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R-matrix approach to collision processes: Study of the threshold behavior
of γ + He → He+(2s) + e− or He+(2 p) + e−

Hao Xu and Robin Shakeshaft*

Physics Department, University of Southern California, Los Angeles, California 90089-0484, USA
(Received 14 September 2010; published 31 January 2011)

We report on a study of one-photon single ionization of He(1s2) accompanied by excitation to He+(2s) or
He+(2p) for photon energies at, and up to a few eV above, the excitation threshold. We find, both numerically
and analytically, that as the photon energy approaches threshold from above the photoionization cross section
turns sharply at about 200 meV and has a cusp at threshold. The cusp is associated with the adiabatic transfer
of population between the 2s and 2p bound states of the ion. The photoelectron’s electric field induces an
energy splitting between the otherwise degenerate 2s and 2p states, and consequently the 2s and 2p populations
oscillate with a period defined by this energy splitting. The number of oscillations is almost independent of the
photoelectron’s asymptotic speed v since over most of its outward journey the photoelectron moves with a speed
much larger than v. However, on the last leg of its journey, after it has slowed down sufficiently in the Coulomb
field of the ion, the photoelectron does move with an almost constant speed v. On this last leg the energy splitting
is so small that there is insufficient time for 2s and 2p populations to undergo a full oscillation; rather, the (equal
and opposite) changes in the 2s and 2p populations are proportional to v (i.e., to the square root of the excess
photoelectron energy, which gives rise to a cusp).
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I. INTRODUCTION

Almost 50 years ago Gailitis and Damburg showed that the
cross section for an electron to scatter from a hydrogen atom at
impact energies just above the H(n = 2) excitation threshold
does not obey the normal Wigner threshold law, but instead
depends on the logarithm of the excess energy, and in a way that
is sinusoidal [1]. Similar behavior should be seen, in principle,
in one-photon detachment of the negative hydrogen ion H− at
photoelectron energies just above the H(n = 2) threshold, but
in practice is obscured by a 1P o shape resonance. Cognizant
of this, Liu et al. pointed out that since the shape resonance
cannot be accessed by two photons, two-photon detachment
of H− should provide an unobstructed view of the anomalous
threshold behavior [2]. They carried out detailed calculations,
and found that the cross section for two-photon detachment
of H− to the (n = 2)1De subchannel, when plotted versus
the logarithm of the excess photoelectron energy, has a half-
oscillation with large amplitude over the photoelectron energy
range 0.5–34 meV above the H(n = 2) threshold [2].

In this paper we consider the threshold behavior of the
cross section for one-photon ionization of helium accompanied
by excitation to He+(n = 2). The primary difference between
photodetachment of H− and photoionization of He is that in
the latter process the photoelectron experiences a long-range
Coulomb potential. We find that the cross section does not
oscillate near threshold; rather, it exhibits a cusp. We present
results of numerical calculations of the cross section for one-
photon single ionization of He(1s2) accompanied by excitation
to He+(2s/2p) for photoelectron energies near to, and up to
roughly 7 eV above, the excitation threshold.

The origin of both the oscillatory behavior and the cusp
is the long-range dipole interaction between the departing
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electron and the excited hydrogenic core which is in a
superposition of 2s and 2p states. Due to the degeneracy of the
2s and 2p states the core has a permanent dipole moment �d
whose strength | �d| (within zeroth-order perturbation theory) is
a property of the core, but this dipole has an orientation which
is either parallel, antiparallel, or perpendicular to the direction
of motion of the unbound electron. If m and −e denote the
electron mass and charge, with a0 ≡ h̄2/me2 the Bohr radius,
| �d| is proportional to ea0 with a constant of proportionality
that is dimensionless and inversely proportional to the atomic
number of the nucleus. In the field of the dipole the unbound
electron experiences a potential which, up to a dimensionless
constant that is independent of the electron charge, has the
form h̄2/(mr2) at a distance r � a0 from the core. In turn,
the electric field of the unbound electron induces an energy
splitting between the 2s and 2p states of the core. The
interaction between the unbound electron and the core is
attractive or repulsive, respectively, according to whether the
dipole is parallel or antiparallel to the direction of motion
of the outgoing electron. In general, the net dipole of the
hydrogenic core is a superposition of parallel, antiparallel, and
perpendicular dipoles. If the unbound electron moves slowly,
the net dipole oscillates on the time scale defined by the energy
splitting between the 2s and 2p states, and population is
adiabatically transferred back and forth between the 2s and
2p states.

We digress for a moment to recall in more generality how a
final-state interaction influences a transition rate. Suppose that
a system undergoes a transition, due perhaps to a collision or
half collision, and that one of the products is a particle which
departs with energy mv2/2 in an attractive potential that falls
off slowly with distance r . We suppose that the asymptotic
speed v is small. It is known from the theory of final-state
interactions that the transition rate is enhanced by the long-
range attractive tail of the potential since the unbound particle
is delayed and spends more time in the region near the origin
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where a transition is most likely to occur [3]. The effect appears
as an enhancement of the particle’s wave function at small r

by a factor that is just the inverse of the Jost function [4].
When v is small the Jost function depends on v in roughly the
same way as does the tangent of the phase shift. If, in addition,
the potential does not fall off more rapidly with distance than
1/r2l+3, where l is the particle’s orbital angular momentum
quantum number, both the Jost function and the enhancement
factor depend strongly on v.

Returning to our two-electron ion or atom, whose core
is in a superposition of 2s and 2p states, let us focus first
on the H− system. Since the core is neutral the dominant
potential experienced by the unbound electron in the final
state is the 1/r2 potential. Assume that this potential is more
attractive than the centrifugal barrier is repulsive. The unbound
electron would spiral into the origin if the 1/r2 potential were
to extend all the way to the origin. This fate is avoided by
smoothly joining the 1/r2 potential at some small distance
r0 to a potential that is constant in the region 0 � r � r0 [5].
Now, rather than spiral into the origin, the unbound electron
orbits the core a number of times and therefore experiences
a significant delay before escaping. On dimensional grounds,
since the only variables that enter the motion are h̄, m, and
the asymptotic speed v, the time delay must be (h̄/mv2) up
to a constant overall factor that depends on r0/a0. Recalling
that the time delay is the derivative of the phase shift with
respect to energy, we infer that the phase shift varies as ln v, so
the enhancement factor varies roughly as a cotangent whose
argument depends on ln v. It follows that the cross section has
an oscillatory ln v dependence, in accord with the prediction
of Gailitis and Damburg.

Once the unbound electron is further than a few a0 or more
from the hydrogenic core, the potential is relatively weak and
the electron moves at a speed which does not differ greatly
from its asymptotic speed v. Along the unbound electron’s
outward journey the 2s and 2p populations oscillate many
times if v is small—infinitely many times in the adiabatic limit
v → 0. Thus in the adiabatic limit the 2s and 2p populations
equalize at asymptotically large distances.

On the other hand, if, as we now suppose, the hydrogenic
core has a net positive charge the attractive Coulomb inter-
action governs the motion of the unbound electron at large
distances. We discuss this case in more detail in Sec. III.
Briefly, while the asymptotic speed v may be small, along
most of its outward journey the unbound electron moves with
a speed much larger than v. Thus the 2s and 2p populations
undergo only a relatively small number of oscillations. Only
after the unbound electron has slowed down sufficiently in the
Coulomb field of the ion, after a time t >∼ (e2/mv3), does it
move at a speed close to v. On this last leg of the journey, the
energy splitting is so small that there is insufficient time for
the 2s and 2p populations to undergo a full oscillation; rather,
the changes in the 2s and 2p populations are proportional to
v (i.e., to the square root of the excess energy of the unbound
electron). Since the cross section is finite (nonzero) at the
threshold v = 0 (the enhancement factor is infinite), it has a
cusp.

Our calculations were performed using an R-matrix ap-
proach that accommodates the proper boundary conditions.
This method has been described in detail elsewhere [6], and is

sketched only briefly in the next section. In Sec. III we discuss
the threshold behavior and the origin of the cusp; we give
both mathematical and heuristic derivations of the threshold
behavior. In Sec. IV we present our numerical results, which
cover a range of photoelectron energies that extends from
the n = 2 excitation threshold to the first Feshbach resonance
below the n = 3 excitation threshold.

Although we consider, in this paper, energies at which
only the 1s, 2s, and 2p subchannels are open, we take a
moment to draw attention to the work of Hahn and Temkin
who investigated two-electron escape by analytic continuation
from below to above the total breakup threshold [7]. They
developed a model where the outer electron moves, to a
first approximation, in a potential that is Coulombic up to
a certain distance, and of dipole form thereafter. Using the
zero-energy solutions to this model, in combination with
the optical potential, they derived various threshold laws for
electron-impact ionization of hydrogen at different levels of
approximation. A feature of special interest is the presence
of repulsive terms in the optical potential at energies where
more than a few subchannels are open; such terms inhibit
two-electron escape.

II. METHOD

The system of interest is composed of an electron and a
He+ ion. Initially, this system is in its ground state. A photon
is absorbed, and the system undergoes ionization. In the final
state the system has a total energy E, one electron is free, the
other is bound to the nucleus in the 1s, 2s, or 2p state. Our
focus in this section is on the final state. We want to obtain the
wave function for an electron that is incident on a He+ ion in the
1s, 2s, or 2p state. The time-reversed wave function is needed
to evaluate the transition amplitude for photoionization.

We partition the full state space into P and Q subspaces
[8,9]. Four subchannels, the 1sεp,2sεp,2pεs, and 2pεd sub-
channels, are included in P space. The remaining subchannels
are relegated to Q space. Let P and Q be the operators which
project onto the P and Q spaces. These spaces are coupled by
the optical potential,

Vopt(E) ≡ PHQGQ(E)QHP, (1)

where H is the true Hamiltonian and GQ(E) is the Q-space
resolvent [i.e., GQ(E) = Q/(E1 − QHQ)]. In the calculations
reported on here, the photon energy lies below the threshold
for excitation of H(n = 3) so all subchannels in Q space
are closed, and GQ(E) can be replaced by its spectral
decomposition. Let |�(i)(E)〉 represent the state of the system
when the unbound electron is incident in the subchannel i,
where i(=1 − 4) denotes one of the subchannels belonging
to P space. The projection P|�(i)(E)〉 is a solution of the
homogeneous equation,

[Heff(E) − E1]P|�〉 = 0, (2)

where Heff(E) is the energy-dependent effective Hamiltonian,

Heff(E) = PHP + Vopt(E). (3)
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The projection Q|�(i)(E)〉 is GQ(E)QHP|�(i)(E)〉, and this
can be obtained once Eq. (2) has been solved, assuming that
GQ(E) is known.

The P -space wave function has the form (which must be
symmetrized with respect to the electrons),

1

r1r2

∑
j

F
(i)
j (r2)φj (r1,r̂1,r̂2) = 1

r1r2
[ �F (i)(r2)]t �φ(r1,r̂1,r̂2),

(4)

everywhere in position space. The “channel function” F
(i)
j (r2)

is the radial wave function of the unbound electron, 2, in the
entrance subchannel i, t denotes transpose, and φj (r1,r̂1,r̂2)
is the orthonormal wave function of the bound electron, 1, in
state j . Thus the superscript i and the subscript j , respectively,
on F

(i)
j (r2) denote the solution (the entrance subchannel) and

the component of this solution on the channel basis; the sum
on the right side of Eq. (4) is over all subchannels belonging
to P space. We have incorporated the coupling of the angular
momentum of the two electrons in φj (r1,r̂1,r̂2). The general
solutions of Eq. (2) are the elements of a four-dimensional
column vector F t(r2) �φ(r1,r̂1,r̂2), where F (r2), the “channel
matrix,” is the matrix whose columns are the vectors �F (i)(r2).
To take into account the out-of-phase oscillations of incident
and scattered waves we decompose the channel matrix into the
sum of its “incident’—and “scattered”—wave components,
that is, we write

F (r) = F scat(r) + F inc(r). (5)

The scattered-wave component F scat(r) is represented on a
discrete basis that covers the volume of a “box” whose linear
dimension is R. The incident-wave component F inc(r) is
completely specified up to a normalization matrix N which
is to be determined by matching F (r) and its derivative at
the boundary r = R to the exact solution of the Schrödinger
equation for an unbound particle moving in the local potential
due to the sum of Coulomb and static dipole fields.

The incident-wave component has the form F t
inc(r) =

N t F t
inc(r) where F inc(r) is a diagonal matrix whose diagonal

elements are

Fi,inc(r) = ĵli

(
kir + γi ln

(
1 + 2kir

ci

)
+ δi(ki)r

bi + r

)
. (6)

Here ĵl(x) is a Riccati-Bessel function, h̄ki and h̄li are
the asymptotic linear and angular momenta of the unbound
particle, γi = Z′/(a0ki) with Z′ = 1 (the atomic number of
the screened nucleus), bi and ci are positive parameters
whose values are to be fixed, and δi(ki) is a real variational
parameter. The functions Fi,inc(r) are regular at the origin
and have the correct asymptotic forms. The logarithmic term
ln[1 + (2kir/ci)] accounts for Coulomb distortion at large
distances (i.e., distances where k2ra0 >∼ 1). Since F (r) is to be
matched to the asymptotic solution at r = R we can restrict r

to the range r � R. The logarithmic term is unwarranted
if k2Ra0 <∼ 1; hence ci serves as a cutoff parameter, which
we choose to be ci = 1 + (1/k2

i Ra0). The parameter bi

characterizes the radius of the core in the entrance subchannel
i, and we fix its value to be 4 a.u. in all subchannels. Evidently,
δi(ki) is a phase shift. Its “optimal” value can be obtained

from the Kohn variational principle, but we find that sufficient
accuracy is obtained by fixing δi(ki) to have the smallest
absolute value for which Fi,inc(R) ≈ 1, which is accomplished
by taking

δi(ki) ≈ −kiR + li
π

2
− γi ln

(
1 + 2kiR

ci

)
+ (2n + 1)

π

2
,

(7)

where the integer n is chosen so that −π/2 < δi(ki) � π/2.
The incident-wave component provides the source term

in a linear inhomogeneous matrix equation for the scattered-
wave component of the P -space wave function. This equation
follows from substituting F (r) = F scat(r) + F inc(r) for P|�〉
in Eq. (2). We solve this equation by expanding F scat(r) on a
hybrid basis whose radial functions are of the two types,

unl(r) = 1√
R

ĵl(knr), kn = αn/R, n = 1,2,3, . . . , (8)

vnl(r) =
√

κ

n(n − l)2l+1
(2κr)l+1L2l+1

n−l−1(2κr)e−κr ,

n − l 
 κR, (9)

where αn is the nth root of ĵl(x) and Lµ
ν (x) is an associated

Laguerre polynomial. Both unl(r) and vnl(r) vanish at the
endpoints r = 0 and r = R [or, more exactly, vnl(R) is
exponentially small provided that the inverse-length-scale κ

satisfies n − l 
 κR]. Hence F scat(r) satisfies standing-wave
boundary conditions [i.e., F scat(0) = 0 = F scat(R)].

In the region exterior to the box we attach a subscript to F (r)
and its elements to indicate the type of asymptotic boundary
condition that the solutions satisfy. The customary K-matrix
asymptotic boundary conditions satisfied by the elements of
the channel matrix are, for r � R,

F
(i)
Kj (r) → 1√

2πkj

[
sin

(
kj r − 1

2
ljπ + γj ln 2kj r + σlj

)
δji

+ cos

(
kj r − 1

2
ljπ + γj ln 2kj r + σlj

)
Kji

]
,

(10)

where σlj (kj ) is the Coulomb phase shift (which we ab-
breviate to σlj ). However, since orbital angular momentum
is exchanged over very large distances due to static dipole
coupling, more suitable asymptotic boundary conditions with
no dependence on angular momentum are (r � R)

F
(i)
K̃j

(r) → 1√
2πkj

[sin(kj r + γj ln 2kj r + σ0)δji

+ cos(kj r + γj ln 2kj r + σ0)K̃ji]. (11)

We include the s-wave Coulomb phase shift σ0 in all subchan-
nels since this accounts for most of the Coulomb scattering
at large distances, particularly near threshold; its presence
ensures smooth threshold behavior. Following Seaton [10] we
write

F K̃ (r � R) = F sin(r) + F cos(r)K̃, (12)
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where the matrices F sin(r) and F cos(r) are, for all r � R,

F sin(r) = X Gsin(r)X†, (13)

F cos(r) = X Gcos(r)X†. (14)

Here X is the constant, energy-independent, unitary matrix that
diagonalizes the Hermitian matrix −Z′e21/r + (h̄2/2)A/r2

where A includes both the angular momentum h̄2l(l + 1) of
the unbound electron and the static dipole of the residual ion
that results from the coupling of degenerate eigenstates. We
denote a generic eigenvalue of A by µ(µ + 1); thus µ is a
generalized orbital angular momentum quantum number of
the unbound electron. The matrices Gsin(r) and Gcos(r) are
real and diagonal, and up to an overall factor of 1/

√
2πki

and a sine and cosine, respectively, they approach the identity
matrix at large r; at finite r their diagonal elements are

Gµ, sin(r) = (2πki)
−1/2

[
sin

(
µ

π

2
− σ̃µ

)
Iµ(r)

+ cos

(
µ

π

2
− σ̃µ

)
Rµ(r)

]
, (15)

Gµ, cos(r) = (2πki)
−1/2

[
cos

(
µ

π

2
− σ̃µ

)
Iµ(r)

− sin

(
µ

π

2
− σ̃µ

)
Rµ(r)

]
, (16)

where

σ̃µ = σµ − σ0, (17)

and where σµ is the generalized Coulomb phase shift, defined
for real and complex µ as

σµ = − i

2
ln

(
�(µ + 1 − iγj )

�(µ + 1 + iγj )

)
, (18)

and where Rµ(r) and Iµ(r), respectively, are the regular and
irregular Coulomb wave functions (normalized asymptotically
to a sin and cosine with unit amplitude) with µ replacing
the conventional orbital angular momentum quantum number.
Thus an arbitrary component of Eq. (13) is

F
(i)
j, sin(r) =

∑
µ

XjµGµ, sin(r)X∗
iµ. (19)

(Complex conjugation of X is unnecessary if, as in the present
case, X is real.) If r � R the matrices F sin(r) and F cos(r) are
diagonal, and the asymptotic form on the right side of Eq. (11)
follows from Eqs. (12)–(14).

Each eigenvalue a of A is real, and is related to µ

by µ = − 1
2 +

√
a + 1

4 . Hence µ is complex if a < − 1
4 , in

which case its real part is − 1
2 . When a < − 1

4 the repulsive
semiclassical angular momentum barrier (l + 1

2 )2(h̄2/2r2) is
overwhelmed by the attractive dipole potential. In general, the
potential experienced by the unbound electron due to the dipole
field of the ion is attractive, repulsive, or zero, respectively,
according to whether the residual ion’s dipole is parallel,
antiparallel, or orthogonal to the direction of motion of the
unbound electron. However, the orientation of the dipole is
sharply defined only for certain linear combinations of the
degenerate eigenstates of the residual ion. When both the

total orbital angular momentum of the two electrons, and
the generalized orbital angular momentum quantum number
µ of the unbound electron, are sharply defined, the orientation
of the dipole is not sharply defined. Nevertheless, if the most
likely value of the orbital angular momentum quantum number
of the unbound electron is l we can say that among the three
possible sharply defined orientations of the dipole the favored
one is orthogonal, parallel, or antiparallel, respectively, if the
eigenvalue a is comparable to, much less than, or much greater
than l(l + 1).

In the present case the total orbital angular momentum
quantum number of the two-electron system in its final state
is 1, and since the residual ion is left in the 2s or 2p state
the possible orbital angular momentum quantum numbers of
the unbound electron are 0, 1, and 2. The possible generalized
orbital angular momentum quantum numbers of the unbound
electron are

µ =

⎧⎪⎨
⎪⎩

1 � 2sεp

− 1
2 + i

2

√
12(1 + ζ 2)1/2 − 13 � 2pεs

− 1
2 + 1

2

√
13 + 12(1 + ζ 2)1/2 � 2pεd,

where ζ measures the strength of the dipole coupling of 2s

or 2p bound states, and in the present case has the value
ζ = 1. The two-electron configuration to which each value of
µ correlates in the limit of no dipole coupling (i.e., ζ = 0) is
shown to the right of the expression for µ. Evidently, it is the
2pεs configuration that is associated with the most strongly
attractive dipole interaction, whereas the 2pεd configuration
is associated with the most strongly repulsive interaction.

The scattering matrix S is related to the K̃ matrix by

S = D

(
1 + iK̃

1 − iK̃

)
D, (20)

where D is a diagonal matrix whose diagonal elements are

e
i( 1

2 lj π−σ̃lj
). Before calculating S we added to K̃ the first-order

correction which follows from the Kohn variational principle
[6]. Thereby we improved the accuracy of S.

III. THRESHOLD BEHAVIOR

A. Mathematical derivation

Suppose that in a particular subchannel the unbound
electron has a momentum h̄k which is small. The s-wave
Coulomb phase shift σ0(k) varies rapidly with k near the
threshold k = 0, and diverges there as −(Z′/a0k) ln k. In
contrast, σ̃µ(k) varies smoothly:

σ̃µ(k) = −µ
π

2
coth πγ − 1

2γ
+ O((µka0)2), (21)

with γ = Z′/(a0k). It follows from Eqs. (15) and (16) that
if µ is an integer Gµ, sin(r) and Gµ, cos(r) develop into the
regular and irregular Coulomb wave functions, Rµ(r) and
Iµ(r), respectively, as a threshold is approached. If µ is not an
integer Gµ, sin(r) and Gµ, cos(r) remain linear combinations
of regular and irregular Coulomb wave functions even at
threshold.
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No matter whether or not µ is an integer, both Gµ, sin(r) and
Gµ, cos(r) are independent of k for small k provided that

k2 
 Z′/(a0r). (22)

To see this we first observe that if the preceding inequality
is obeyed Rµ(r) can be expanded in terms of regular Bessel
functions J2µ+1+m(2

√
2Z′r/a0), and Iµ(r) can be expanded

in terms of irregular Bessel functions Y2µ+1+m(2
√

2Z′r/a0),
where m is a non-negative integer [11]. Retaining only the first
term in each series, we have the approximations,

Rµ(r) ≈ −β(µ,k)

(
Z′r
2a0

)1/2

J2µ+1(2
√

2Z′r/a0), (23)

Iµ(r) ≈ − π

β(µ,k)

(
Z′r
2a0

)1/2

Y2µ+1(2
√

2Z′r/a0), (24)

where

β(µ,k) = e
1
2 γπ−iσµ

�(µ + 1 − iγ )

γ µ+1
. (25)

The relative correction is of order (ka0)(kR) for r � R. When
µ is real, β(µ,k) is real and (recall Sterling’s formula) is
proportional to

√
k with a relative correction of order (µka0)2.

Since the latter correction is analytic in µ we infer that β(µ,k)
is also proportional to

√
k when µ is complex. Therefore,

Rµ(r)/
√

2πk and Iµ(r)/
√

2πk are independent of k for small
k, with a relative correction of order (ka0)(kR). Combining
this result with Eqs. (15), (16), and (21) it follows that both
Gµ, sin(r) and Gµ, cos(r) are independent of k for both real and
complex µ, with a relative correction of first order in k

From Eqs. (12)–(14) we see that the energy-normalized
solution in the interior r < R must fit smoothly to

X Gsin(r)X† + X Gcos(r)X†K̃

at r = R. If inequality (22) holds, the solution in the interior
is energy independent up to a correction of order (ka0)(kR),
aside from a normalization factor. [Note that this inequality
cannot be satisfied when Z′ = 0; thus Z = 1 is a singularity.]
Since Gsin(r) is energy independent so, too, must be the
normalization factor of the interior solution. Since Gcos(r)
is also energy independent, so, too, must be K̃ . If µ is real the
leading correction to the zero-energy limit of K̃ is of second
order in k. On the other hand, if µ is complex the leading
correction is of first order in k. The reason is as follows: Recall
that Gµ, sin(r) and Gµ, cos(r) are each independent of k up to
a correction of first order in k. However, the exterior solution
matches smoothly at r = R to an energy-independent solution
in the interior region which is regular at the origin. Hence when
kR 
 1 the K̃ matrix must mix Gµ, sin(R) and Gµ, cos(R) so
that their combination is the regular solution. If µ is real the
regular solution is Rµ(R); thus, the correct combination is

cos

(
µ

π

2
− σ̃µ

)
Gµ, sin(r) + sin

(
µ

π

2
− σ̃µ

)
Gµ, cos(r)

= 1√
2πk

Rµ(r), (26)

and since Rµ(R)/
√

2πk is energy independent up to a
correction of second order in k, so too must be K̃ . In

other words the terms that are linear in k are canceled
when Gµ, sin(R) and Gµ, cos(R) are combined. However, if
µ is complex Y2µ+1(2

√
2Z′r/a0) and J2µ+1(2

√
2Z′r/a0) are

equally singular at r = 0, so both are acceptable. In this case
it is the energy dependence of Gµ, sin(R) and Gµ, cos(R) that
matters. Hence when µ is complex the K̃ matrix, and therefore
the K matrix, are constant with a correction that is proportional
to the square root of the excess photoelectron energy above
threshold. Consequently, the K matrix, and therefore the cross
section, have a cusp at threshold.

B. Heuristic derivation

Consider times t � 0 long after photoejection has occurred.
Suppose that the photoelectron is at a distance r(t) from the
nucleus which is significantly larger than a0, and that it is
moving in a direction r̂ that is almost constant. The zeroth-
order perturbed states of the ion are the linear combinations
2s ± 2p represented by

|±〉 = 1√
2

(|2s〉 ± |2p〉). (27)

Here we are interested only in the 2p state that is oriented along
r̂; we omit the orthogonal 2p state since it is not mixed with
the 2s state by the photoelectron’s electric field. In the state
+ or − the excited He+ ion has a dipole ±d|e|a0r̂ where −e

is the electron charge and where d = |〈2p|z|2s〉|/a0 = 3/Z

with Z = 2.
Suppose that at time t = 0 the ion is in the state,

|ψ(0)〉 = f+(|2s〉 + |2p〉) + f−(|2s〉 − |2p〉), (28)

where |f+|2 + |f−|2 = 1/2. Without loss in generality we can
choose f+ and f− to have equal but opposite phases, ±φ/2 say.
The kets |±〉 do not depend on the strength of the interaction
between the photoelectron and the ion and therefore do not
depend on r(t). Hence, as long as the “frequency” (dr/dt)/a0

of the photoelectron’s motion is small compared to the smallest
frequency for a transition out of the 2s/2p manifold the state
ket of the ion evolves adiabatically. Therefore, the state ket at
times t > 0 is, up to an overall phase factor,

|ψ(t)〉 = f+(|2s〉 + |2p〉)
+ f−e−(i/h̄)

∫ t

0 dt ′�E(t ′)(|2s〉 − |2p〉), (29)

where �E(t) is the energy splitting of the ± levels at time t ,
that is,

�E(t) = (3/Z)e2a0/r2(t). (30)

The populations of the 2s and 2p states of the ion vary
quasiperiodically in time with a period of order h̄/|�E(t)|,
and at t ∼ ∞ these populations are P2s and P2p, respectively,
where

P2s = |f+ + f−|2 − 2|f+f−|[cos φ + cos(φ + �)], (31)

P2p = |f+ + f−|2 − 2|f+f−|[cos φ − cos(φ + �)], (32)

and where

� = 3(e2a0/Zh̄)
∫ ∞

0

dt

r2(t)
. (33)

It remains to determine r(t).
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If the asymptotic speed v of the photoelectron is small,
the motion of the photoelectron is governed primarily by
the Coulomb potential −Z′e2/r where Z′ = Z − 1. Retaining
only this potential, and neglecting the rotational energy which
is small compared to the Coulomb energy at large distances,
the classical equation for the radial motion of the photoelectron
is, using conservation of energy,

m(dr/dt)2/2 ≈ mv2/2 + Z′e2/r. (34)

If the Coulomb energy is much larger in magnitude than the
total energy, that is, if

Z′e2/r � mv2/2, (35)

we can drop the total energy in Eq. (34); the photoelectron’s
speed is

dr/dt ≈ (Z′e2/mr)1/2, (36)

and integrating this result gives

r(t) ≈ (9Z′e2/2m)1/3t2/3 + const.. (37)

The photoelectron does not move with constant speed v until
near the end of its outward journey, at times when the Coulomb
energy is much smaller in magnitude than the total energy.
Thus, reversing inequality (35), and using Eq. (37) we see
that the photoelectron moves with (almost) constant speed v

when

t � Z′(e2/mv3). (38)

Hence there are two distinct contributions to � [to the integral
over t on the right side of Eq. (33)]. The first contribution
comes from the range 0 � t <∼ Z′(e2/mv3) where the Coulomb
energy dominates, and where we can insert the right side of
Eq. (37) for r(t). This contribution is relatively insensitive
to v; it is linear in v with a constant term that dominates.
The second contribution comes from the range t >∼ Z′(e2/mv3)
where the photoelectron moves almost with constant speed
v, and where we can insert r(t) ≈ vt ; this contribution is of
order,

e2a0

Zh̄

∫ ∞

Z′(e2/mv3)

dt

(vt)2
∼ 1

Z′Z

(
h̄v

e2

)
, (39)

which yields small equal but opposite corrections to the 2s

and 2p populations that are proportional to the square root
of the excess photoelectron energy. Hence the partial cross
sections for excitation to the 2s and 2p states exhibit cusps.
In view of the fact that the 2pεd configuration is the most
closely associated with a repulsive dipole interaction, we
expect the 2pεs configuration to contribute more than the
2pεd configuration to the cusp.

C. Comparison with γ + H− → H(2s/2 p) + e−

We briefly comment on another process, photodetachment
of H− with excitation to H(2s/2p). There are some interesting
differences that arise because the photoelectron is screened
from the nucleus by the bound electron (i.e., because Z′ = 0).
The photoelectron moves with a speed that is almost constant
along its entire outward journey. Hence, at photon energies

near threshold, where v is small, population is transferred
back and forth between the 2s and 2p states many times—
infinitely many times as v → 0. Hence, in the adiabatic limit
the hydrogen atom is left in an equal mixture of 2s and 2p

states. We can see this by putting Z′ = 0 and replacing Eq. (37)
by

r2(t) ≈ a2 + (vt)2, (40)

so now, with Z = 1, we have

� ≈ 3π (e2a0/2avh̄). (41)

Thus the small-v dependence of � changes from v to 1/v

when Z′ = 0. In the limit v → 0 the term cos(φ + �) on the
right sides of Eqs. (31) and (32) oscillates infinitely rapidly and
averages to zero to give P2s = P2p = |f+|2 + |f−|2 = 1/2.

As noted in Sec. I, when the atom’s dipole is parallel to
the direction of motion of the outgoing photoelectron the
cross section oscillates versus ln v near threshold. By contrast
the cross section for photoionization of He with excitation
to He+(2s/2p) does not oscillate near threshold. The dipole
field is not important beyond a distance of about (h̄/mv),
but the Coulomb field exerts the dominant influence on the
photoelectron’s radial motion well before this distance is
reached. In fact, at the distance (h̄/mv) the Coulomb potential
energy is Z′e2mv/h̄, which exceeds the photoelectron’s energy
if Z′(e2/h̄v) >∼ 1.

IV. RESULTS

Now we present results for one-photon single ionization
of He accompanied by excitation to the 2s and 2p states of
He+, assuming the light is linearly polarized. Our calculations
required only modest computer resources. We used a box
radius of R = 70 a.u. and we employed independent-electron
orbtial angular momentum quantum numbers ranging from
0 to 3. The scattered-wave component F scat(r) of the P -space
wave function was represented mostly by Riccati-Bessel
functions, 50 for the 1s subchannel and 27 for the other
subchannels, and only a few Sturmian functions, 10 for the
1s subchannel and 4 for the other subchannels. The wave
numbers kn—recall Eq. (8)—were chosen so that the energy
of the photoelectron is closely surrounded by at least a few
eigenvalues of PHP. The ground-state wave function was
represented on a basis whose radial part was composed purely
of Sturmian functions, 30 per electron per angular momentum
quantum number. A similar basis was used to represent Q

space, with either 15 or 30 Sturmian functions per electron per
angular momentum quantum number. Generally, our estimates
of the K matrix were symmetric to at least three significant
figures before adding the variational correction, and to at least
six significant figures after adding this correction. Typically,
we found the average variational correction to be between
3% and 5% close to threshold (i.e., for photon energies below
66.7 eV), and less than 1% at higher energies. Results obtained
in the velocity gauge differed from those in the length gauge
by less than 0.01%.

We show results for photon energies from the 2s(2p)
excitation threshold to about 7 eV above this threshold in
Figs. 1–8. Where possible we compare our results with other
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FIG. 1. (Color online) Partial cross section for one-photon ioniza-
tion of He to the 1sεp subchannel. (Thick solid line) Present results,
including optical potential. (Thin solid line) Present results, excluding
optical potential. (Crosses) Sánchez and Martı́n [12]. (Triangles)
Declever et al. [13]. (Inverted triangles) Jiang et al. [14]. (Circles)
Experiment of Lindle et al. [15].

theoretical results and also with experimental data. In general,
our results are in excellent agreement with those of Jiang
et al. [14], they used the traditional R-matrix method. To
assess the importance of the optical potential in the background
region we show, in most of the figures, both results obtained
from including and from excluding this potential. The optical
potential accounts for closed-channel (Feshbach) resonances,
and if it is omitted those resonances do not appear.

The partial cross section for photoionization without excita-
tion is shown in Fig. 1. The main feature is the closed-channel
resonance. Our results agree well with the shape of the
experimental data from Lindle, but in absolute magnitude the
latter lie about 5% below our results. At photon energies below
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FIG. 2. (Color online) Partial cross section for one-photon ioniza-
tion of He to the 2sεp subchannel. (Thick solid line) Present results,
including optical potential. (Thin solid line) Present results, excluding
optical potential. (Crosses) Sánchez and Martı́n [12]. (Triangles)
Declever et al. [13]. (Inverted triangles) Jiang et al. [14]. (Squares)
Experiment of Woodruff and Samson [16].
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FIG. 3. (Color online) Partial cross section for one-photon ioniza-
tion of He to the 2pεs subchannel. (Thick solid line) Present results,
including optical potential. (Thin solid line) Present results, excluding
optical potential. (Crosses) Sánchez and Martı́n [12].

about 69 eV the cross section follows an almost perfectly
straight line all the way to the threshold.

In Fig. 2 the partial cross section for photoionization
with excitation to the 2sεp subchannel is shown. There is
reasonable agreement among the theoretical results, all of
which nearly coincide with the single experimental data point
on the resonance profile. There is one other experimental data
point below the resonance region, which sits just above our
curve. In this region we find that the cross section slopes gently
downward as the photon energy decreases, but turns sharply
downward just above threshold.

The partial cross section for photoionization with excitation
to the 2pεs subchannel is shown in Fig. 3. We find that below
the resonance region the cross section slopes gently upward
as the photon energy decreases, but turns sharply upward
just above threshold. In Fig. 4 the partial cross section for
photoionization with excitation to the 2pεd subchannel is
shown. In the region below the resonance we find that the
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FIG. 4. (Color online) Partial cross section for one-photon ion-
ization of He to the 2pεd subchannel. (Thick solid line) Present
results, including optical potential. (Thin solid line) Present results,
excluding optical potential. (Crosses) Sánchez and Martı́n [12].
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FIG. 5. (Color online) Partial cross section for one-photon ion-
ization of He to the 2p state of He+, summed over the 2pεs

and 2pεd subchannels. (Thick solid line) Present results, including
optical potential. (Thin solid line) Present results, excluding optical
potential. (Crosses) Sánchez and Martı́n [12]. (Triangles) Declever
et al. [13]. (Inverted triangles) Jiang et al. [14]. (Squares) Experiment
of Woodruff and Samson [16].

cross section is almost flat, but that if the optical potential is
omitted the cross section turns sharply downward just above
threshold.

Evidently, the neglect of the optical potential can sig-
nificantly affect the background cross section, particularly
in the case of photoionization without excitation where
it leads to an overestimate of the cross section. Various
combinations of the partial cross sections are shown in
Figs. 5–7 for the purpose of comparison with data available
from experiments.
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FIG. 6. (Color online) Partial cross section for one-photon ioniza-
tion of He to the n = 2 level of He+, summed over the 2sεp, 2pεs, and
2pεd subchannels. (Thick solid line) Present results, including optical
potential. (Thin solid line) Present results, excluding optical potential.
(Crosses) Sánchez and Martı́n [12]. (Triangles) Declever et al. [13].
(Inverted triangles) Jiang et al. [14]. (Circles) Experiment of Lindle
et al. [15]. (Squares) Experiment of Woodruff and Samson [16].
(Diamonds) Experiment of Bizau and Wuilleumier [17].

65 66 67 68 69 70 71 72
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

C
ro

ss
S

e
ct

io
n

(M
b

)

Photon Energy (eV)

Total

FIG. 7. (Color online) Total cross section for one-photon ioniza-
tion of He, summed over all open subchannels (1sεp,2sεp,2pεs, and
2pεd). (Thick solid line) Present results, including optical potential.
(Thin solid line) Present results, excluding optical potential. (Crosses)
Sánchez and Martı́n [12]. (Triangles) Declever et al. [13]. (Inverted
triangles) Jiang et al. [14]. (Circles) Experiment of Lindle et al. [15].
(Diamonds) Experiment of Samson et al. [18].

In Fig. 8 we provide a detailed look at the partial cross
sections close to threshold. The partial 2sεp and 2pεs cross
sections exhibit a cusp at threshold while the partial 2pεd

cross section is (almost) flat. Furthermore, the decrease in the
partial 2sεp cross section near threshold is offset by an equal
increase in the partial 2pεs cross section. Although the Lamb
shift spoils the perfect degeneracy of the 2s and 2p states, this
shift is only about 0.073 meV and therefore we would not
expect it to significantly modify the results shown in Fig. 8.
The cusp may be observable through a measurement of the
ratio of the partial cross sections for either (i) 2sεp and 2pεd

excitation, or (ii) 2pεs and 2pεd excitation, or (iii) 2sεp and
2pεs excitation, where the last ratio drops and then flattens
out as threshold is approached.
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FIG. 8. (Color online) Partial cross sections for photoionization
of He accompanied by excitation to He+(2s/2p) just above the
excitation threshold. The partial cross sections have been shifted
vertically so that they coincide at threshold.
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