlaps between these Floquet states and the “bare”
atomic states |1s〉 and |2p〉 (bottom panel). The red solid circles
correspond to a Floquet state that has the largest overlap with the
|1s〉 state while the blue open circles correspond to the second largest
overlap with the |1s〉 state and the first largest overlap with the |2p〉
state.
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states. The middle panel shows the corresponding decay rates
and the bottom panel shows the overlaps of these Floquet
states with the bare atomic states. In the three panels, the
Floquet states associated with the red solid circles exhibit
the largest overlap and can be identified with the |1s〉 state.
The blue open circles correspond to the second largest overlap
with the |1s〉 state and to the first largest overlap with the |2p〉
state. Note that above ω = 0.415 a.u., there is a third state
whose overlap with the |1s〉 state becomes relevant (larger than
0.1). This Floquet state indicates that in the pure Coulomb
states, the influence of atomic states that are not resonantly
coupled to the ground state becomes important. In the top
panel of Fig. 7, we observe an avoided crossing of the Floquet
energies at a frequency slightly higher than the transition
frequency at 0.375 a.u. This explains why for ω = 0.375 a.u.,
the contribution of the bare |1s〉 and |2p〉 atomic states to the
dressed or Floquet states is not symmetric (see the bottom
panel of Fig. 7) as it should be exactly at resonance. The
energies of the dressed states with larger overlap with the |1s〉
and |2p〉 states at ω = 0.375 a.u. are E1s = −0.5472 a.u. and
E2p = −0.4716 a.u. Due to the periodicity of the Floquet
spectrum the Floquet states associated with the energies
E and E + kω, k some integer number, correspond to the
same physical state. The positions of the left and right
subpeaks in Fig. 6 are quite close to E1s + 2ω = 0.2028 and
E2p + 2ω = 0.2784, respectively. This indicates that the |1s〉
(|2p〉) state is more dominant in the left (right) subpeak.
Finally, at ω = 0.375 a.u., we see in the middle panel that the
ionization rates of both Floquet states differ by one order of
magnitude. Consequently, it is expected that the left subpeak
of the Autler-Townes doublet is broader than the right one.
These results confirm those of Girju et al. [26] and show
that in the present physical situation, the predictions of our
model are qualitatively correct. In Fig. 8, we compare the
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FIG. 8. Electron energy spectrum resulting from the interaction
of our model atom initially in the |1s〉 with a laser pulse of 0.375 a.u.
photon frequency and of 4 × 1014W/cm2 peak intensity. The laser
pulse shape is trapezoidal with a two-cycle linear turn on and off
and with a flat top of 36 optical cycles. The gray line is the result
obtained by solving numerically the time-dependent Schrödinger
equation while the black line is the result obtained with our
model.

first ATI peaks obtained with our model, to those calculated
by solving numerically the TDSE for atomic hydrogen [30].
The agreement is quantitatively relatively good as expected
since mainly two states, |1s〉 and |2p〉, are dominating the
dynamics.

VIII. CONCLUSIONS

In this contribution, we considered the ionization of
atomic hydrogen by an intense infrared pulse. We solved the
corresponding TDSE in momentum space when the kernel
of the nonlocal Coulomb potential is replaced by a finite
sum of separable potentials, each of them supporting one
bound state of atomic hydrogen. Such an approach bears
some resemblance to a spectral method. However, instead of
the usual expansion of the solution of the TDSE in terms of a
finite set of L2−integrable functions, it is the potential kernel
which is now expanded in terms of separable potentials. The
choice of these separable potentials, however, is not unique
and requires attention to avoid any unphysical effects. This
approach has significant advantages when it is compared to
the well-established SFA. By contrast to the SFA, it provides
a rigorous solution for the electron wave packet, it includes
more than one bound states, it takes fully into account the
continuum-continuum transitions, and, more important, it is
fully gauge invariant. In addition, we have shown that this
model allows one to reduce the three-dimensional Schrödinger
equation to a small system of coupled one-dimensional linear
Volterra integral equations, the numerical solution of which
is relatively easy to obtain. In order to validate the model,
we have checked that in the perturbative regime, when the
ponderomotive potential is smaller than the laser frequency,
the corresponding behaviors of the ionization yield and the ATI
spectrum are well reproduced. Furthermore, we have shown
that the resonant coupling of the 1s to the 2p states leads
to Rabi oscillations of the corresponding populations at the
correct frequency as well as to a Rabi splitting of the ATI
peaks.

The main objective of the present contribution is to provide
a theoretical tool to understand the actual role of the atomic
potential in the intensity regime where tunnel ionization is
supposed to take place and where the experimental data for
the first ATI peaks are in contradiction with the theoretical
predictions based on the SFA model. This problem will be the
subject of a forthcoming publication.
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APPENDIX

All basic functions Jµν defined in (25) and (40) can
be expressed by means of the function I (x,y; γ ) and its
derivatives. We have

J11(x,y) = − 16

πiy

[
1

3!

∂3

∂γ 3
I (x,y; γ )

]
γ=1

, (A1)

J12(x,y) = 4
√

2

πiy

[(
∂2

∂β∂γ
+ 1

2 × 2!

∂3

∂β2∂γ

)
1

(β − γ )

× [I (x,y; γ ) − I (x,y; β)]

]
γ=1, β=1/4

, (A2)

J22(x,y) = − 2

πiy

[(
1

3!

∂3

∂β3
+ 1

4!

∂4

∂β4
+ 1

4 × 5!

∂5

∂β5

)

× I (x,y; β)

]
β=1/4

, (A3)

J13(x,y) = − 8√
2π iy

∂3

∂β2∂γ

[
1

(β − γ )
[I (x,y; γ )

− I (x,y; β)]

]
γ=1, β=1/4

, (A4)

J23(x,y) = 4

πiy

[(
1

4!

∂4

∂β4
+ 1

2 × 5!

∂5

∂β5

)
I (x,y; β)

]
β=1/4

,

(A5)

J33(x,y) = − 48

π iy

[
1

6!

∂5

∂β5
I (x,y; β)

]
β=1/4

. (A6)
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