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We develop an R-matrix approach to treating collision processes which explicitly takes into account, by means
of a simple energy-dependent analytic function, the out-of-phase oscillations of the incident and scattered standing
waves in the interior region. Thereby we avoid the use of the Bloch operator. In place of the Bloch operator the
incident wave provides the source term in an inhomogeneous equation for the scattered wave. We take those
subchannels not treated exactly into account via the optical potential, which is generally non-Hermitian due to
dissipation at the boundary. The optical potential is constructed on a real analytic basis using a resolvent that
satisfies outgoing-wave boundary conditions. The use of an analytic basis together with the direct determination
of the K matrix, rather than the R matrix, at the boundary (this is done by matching the interior wave function
to the nearly exact analytic solution beyond the boundary) makes the method particularly well suited to the
treatment of ultracold collisions. We have tested our method by applying it to one-photon single-ionization of
He(1s2) accompanied by excitation to He+(2s) or He+(2p) for photon energies above the complete breakup
threshold, where the optical potential is non-Hermitian. Excellent agreement with experiment is obtained for
the cross sections for photoionization to both He+ (n = 1) and to He+ (n = 2). The 2s-to-2p branching ratio is
strongly influenced by both the optical potential and, at photon energies less than a few tens of eV above the
breakup threshold, the nonadiabatic dipole mixing of the 2s and 2p states.
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I. INTRODUCTION

Among the many methods for treating collision processes,
the R-matrix approach holds a special appeal, as attested to
by the breadth of applications in atomic and nuclear physics
[1,2]. Its primary merit is that the Schrödinger equation has
only to be solved numerically within a finite region, or “box,”
whose boundary R is sharply defined. Beyond the boundary the
solution can be found, in principle to arbitrary accuracy, by an
asymptotic expansion of the wave function. This is especially
valuable when interactions are of long-range, for example,
those of Coulomb or dipole nature. A further advantage of
the R-matrix approach is that real boundary conditions can be
imposed, so the numerical solution within the box is real. By
matching the interior solution to the exterior one the R-matrix
can be expressed in terms of a real, symmetric K matrix.
Thereby the scattering matrix, that is, the S matrix from which
the scattered flux can be extracted, is automatically unitary.

However, the R-matrix approach as traditionally applied
is not without drawbacks. Often a basis is employed on
which the representation of the Hamiltonian is not Hermitian.
Although the Hamiltonian can be modified by adding a term,
the “Bloch operator” [3], which acts at the boundary of the
box to compensate for a spurious surface term and thereby
ensures the modified Hamiltonian is Hermitian, this operator
is singular and cannot easily be accounted for by the basis;
as a result convergence with respect to basis size is slow,
and a correction, the “Buttle correction,” is often made [4].
Another issue relates to the inclusion of pseudostates in the
basis which are supposed to model those subchannels not
treated exactly. Pseudostates do not satisfy physical boundary
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conditions, and this can lead to unphysical consequences. For
example, spurious resonances can appear. More significantly,
since the S matrix is constrained to be unitary, pseudostates
do not allow for the loss of flux into open subchannels that
are omitted or not treated accurately; this can lead to erratic
convergence.

In this paper we develop an R-matrix approach to treating
a two-electron system which is free of the two drawbacks
mentioned above. To achieve this goal we begin by dividing
state space, where the real system resides, into P and Q

subspaces [5,6]. Subchannels that are treated exactly are
included in P space; the remaining subchannels belong to Q

space. The P and Q subspaces are coupled by the “optical
potential.” The real system is governed by a Hermitian
Hamiltonian H . However, the component of its wave function
in P space is identical to the wave function for a fictitious
system which resides only in P space and which is governed by
an effective Hamiltonian that is the sum of a sub-Hamiltonian
PHP, which is Hermitian, and the optical potential, which
may be non-Hermitian. It is sufficient to solve the Schrödinger
equation for this fictitious system since the component of the
real system’s wave function in Q space can be obtained from
the component in P space by means of the Q space resolvent,
assuming this is known.

We construct PHP on an analytic hybrid basis that has
two length scales, short and long. The short length scale is the
linear dimension of the region where the two electrons interact
strongly, while the long length scale is the box radius R; the
latter characterizes the distance beyond which the unbound
electron moves in a local, static potential that results from
just the Coulomb and dipole fields of the residual one-electron
ion or atom. The basis functions are real standing waves, all
of which vanish at the boundary of the box. Therefore, PHP
is represented by a matrix that is automatically Hermitian.
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However, the P -space wave function does not converge
uniformly on this basis since, in general, it does not vanish
at the boundary. Nevertheless, the P -space wave function can
be decomposed into two parts, a “scattered” wave which does
vanish at the boundary and which converges uniformly with
respect to basis size when it is expanded on the basis, and an
“incident” wave which is out of phase with the scattered wave
and does not vanish at the boundary. The incident wave is not
expanded on the basis; rather, it replaces the Bloch operator
as a source term. Thus, we rewrite the Schrödinger equation
for the P -space wave function as an inhomogeneous equation
whose inhomogeneous term contains the incident wave.

The only constraint on the incident wave is that it satisfies
the correct boundary conditions at the origin and at infinity.
It is not necessary that the incident wave be an eigenfunction
of PHP since the sum of the scattered and incident waves
is matched to an (almost exact) eigenfunction of PHP at the
boundary, so the difference satisfies standing-wave boundary
conditions and therefore can be described by the basis.
However, the more closely that the incident wave resembles
an eigenfunction of PHP, with an eigenvalue equal to the
energy of interest, E say, the less is the demand placed on the
basis. We choose the incident wave to have a simple, specified,
analytic, energy-dependent form which vanishes appropriately
at the origin, satisfies the exact standing-wave boundary
conditions at infinity, and has some of the characteristics of
an eigenfunction of PHP with eigenvalue E. As indicated
above, the boundary is sufficiently far that beyond it we need
retain only the long-range Coulomb (1/r) and static dipole
(1/r2) fields. By following the seminal paper of Seaton [7]
we match the interior wave function and its derivative at the
boundary to the analytic solution of the Schrödinger equation
for a particle moving in a combination of Coulomb and dipole
fields. Thereby we determine the K matrix, rather than the R

matrix, at the boundary. This boundary need not be adjusted
with E, at least not over a wide range of energies.

The basis functions that we employ to span Q space are also
real and analytic but they contain no reference to the boundary
of the box. In order to construct the optical potential we must
obtain the Q-space resolvent which satisfies outgoing-wave
boundary conditions at infinity. This is accomplished by
exploiting the analytic properties of the resolvent with respect
to its underlying time scale, a technique that has been described
in detail elsewhere and is only briefly mentioned in this
paper [8]. If Q space contains open subchannels, probability
flux is transferred from P to Q space. Therefore, while the
real system is nondissipative, the fictitious system is generally
dissipative (it is governed by an effective Hamiltonian that is
non-Hermitian). Consequently, the K matrix for the fictitious
system is not necessarily real, and the corresponding S matrix
is not necessarily unitary. Only if all subchannels that belong
to Q space are closed are the S matrices for the fictitious
and real systems the same; otherwise, the S matrix for the
fictitious system is a nonunitary submatrix of the S matrix for
the real system. However, both the K and the S matrices for
the fictitious system are symmetric.

We have tested the method by applying it to one-photon
single-ionization of helium accompanied by excitation to the
2s and 2p states of the residual ion He+ at photon energies
above the complete breakup threshold. In this region infinitely

many subchannels are open and there is a significant loss of
flux from P space. Furthermore, since the 2s and 2p bound
states of the hydrogenic ion are degenerate in energy, the ion
has a permanent dipole moment. Although the photoelectron
moves swiftly and is only barely deflected by the dipole field,
its electric field influences the permanent dipole moment of
the ion and therefore influences the 2s-to-2p branching ratio.

The computational demands are modest, and we find that
convergence with respect to basis size is rapid provided that
we include the variational correction to the K matrix which
follows from the Kohn variational principle. The calculations
can easily be performed on a modern desktop.

In a companion paper we report on a study of the behavior
of the photoionization cross section at photon energies close
to, and up to a few eV above, the n = 2 ionization-excitation
threshold [9]. We employed the same method, and found that
the cross section has a cusp at threshold; this cusp is associated
with the adiabatic transfer of population between the 2s and
2p states at asymptotically large distances.

In the next section we present a formal development of our
method. In Sec. II A we briefly set up the framework of the
optical potential. In Sec. II B we introduce a nontraditional
scalar product which is useful for describing both dissipative
and nondissipative processes. In Sec. II C we discuss the Bloch
operator, and we show in Sec. II D that this operator is not
needed. In Sec. III we describe the basis that we use to cover the
interior region, that is, the region inside the box. As mentioned
above, our basis functions are simple, real, analytic functions.
In Sec. IV we discuss some of the differences between the
traditional R-matrix approach and the one taken here. In Sec. V
we present the results of our test application to photoionization
of He with simultaneous excitation of He+ at energies above
the breakup threshold, and we compare our results to those
of others. In Appendix A we generalize Seaton’s method for
including a static dipole field by adding the Coulomb field. In
Appendix B we verify that the K matrix is symmetric, even
though it is complex, and we derive the variational correction
which follows from the Kohn variational principle.

II. HAMILTONIAN AND OPTICAL POTENTIAL

A. Optical potential

Consider a two-electron ion or atom whose Hamiltonian
operator is H and whose energy E lies in the continuous
spectrum. (Henceforth we use boldface for operators.) A
stationary state is represented by a solution of the time-
independent Schrödinger equation:

(H − E1)|�〉 = 0. (1)

Among those subchannels that are open below the threshold
for complete breakup, consider the Nc most energetic, and
suppose that in the remote past the system is prepared in one
of these. There might be other less energetic subchannels that
are open, and the system can evolve into any one of these,
but they are not permitted to be entrance subchannels. We
denote by |�(i)(E)〉 the solution of Eq. (1) which represents
the system when it is prepared in the ith entrance subchannel;
there are Nc independent solutions, with i = 1,2, . . . ,Nc.
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Let P be the operator which projects onto the subspace
spanned by the Nc entrance subchannels i = 1,2, . . . ,Nc.
The orthogonal projection operator is Q = 1 − P. If the kth
electron is the one that remains bound, and if Pk projects onto
the Nc most strongly bound states of the residual one-electron
ion, we have [6]

P = P1 + P2 − P1P2. (2)

The resolvents which act on the P and Q spaces, respectively,
are

GP (E) ≡ P/(E1 − PHP), (3)

GQ(E) ≡ Q/(E1 − QHQ). (4)

The projection P|�(i)(E)〉 is a solution of the homogeneous
equation [5,6],

[Heff(E) − E1]P|�〉 = 0, (5)

where Heff(E) is an energy-dependent effective Hamiltonian
which completely governs the dynamics within P space:

Heff(E) = P[H + HQGQ(E)QH]P (6)

≡ PHP + Vopt(E). (7)

We can view Heff(E) as the Hamiltonian that governs a
fictitious system which resides entirely in P space. The
projection Q|�(i)(E)〉 can be expressed directly in terms of
the solution of Eq. (5) as

Q|�(i)(E)〉 = GQ(E)QHP|�(i)(E)〉. (8)

Since all possible entrance subchannels of interest belong to
P space, none to Q space, Q|�(i)(E)〉 must satisfy outgoing-
wave boundary conditions. Therefore, GQ(E) must be chosen
accordingly. The method by which we evaluate GQ(E) entails
the time average of a series that is derived from an expansion
of the time-translation operator in Laguerre polynomials; this
method has been described in detail elsewhere and need not
be pursued here [8].

The Hamiltonian PHP accounts only for transitions within
P space, while the optical potential

Vopt(E) = PHQGQ(E)QHP (9)

accounts for both real and virtual transitions from P to Q

space. If real transitions take place to Q space, as happens
when more than Nc subchannels are open, GQ(E) generates
both damped and undamped outgoing waves, corresponding to
closed and open subchannels, respectively. Writing H = H0 +
Vee, where Vee is the interaction between electrons, and noting
that P and Q each commute with H0, we have PHQ = PVeeQ
and QHP = QVeeP.

While Q|�(i)(E)〉 is required to satisfy outgoing-wave
boundary conditions, we have the freedom to impose S-matrix
or K-matrix boundary conditions, or variants of these, on
the solutions of Eq. (1). If we impose S-matrix boundary
conditions—expressed by Eqs. (A13) or (A17) below—and
normalize the solutions on the energy scale, so that

〈�(i)(E)|�(j )(E′)〉 = δij δ(E − E′), (10)

the incoming flux in each entrance subchannel i is independent
of i. From these solutions we can construct the Nc × Nc

submatrix of the S matrix for the real system; this submatrix
is the S matrix for the fictitious system that resides in P space.
Since the flux associated with the real system is conserved,
the S matrix for the real system is unitary. However, the
S matrix for the fictitious system need not be unitary; it is
unitary if no more than Nc subchannels are open, that is,
if the submatrix is in fact the whole S matrix for the real
system.

The freedom that we exercised in choosing the boundary
conditions that fix the solutions of Eq. (1) extends to Eq. (5).
Here it is most advantageous to impose standing-wave, that
is, K-matrix, boundary conditions—expressed by Eqs. (A1)
or (A2) below—because the K matrices for both the real and
the fictitious systems are symmetric. In general the K matrix
for the fictitious system is complex, but if no more than Nc

subchannels are open it is real and the corresponding S matrix
is automatically unitary. The symmetry of the K matrix follows
from the property that both H and PHP are Hermitian when
they are sandwiched between standing waves that are in phase
with each other.

This last remark deserves brief elaboration because while
H is Hermitian on state space—the space of all physically
realizable (normalizable) states—standing waves which ex-
tend to infinity are not physically realizable and exist only
in an ideal limit. However, this is only a formal technicality.
A standing wave carries no net energy across a surface, nor
does a superposition of standing waves that are in phase, and
therefore no physical effect can arise from slowly damping out
these waves at asymptotically large distances.

In general Vopt(E), and therefore the effective Hamiltonian
Heff(E), are not Hermitian; only if the open subchannels
number Nc are they Hermitian. Hence, in general the fictitious
system is dissipative; that is, the probability for finding it in
P space is not conserved in time. To deal with dissipative
systems we introduce, in the next section, a dual space which
has a linear correspondence with state space, in contrast to
the customary dual space which has an antilinear correspon-
dence with state space. A bra in the new dual space has a
one-to-one linear correspondence with a space-time-reflected
ket in state space.

B. Space-time reflections

Consider for the moment any system whose Hamiltonian
operator H(t) is Hermitian on state space, where for generality
we allow H(t) to depend on the time, so the system can be open
or closed. Furthermore, suppose that H(t) is invariant under
individual time-reversal and spatial reflections in the xy and yz

planes. We denote the operator which simultaneously effects
all three reflections by ϒ. The projection of the total angular
momentum of the system along the z axis is reversed under
either a time reflection (t → −t) or a space reflection (x →
−x) in the yz plane, but the product of these two reflections
leaves the z component of the angular momentum unchanged,
as does a space reflection (z → −z) in the xy plane. Note
that the product of the two space reflections is equivalent to a
rotation through π about the y axis.
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Suppose that the system of interest is composed of two
subsystems which undergo a collision. Let the system enter
the collision along the direction of the positive z axis in
subchannel i, in the center-of-mass frame. After the collision
has occurred the scattered wave is a superposition of outgoing
waves; the fragments move outward in all directions in various
subchannels. Now consider the mapping of this state under ϒ.
The transformed state describes a collision which begins with
the system entering from all directions in various subchannels;
when the collision is over the system exits along the direction
of the positive z axis in subchannel i. Thus, the transformed
state describes the time reverse of the radial motion in the
original collision, but the angular motion in the original
collision is preserved by the rotation through π about the y

axis.
The operator ϒ is antiunitary, and, adopting the Wigner

phase convention [10], it has the property

ϒ2 = 1 (11)

for both fermionic and bosonic systems. The invariance of the
Hamiltonian is expressed by

ϒ†H(t)ϒ = H(−t). (12)

The state ket |�(t)〉 at time t can be expressed in terms of
the state ket at the boundary time t = 0 through the unitary
time-translation operator U(t); we have |�(t)〉 = U(t)|�(0)〉,
where U(t) is a solution of

ih̄
d

dt
U(t) = H(t)U(t), (13)

subject to the boundary condition

U(0) = 1. (14)

Pre- and postmultiplying both sides of Eq. (13) by ϒ, using
Eq. (12) to replace H(t) by ϒ†H(−t)ϒ, and taking into
account that ϒ complex conjugates c numbers, it follows from
ϒϒ† = 1, after changing the sign of t , that

ih̄
d

dt
ϒ†U(−t)ϒ = H(t)ϒ†U(−t)ϒ. (15)

Since ϒ†U(−t)ϒ satisfies the same boundary condition as
U(t), that is, ϒ†U(0)ϒ = 1, we have

ϒ†U(t)ϒ = U(−t). (16)

Let |�(t)〉 be another state ket, whose space-time reflection is

|�∗(t)〉 = ϒ|�(−t)〉. (17)

Note the reciprocal relationship

|�(t)〉 = ϒ|�∗(−t)〉. (18)

It follows from Eq. (16) that the scalar product of one state ket
with the space-time reflection of another is conserved in time:

〈�∗(t)|�(t)〉 = {〈�(t)|[ϒ|�(−t)〉]}∗
= {〈�(0)|U†(t)[ϒ U(−t)|�(0)〉]}∗
= {〈�(0)|U†(t)[ϒϒ†U(t)ϒ|�(0)〉]}∗
= 〈�∗(0)|�(0)〉, (19)

where the large square brackets are necessary for antilinear
operators, and where in arriving at the last step we used the
unitarity of U(t) and the antiunitarity of ϒ.

We conclude that when a system is nondissipative, con-
servation of probability can be expressed by the preservation
of either the traditional norm 〈�(t)|�(t)〉, which is always
positive definite, or the nontraditional “norm” 〈�∗(t)|�(t)〉.
On the other hand, when a system is dissipative, 〈�(t)|�(t)〉
is not conserved, because probability flux escapes from
the subspace of available states. However, 〈�∗(t)|�(t)〉 is
conserved, because it is a measure of both the flux that
leaves the subspace of available states and the equally intense
space-time-reflected flux that enters this subspace [11]. In the
remainder of this paper a bra appears almost always as the
dual of a space-time-reflected ket, and this is indicated by an
asterisk (as above).

Now we return to the fictitious system governed by the
energy-dependent but static Hamiltonian Heff(E), with E real.
Since H is invariant under space-time reflections, so is the first
term on the right side of Eq. (7); that is,

ϒ†(PHP)ϒ = PHP. (20)

On the other hand, adding an infinitesimal positive imaginary
part i0 to E as a reminder that E lies on the upper edge
of the unitarity cut, we have ϒ†G(E + i0)ϒ = G(E − i0) =
G(E + i0)†, so the second term on the right side of Eq. (7) has
the property

ϒ†Vopt(E)ϒ = Vopt(E)†. (21)

Premultiplying both sides of the time-dependent Schrödinger
equation

ih̄
d

dt
|�(t)〉 = [PHP + Vopt(E)]|�(t)〉 (22)

by ϒ, changing the sign of t , and using Eqs. (17), (20), and
(21) and the antiunitarity of ϒ yields

ih̄
d

dt
|�∗(t)〉 = [PHP + Vopt(E)†]|�∗(t)〉. (23)

Therefore, the time-rate of change of the norm appropriate
to a dissipative system governed by the effective Hamiltonian
Heff(E) is

ih̄
d

dt
〈�∗(t)|�(t)〉 = 〈�∗(t)|[PHP − (PHP)†]|�(t)〉. (24)

Note that Vopt(E) drops out; in other words, whereas the time-
rate of change of 〈�(t)|�(t)〉 accounts for both dissipative and
nondissipative losses, the time-rate of change of 〈�∗(t)|�(t)〉
expresses only nondissipative loss.

C. Bloch operator

Let us divide configuration space into two parts, the interior
and exterior of a box which is a hypersphere of hyperradius R.
Suppose that the Hamiltonians H and Heff(E) are rotationally
invariant, so all planes are equal with respect to spatial
reflections. In this section, and the next one, we focus on
the region interior to the box. We use the subscript “int” to
indicate that integration is confined to the interior. Evaluating
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the right side of Eq. (24) on the boundary, we find the rate of
nondissipative loss to be

h̄
d

dt
〈�∗(t)|�(t)〉int = 〈�∗(t)|

{
1

2c
�A(R) · �j

+
[

1

2c
�A(R) · �j

]†}
|�(t)〉int, (25)

where �j is the probability current operator and where �A(R)
is the vector potential for a fictitious magnetic field which in
position space is normal to the boundary surface, where it is
localized with amplitude c:

�A(R) = cδ(r − R)R̂. (26)

According to Eq. (25) we can attribute any nondissipative
loss of probability flux from within the box to a Hermitian
interaction at the boundary of the box between the probability
current and a magnetic field.

However, the total nondissipative loss of flux within
the box, summed over all pathways, must be zero. This
constraint can be automatically fulfilled by representing the
wave function on a discrete “standing-wave basis” composed
of functions that vanish at the boundary R. Unfortunately,
as discussed in the Introduction, the wave function does not
converge uniformly on this basis. Therefore, suppose that we
choose a more suitable basis, albeit one which does not ensure
that the preceding constraint is automatically fulfilled. In this
case a spurious current appears at the boundary. One way
around this difficulty is well known. To paraphrase Bloch,
we can add to the Hamiltonian a non-Hermitian coupling
to a magnetic field whose purpose is to absorb the spurious
current [3]. The coupling to a (mathematically) real magnetic
field, that is,

1

2c
�A(R) · �j,

is not a suited for this purpose because it is not invariant under
time reversal. On the other hand, the coupling to a purely
imaginary magnetic field, that is,

i

2c
�A(R) · �j,

is both non-Hermitian and invariant under space-time reflec-
tions. Thus, we can add the “Bloch operator” i

2c
�A(R) · �j to H

in PHP; the modified Hamiltonian operator

Hmod ≡ H + i

2c
�A(R) · �j (27)

is both Hermitian and invariant under space-time reflections.
This modification to the true Hamiltonian must be offset by
subtracting a similar source term from the optical potential, a
prescription originally proposed by Bloch for nondissipative
systems, but which is evidently also applicable to dissipative
systems.

In summary, the equation for P|�〉 inside the box can be
written in the form

(E1 − PHmodP)P|�〉 = P
[
Vopt(E)− i

2c
�A(R) · �j

]
P|�〉.

(28)

If real boundary conditions are applied, PHmodP is Hermitian
and its eigenvalue spectrum is real and discrete. The inverse

of (E1 − PHmodP) can be represented by its spectral decom-
position. Let |Ẽn〉 be an eigenket of PHmodP with eigenvalue
Ẽn. The solution of Eq. (5) within the box is

P|�〉 =
∑

n

|Ẽn〉〈Ẽn|
E − Ẽn

[
Vopt(E) − i

2
�A(R) · �j

]
P|�〉. (29)

This solution can be matched to the solution outside the box
to yield the K matrix and hence the S matrix.

D. Separation of incident and scattered waves

The addition of a term to the Hamiltonian which couples the
probability current to a fictitious magnetic field lacks physical
justification. A more serious drawback of the Bloch operator is
that its spatial representation is singular, so convergence with
respect to basis size is expected to be slow. Thus, a correction,
the Buttle correction, is often invoked [4].

In this section we describe an approach which does not
require the Bloch operator. We decompose P|�〉 into an
incident wave P|�inc〉 and a “scattered” wave P|�scat〉 where
the quotes signify that P|�inc〉 and P|�scat〉 have merely the
characteristics of incident and scattered waves. We expand
P|�scat〉 within the box on a basis whose radial basis functions
vanish at the boundary of the box (they also vanish at the
origin in order to satisfy regular boundary conditions there).
We specify P|�inc〉 within the box so that it mimics the incident
wave; this term is not part of the basis. We can reexpress Eq. (5)
as

(E1 − PHP)P|�scat〉 = Vopt(E)P|�〉 + (PHP − E1)P|�inc〉.
(30)

Since the basis satisfies standing-wave boundary conditions
PHP is Hermitian on this basis. The formal solution of Eq. (30)
within the box is

P|�scat〉 = GP (E)[Vopt(E)|�scat〉 + Vopt(E)|�inc〉
+ (H − E1)P|�inc〉], (31)

and this solution automatically satisfies standing-wave bound-
ary conditions when GP (E) is replaced by its spectral
decomposition.

Let |En〉 be an eigenket of PHP with (real) eigenvalue
En; it is simultaneously an eigenket of both ϒ and P with
unit eigenvalues. Using the completeness of the |En〉 on the
subspace to which P|�scat〉 belongs, Eq. (31) becomes

P|�scat〉 =
∑

n

|En〉
E − En

[ ∑
m

〈En|Vopt(E)|Em〉int〈Em|�scat〉int

+〈En|Vopt(E)|�inc〉int + 〈En|(H − E1)P|�inc〉int

]
.

(32)

We have assumed that the spatially nonlocal optical potential
is sufficiently weak at distances beyond R that it does not act
outside the box. This is a reasonable assumption even when Q

space contains open subchannels. The reason is as follows: The
unbound electron has a smaller (asymptotic) linear momentum
in an open subchannel in Q space than it does in an open
subchannel in P space. Therefore, the integrand of a matrix
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element of PVeeQ oscillates with respect to large values of
the radial coordinate of the unbound electron. Consequently,
the contribution from large distances to the integral washes
out. Although the difference in the momenta of the unbound
electron in P and Q spaces shrinks as the total energy of
the system increases, this is offset by the energy denomi-
nator of the resolvent GQ(E) which appears in the optical
potential.

Premultiplying both sides of Eq. (32) by 〈En| yields the
following system of inhomogeneous linear equations for the
matrix elements 〈En|�scat〉int:∑

m

[(E − En)δnm − 〈En|Vopt(E)|Em〉int]〈Em|�scat〉int

= 〈En|Vopt(E)|�inc〉int + 〈En|(H − E1)P|�inc〉int. (33)

The functional form of |�inc〉 is specified (in position space),
but its amplitude is left unspecified and is determined by
matching the interior and exterior solutions and their deriva-
tives at the boundary of the box. Thus, the inhomogeneous
term on the right side of Eq. (33) is fixed up to the
normalization of |�inc〉, as are the solutions of Eqs. (32)
and (33).

Note that while the matrix elements 〈Em|Vopt(E)|En〉int are,
in general, complex, they are symmetric, that is, since |En〉 is
an eigenket of ϒ with unit eigenvalue,

〈Em|Vopt(E)|En〉int = (〈Em|ϒ†)[Vopt(E)ϒ|En〉int]

= {〈Em|[ϒ†Vopt(E)ϒ|En〉int]}∗
= [〈Em|Vopt(E)†|En〉int]

∗

= 〈En|Vopt(E)|Em〉int, (34)

where in the last step but one we used Eq. (21).

III. INTERIOR REGION

In the preceding subsection we framed the solution of
Eq. (5) in terms of the eigenkets of the operator PHP without
distinguishing the bound electron from the unbound one. In
practice, H is represented by a matrix H (r), where r is the
radial coordinate of the unbound electron and where we have
integrated over the remaining coordinates, that is, over the
angular coordinates and the radial coordinate of the bound
electron. (Here and elsewhere we distinguish matrices by
underscoring the appropriate symbol.) Thus, while Eq. (33)
displays the formal structure of the linear equations we want
to solve, the actual equations we solve are those that result from
expanding P|�scat〉 on the “channel basis,” as we discuss in the
present section. We express Eq. (5) on this basis in matrix form:

[H eff(r) − E1]F (r) = 0, (35)

where H eff(r) is the matrix representation of Heff on the
channel basis and where F (r) is the “channel matrix” whose
columns are independent solutions of Eq. (5) in the channel
representation.

A. Channel basis

The total angular momentum of the system is conserved,
and we assume the system is in an eigenstate of the total angular
momentum operator and its projection along the z axis. Let
�r1 and �r2 locate bound and unbound electrons, respectively,

relative to the nucleus. The expressions given in this section,
and the next one, must be symmetrized with respect to the
electrons. If i is the entrance subchannel the solution of Eq. (5),
that is, the projection of the wave function in P space, has the
form

1

r1r2

∑
j

F
(i)
j (r2)φj (r1,r̂1,r̂2) = 1

r1r2
[ �F (i)(r2)]t · �φ(r1,r̂1,r̂2)

(36)

everywhere in position space. The “channel function” F
(i)
j (r2)

is the radial wave function of the unbound electron, 2, and t
denotes transpose. The wave function of the bound electron, 1,
in state j is φj (r1,r̂1,r̂2); we have incorporated the coupling of
the angular momentum of the two electrons in φj (r1,r̂1,r̂2).
The φj form the channel basis, which is orthonormal,
that is,

∫
dr1d

2r̂1d
2r̂2 �φ∗(r1,r̂1,r̂2) ⊗ �φ(r1,r̂1,r̂2) = 1, (37)

where without compromise we choose the length R of the
box to be sufficiently large that the φj vanish outside the
box, so the region of integration can be confined to the box.
Thus, the superscript i and the subscript j , respectively, on
F

(i)
j (r2) denote the solution (the entrance subchannel) and the

component of this solution on the channel basis; the sum on
the right side of Eq. (36) is over Nc open subchannels. We
choose φj to be an eigenfunction of ϒ. The general solutions
of Eq. (5), everywhere in position space, are the elements
of a column vector ��(�r1,�r2)/(r1r2) of dimension Nc; each
element is a solution of the form [ �F (i)(r2)]t �φ(r1,r̂1,r̂2)/r1r2,
corresponding to a particular entrance channel i. Thus, we
have

��(�r1,�r2) = F t(r2) �φ(r1,r̂1,r̂2), (38)

with F (r2) the channel matrix, whose columns are the vectors
�F (i)(r2).

Let V opt(r,r
′
) represent Vopt on the channel basis. The

incident- and scattered-wave components of a particular so-
lution, that is, 〈�r1,�r2|P|�inc〉 and 〈�r1,�r2|P|�scat〉, are elements
of the vectors F t

inc(r2) �φ(r1,r̂1,r̂2) and F t
scat(r2) �φ(r1,r̂1,r̂2),

respectively. Taking the outer product of Eq. (35) with
�φ∗(r1,r̂1,r̂2) and integrating over r1,r̂1, and r̂2 using Eq. (37)
yields the following inhomogeneous integral equation for
F scat(r):

F t
scat(r) =

∫ R

0
dr ′[F t

scat(r
′)D(r,r ′) + F t

inc(r ′)B(r,r ′)

+F t
inc(r

′
)C(r,r ′)

]
, (39)

where, introducing a column vector �ψm(R) of dimension Nc

defined by

�ψm(r2) =
∫

dr1d
4r̂1,r̂2 �φ(r1,r̂1,r̂2)〈Em|�r1,�r2〉, (40)

we have

B(r,r ′) =
∑

n

�ψn(r) ⊗ �ψ∗
n (r ′)

E − En

[H (r ′) − E1], (41)
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C(r,r ′) =
∑

n

�ψn(r) ⊗ ∫ R

0 dr
′′ �ψ∗

n (r
′′
)

E − En

V opt(r
′′
,r ′), (42)

D(r,r ′) =
∑

n

∑
m

〈En|Vopt(E)|Em〉
�ψm(r) ⊗ �ψ∗

n (r ′)
E − En

. (43)

The complete channel matrix is F (r) = F scat(r) + F inc(r). We
reduce the integral equation (39) to a system of linear equations
by expanding F scat(r) on a basis; this basis is described in
Sec. III C below.

B. Incident wave

A judicious choice for the functional form of F inc(r) is
critical to account for the correct behavior of the incident wave
at small and large distances. Writing

F t
inc(r) = N t F t

inc(r), (44)

where N is the normalization matrix, we choose F inc(r) to be
a diagonal matrix whose diagonal elements are

Fi,inc(r) = ĵli

[
kir + γi ln

(
1 + 2kir

ci

)
+ δi(ki)r

bi + r

]
. (45)

Here h̄ki and li are the asymptotic momentum and the
angular momentum quantum number of the unbound particle,
respectively, γi = (Z − 1)/(a0ki) with Z = 2, the atomic
number of the nucleus, ĵl(x) is a Riccati-Bessel function, that
is,

ĵl(x) =
√

πx

2
Jl+ 1

2
(x), (46)

with Jν(x) a regular Bessel function, bi and ci are fixed positive
parameters, and δi(ki) is a variational parameter. The functions
Fi,inc(r) are regular at the origin and have the asymptotic forms

Fi,inc(r) → sin

[
kir − 1

2
liπ + γi ln

(
1 + 2kir

ci

)
+ δi(ki)

]
.

(47)

The parameter bi characterizes the radius of the core in
subchannel i; in our calculations we fixed its value to be
4 a.u. in all subchannels. The logarithmic term
ln[1 + (2kir/ci)] accounts for Coulomb distortion at
large distances, that is, distances where k2

i ra0 � 1. Since
r < R in the interior region this logarithmic term is warranted
only if k2

i Ra0 � 1; thus, ci serves as an appropriate cutoff
parameter, whose value we fixed to be

ci = 1 + 1

k2
i Ra0

. (48)

Evidently, δi(ki) is a phase shift which supplements the phase
shift − 1

2 liπ due to free-particle scattering from the angular
momentum barrier. The “optimal” values of the δi(ki) can be
determined from the Kohn variational principle. However,
we find that satisfactory accuracy can be achieved without
optimization by fixing δi(ki) to have the smallest absolute
value for which

Fi,inc(R) ≈ 1; (49)

this ensures that Fi,inc(r) is out of phase with the basis
functions that we introduce in the next section. Thus, using

the asymptotic form of ĵl(x) we take

δi(ki) ≈ −kiR + li
π

2
− γi ln

(
1 + 2kiR

ci

)
+ (2n + 1)

π

2
,

(50)

where the integer n is chosen so that

−π/2 < δi(ki) � π/2. (51)

The scattered wave F scat(r) within the box is the solution of
Eq. (39), unique up to the normalization matrix N . We solve
Eq. (39) by first expanding F scat(r) on a suitable basis.

C. Scattered wave

The integral equation (39) for the scattered wave F scat(r)
reduces to a system of linear equations once we expand
F scat(r) on a basis. We employed a basis whose radial part
is composed of simple, real, analytic basis functions of two
types, Riccati-Bessel and Sturmian functions, each of which is
regular, and therefore vanishes, at the origin. We denote these
basis functions by unl(r) and vnl(r), where

unl(r) = 1√
R

ĵl(knr), (52)

vnl(r) =
√

κ

n(n − l)2l+1
(2κr)l+1L2l+1

n−l−1(2κr)e−κr , (53)

with Lµ
ν (x) an associated Laguerre polynomial.

The parameters κ and kn are real, positive wave numbers.
We fix the value of κ in each subchannel, but we choose
this value to be sufficiently large that the vnl(r) vanish at
the boundary r = R; thus, the vnl(r) satisfy standing-wave
boundary conditions:

vnl(0) = vnl(R) = 0. (54)

Consequently, the ordinal numbers of the vnl(r) are limited to
the range

n − l � κR. (55)

The vnl(r) are mutually orthogonal over the interval
0 � r < ∞ with respect to the weight function 1/r , whereas
the unl(r) are mutually orthogonal over the interval 0 � r � R

with respect to a weight function of unity provided that the
wave numbers kn are chosen to be

kn = αn/R, n = 1,2,3, . . . , (56)

where, with β a fixed but open parameter, the αn are roots of
the equation

(1 − 2β)Jl+ 1
2
(x) + 2xJ

′
l+ 1

2
(x) = 0, (57)

where the prime indicates the derivative with respect to x.
Thus, the unl(r) have a fixed logarithmic derivative at r = R:

dunl(r)

dr

∣∣∣∣
R

= βunl(R). (58)

As noted in the Introduction, we choose the unl(r) so that they
too satisfy standing-wave boundary conditions:

unl(0) = unl(R) = 0. (59)

Hence, we let β become infinite; accordingly, the αn are the
roots of

Jl+ 1
2
(x) = 0. (60)
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The basis functions unl(r) and vnl(r), respectively, have
long and short length scales, R and 1/κ . The unl(r) are
eigenfunctions of the radial kinetic energy operator, and if
a sufficiently large number of them are selected they span the
region 0 � r � R more or less uniformly, and they build in the
regular oscillations of the unbound particle’s wave function at
distances l/k � r � R where the particle is almost free. In the
region where the interaction is strong, that is, l/k � r � R,
the wave function may vary rapidly; the more compact vnl(r)
are needed to describe this short-range behavior. In particular,
because vnl(r)/rl behaves linearly with r when r ∼ 0, it can
account (at least partially) for the cusp in the wave function
which arises from the Coulomb singularity of the potential at
the origin. In contrast, unl(r)/rl is an even function of r; its
derivative vanishes when r ∼ 0, and therefore it cannot mimic
a cusp at the origin. [An infinite number of the unl(r) are
required to mimic the cusp.] We choose the wave numbers kn

of the unl(r) to cover two (generally nonoverlapping) ranges,
namely, the long-wavelength range where n runs from 1 up to
a number of order 10, and the shorter-wavelength range which
depends on the subchannel and is defined so that the energies
h̄2k2

n/(2µ) surround the energy of the unbound electron (of
mass µ) in each subchannel.

The expansion of the scattered wave F scat(r) on this hybrid
basis ensures that it vanishes at both r = 0 and r = R. Since
F inc(r) also vanishes at r = 0, so does the full channel matrix
F (r), which is the sum F inc(r) + F scat(r). Since F (r) is
matched at r = R to the “exact” solution outside the box, and
since the exact solution inside the box vanishes at r = 0, the er-
ror in F (r) inside the box vanishes at both r = 0 and r = R and
therefore is incorporated in the solution F scat(r) of Eq. (39).

Neglecting exponentially small contributions of order e−κR

in Eqs. (62) and (63) below, we have∫ R

0
dr uml(r)unl(r) = 1

2
[ĵ ′

l (αn)]2δmn, (61)

∫ R

0
dr vml(r)

1

r
vnl(r) = κ

n
δmn, (62)

∫ R

0
dr vml(r)vnl(r) = δmn − 1

2

√
(n ∓ l)(n ± l ± 1)

n(n ± 1)
δm,n±1,

(63)

where ĵ ′
l (x) is the derivative with respect to x of ĵl(x). Note that

the uml(r) are not orthogonal to the vnl(r). Indeed, the entire
set of eigenfunctions unl(r),n = 1,2,3, . . . is complete, so in
principle the vnl(r) are redundant. This raises the question as
to whether numerical linear dependence intrudes when a finite
number of both the uml(r) and the vml(r) are included; the
answer is no, as long as the inequality (55) is obeyed. Note
that matrix elements constructed on the u and v subspaces,
respectively, scale with R and 1/κ .

IV. COMPARISON WITH TRADITIONAL
R-MATRIX APPROACH

The formalism described in the preceding two sections can
be applied to a stationary collision or half-collision process. In
a collision process a system enters and leaves a “box” whose

linear dimension is R. In a half-collision process (which is
intrinsically dissipative) an unstable system initially resides
within the box. The boundary at r = R is fictitious and in
reality not impenetrable, so in both processes probability flux,
and therefore energy, cross the boundary. The flow of energy
across a surface cannot be described by a finite superposition
of standing waves that are in phase with one another; at least
one wave must be out of phase with the others. On the other
hand, a Hamiltonian that is represented on a basis of standing
waves that are out of phase is not Hermitian.

In the traditional R-matrix approach a basis is employed
on which the matrix representation of the Hamiltonian is non-
Hermitian. The singular Bloch operator must be added to the
Hamiltonian as a source term to compensate for a spurious
current at the boundary.

In the present approach, where state space is divided into
P and Q subspaces, the problem reduces to that of a fictitious
system residing in P space. The sub-Hamiltonian PHP is
represented by a Hermitian matrix. However, the P -space
wave function does not converge uniformly on the basis formed
by the eigenfunctions of this matrix. Only the scattered-wave
part of the P -space wave function converges uniformly. The
incident-wave is out of phase with the scattered wave and
is not expanded on the basis; it is fully specified up to its
normalization, and it provides a source term in analogy with
the Bloch operator.

In the traditional approach, that part of the basis which
simulates the continuum is often composed at least partially
from numerical solutions to a simple but suitable differential
equation. The basis need cover only the relatively small
volume where electron exchange and correlation are important.
The R matrix is determined at the boundary. It satisfies the
Kohn variational principle. However, the derivative of the
wave function at the R-matrix boundary is, in general, not
continuous. In the outer region, where the interaction of the
unbound electron with the residual target can be replaced by
its multipole expansion, the Schrödinger equation is integrated
numerically out to a distance that is sufficiently large for the
wave function to be matched to the free-particle wave function,
distorted by the Coulomb potential if there is a nonvanishing
monopole. The K matrix is determined by this matching.

In the present approach a basis composed entirely of
analytic functions is employed. This basis is required to cover
a region well beyond where electron exchange and correlation
are important. We choose the boundary to be sufficiently far
so that beyond the boundary it is reasonable to retain only
the monopole and the static dipole terms in the multipole
expansion of the interaction of the unbound electron with
the residual target. The derivative of the wave function at
the boundary is continuous. Both the inner solution and its
derivative are matched at the boundary to the closed-form
solution of the Schrödinger equation for a particle moving in
a local potential that results from a combination of Coulomb
and dipole fields. Therefore, we derive the K matrix, rather
than the R matrix, at the boundary. The details are given in
Appendix A. The resulting K matrix has a first-order error.
However, the first-order correction can be readily obtained
from the Kohn variational principle, as shown in Appendix B.

The incident wave depends on the energy of the system,
so matrix elements involving the incident wave must be
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recalculated at each energy. Furthermore, the basis on which
the scattered wave is expanded is energy dependent since
the wave numbers kn of the Riccati-Bessel basis functions
unl(r) are chosen so that at least a few of the energies
h̄2k2

n/(2µ) surround the energy of the unbound electron in
each subchannel. By contrast, the R matrix is traditionally
diagonalized on an energy-independent basis and the same
matrix is applicable at all energies. This is possible because
the R matrix can be determined at a boundary which is much
closer to the origin than the boundary at which the K matrix
can be determined.

In the traditional approach the loss of probability from a
subchannel due to excitation or ionization to subchannels that
are not described exactly is taken into account through the
inclusion in the basis of pseudostates (which do not, however,
satisfy physical boundary conditions). In the present approach
those subchannels that are not described exactly are relegated
to Q space, a space that is spanned by a basis that, in principle,
is complete. The Q-space wave function accounts for the loss
of flux from P space and is coupled to the P -space wave
function by the optical potential. The Q-space wave function is
expressed through a Q-space resolvent that satisfies outgoing-
wave boundary conditions.

V. PHOTOIONIZATION OF He WITH SIMULTANEOUS
EXCITATION TO He+(2s) OR He+(2p)

We have applied our method to one-photon single-
ionization of He accompanied by excitation to the 2s and
2p states of He+. We chose the light to be linearly polarized,
and the photon energy to be in the range 80 eV (just above the
complete breakup threshold) to 250 eV.

We took the box radius to be R = 50 a.u. in our calculations
and we included independent-electron orbtial angular momen-
tum quantum numbers ranging from 0 to 3. Four subchannels,
that is, 1sεp, 2sεp, 2pεs, and 2pεd, were included in P space.
We solved the system of linear equations that emerge from the
integral equation (39) for the P -space scattered wave F scat(r)
after representing F scat(r) on the hybrid basis described in
Sec. III C. The radial functions were mostly Riccati-Bessel
functions, typically 52 for the 1s subchannel and 45 for the
other subchannels; only a few Sturmian functions, restricted
by the inequality (55), were included, namely, 10 for the
1s subchannel and 4 for the other subchannels. Hence, the
linear equations for the P -space scattered wave numbered no
more than about 250. The phase shifts δi(ki) belonging to the
incident wave were not optimized and were fixed as stated
by Eqs. (50) and (51). The radial component of the Q-space
wave function was represented on a basis composed entirely of
Sturmian functions, unrestricted by the inequality (55); either
15 or 30 radial Sturmian functions per electron per angular
momentum quantum number were included. The ground-state
wave function was represented on a similar basis, employing
30 Sturmian functions per electron per angular momentum
quantum number; we obtained the estimate −2.903 30 a.u. for
the ground-state energy, with an error of 0.015% compared to
Pekeris’ estimate. [12]

The construction of the ground-state wave function entailed
a matrix of dimension 1860 × 1860. The largest matrix

involved in the construction of the Q-space wave function was
of dimension 2700 × 2700. These matrices were calculated
rapidly using Gauss-Laguerre quadrature and were constructed
only once since they were built entirely from Sturmian
functions—the matrix elements scaled with the basis wave
number (i.e., with the characteristic distance covered by the ba-
sis). The most time-consuming part of the calculation was the
construction of the matrix PHQ representing the coupling of
P and Q spaces (a matrix whose dimension was no more than
about 250 × 2700). Most of this matrix was constructed only
once, using Gauss-Legendre quadrature, but part of the matrix,
the part containing the 4 × 2700 elements that couple the (four
components of the) “incident” wave to the Q-space basis,
was recalculated at each energy. In addition, the wave numbers
of the Riccati-Bessel functions in the P -space basis were
adjusted at three different intervals within the full range of
energies considered; this required a larger part of the matrix
to be recalculated (but only three times). Nevertheless, the
calculation was manageable on a modern desktop.

We changed the sizes of the P - and Q-space bases (e.g.,
from 15 to 30 radial Sturmian functions per electron per
angular momentum quantum number in Q space) to verify
that our results are converged; the departure from convergence
would be not be visible on the figures. The symmetry of the
K matrix provides a useful but not foolproof indication of
numerical accuracy. A more reliable measure of numerical
accuracy is the relative size of the variational correction.
Generally, our estimates of the K matrix were symmetric to
at least three significant figures before adding the variational
correction and to seven or more significant figures after adding
this correction. We found the variational correction to be
substantially less than 1% on average. Results obtained in
the length gauge differed from those obtained in the velocity
gauge by less than 1%; such differences would be not be visible
on the figures.

At high photon energies the photon is absorbed by one of
the electrons as it passes close to the nucleus, which is possible
if this electron has no orbital angular momentum. Since the
total orbital angular momentum of He(1s2) is zero the spectator
electron must also have no orbital angular momentum. As the
photoelectron escapes, carrying away unit angular momentum,
the spectator electron can relax into the 2s state of He+ with a
probability given by the sudden approximation, that is,

|〈2s,Z|1s,Zeff〉|2 = 211(ZZeff)3(Z − Zeff)2

(Z + 2Zeff)8
, (64)

where Zeff is the effective nuclear charge seen by the spectator
electron prior to photoabsorption by the active electron. If
the spectator electron does relax into the 2s state, its state
subsequently evolves into a mixture of degenerate 2s and 2p

states since the photoelectron continues to interact, if only
weakly, with the bound spectator; but the sum of the 2s and
2p populations remains almost constant. The probability that
the spectator electron relaxes into the 1s, rather than the 2s,
state of He+ is approximately

|〈1s,Z|1s,Zeff〉|2 = 26(ZZeff)3

(Z + Zeff)6
. (65)
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FIG. 1. (Color online) Cross section for photoionization to the
1s state of He+. Thick solid line, present results, including optical
potential; triangles, Decleva et al. [13]; circles, experimental data
from Bizau and Wuilleumier [15].

Hence, within the sudden approximation the ratio of the
cross sections for excitation to the n = 2 and n = 1 levels
approaches a constant at asymptotically high photon energies:

σ2p+2s

σ1s

≈ 25
(
Z2 − Z2

eff

)2
(Z + Zeff)4

(Z + 2Zeff)8
. (66)

To the extent that the sudden approximation is valid the
optical potential can be neglected. If we do omit the optical
potential and compare our resulting estimate 0.048 for the
ratio σ2p+2s/σ1s at 250 eV with the constant on the right side of
Eq. (66), we obtain Zeff ≈ 1.45. This value of Zeff is somewhat
smaller than the value 27/16 ≈ 1.69 which minimizes the
ground-state energy of He in a crude independent-particle
model; the smaller value is plausible because when the active
electron is close to the nucleus the spectator electron is more
fully screened from the nucleus. With the optical potential
included, we estimate the ratio σ2p+2s/σ1s to be 0.578 at 250 eV
compared to the values 0.509 and 0.566, respectively, predicted
by Decleva et al. [13] and measured by Wehlitz et al. [14]

Cross sections for photoionization to the 1s and to the n = 2
states of He+ are shown in Figs. 1 and 2 for photon energies
from 80 to 250 eV. The case where He+ is left in the ground
state is not an especially rigorous test of our method; inclusion
of the optical potential makes little difference and would be
barely visible were we to show this difference on Fig. 1.
Nevertheless, it is reassuring that our results compare favorably
with both the experimental data of Bizau and Wuilleumier [15]
and the theoretical results of Decleva et al. [13]. The latter
authors also employed a variant of the R-matrix method; they
used a B-spline basis in the inner region, and joined the wave
function in this region to the asymptotic wave function in the
outer region by a least-squares fit at the boundary. (However,
they did not include the dipole contribution to the asymptotic
wave function.) The case where He+ is left in an excited state
is a more demanding test; in this case inclusion of the optical
potential does affect the cross section, as is evident from Fig. 2.
Again our results compare favorably with the experimental
data of Bizau and Wuilleumier [15] and, a bit less favorably,
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FIG. 2. (Color online) Cross section for photoionization accom-
panied by excitation, summed over the n = 2 states of He+. Thick
solid line, present results, including optical potential; thin solid line,
present results, excluding optical potential; crosses, Sánchez and
Martı́n [16]; triangles, Decleva et al. [13]; diamonds, Berrington
et al. [17]; circles, experimental data from Bizau and Wuilleumier
[15]; squares, experimental data from Woodruff and Samson [18].

with the experimental data of Woodruff and Samson [18]. We
show various theoretical results in Fig. 2, those of Decleva
et al. [13], Sánchez and Martı́n [16], who used a Slater-type
basis to represent both discrete and (properly normalized)
continuum states, and Berrington et al. [17], who used the
traditional R-matrix method. At photon energies below 140 eV
there are significant differences between our results and those
of the other theoretical groups. These differences are, overall,
of the same magnitude as the differences that we find by
including or excluding the optical potential, and we suspect
that the source of the discrepancies is the imperfect treatment
in the other theories of the loss of flux to the continuum.
Since our results are converged with respect to the basis in
Q space it appears that the loss of flux from P space is well
accounted for by our complex optical potential. As the photon
energy increases beyond about 120 eV the differences that
result from including or excluding the optical potential rapidly
diminish, and accordingly the theoretical results of Sánchez
and Martı́n [16] and Decleva et al. [13] converge rapidly toward
our results. (Results of Berrington et al. [17] are not available
beyond 120 eV.)

Finally, we consider the 2p/2s branching ratio. Suppose
that at time t = 0, shortly after photoejection has occurred,
the bound electron is in the 2s state of He+. At asymptotically
high energies the photoelectron moves in a straight line, and
the first-order probability amplitude that the ion undergoes a
transition to the 2p state is, with a ∼ a0,

− i

h̄

∫ ∞

0

〈2p|z|2s〉
a2 + v2t2

= −i

(
3πe2a0

2Zh̄av

)
. (67)

Therefore, at very high photon energies the 2p-to-2s branching
ratio is

σ2p

σ2s

≈
(

3πh̄

2Zmav

)2

, (68)
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FIG. 3. (Color online) Branching ratio for populations of the 2p

and 2s states of He+. Thick solid line, present results, including
optical potential; thin solid line, present results, excluding optical po-
tential; dashed line, crude formula, Eq. (68) of text; crosses, Sánchez
and Martı́n [16]; triangles, Decleva et al. [13]; diamonds, Berrington
et al. [17] (length gauge); inverted triangles, Berrington et al.
[17] (velocity gauge); circles, experimental data from Bizau et al.
[19]; squares, experimental data from Woodruff and Samson [18].

which is inversely proportional to the photon energy when
this is very high. Results for the branching ratio are shown
in Fig. 3. We have chosen the value of the parameter a in
Eq. (68) so as to give perfect agreement at 250 keV between
this crude formula and our results obtained from omitting the
optical potential. (We find a = 0.4a0, considerably smaller
than the characteristic radius 2a0 of the 2s or 2p ion.) However,
the optical potential makes a significant contribution to the
branching ratio even at 250 eV. The results of Decleva et al.
approach ours as the photon energy increases, but there is
little agreement between the various theoretical results in the
range 80–120 eV, and we suspect that is due to the imperfect
treatment in the other theories of both the loss of flux to the con-
tinuum and the dipole coupling of the photoelectron to the ion.

VI. CONCLUSION

We have described a method for treating collision processes
which shares most of the advantages of the standard R-matrix
approach, but which accommodates the proper boundary
conditions by supplementing the basis for the interior region
with an incident wave that takes into account the out-of-phase
oscillations of incident and scattered waves. The incident and
scattered waves are both standing waves; but whereas the
scattered wave vanishes at the boundary of the interior region,
the incident wave does not vanish at this boundary—rather,
it satisfies the correct asymptotic boundary condition at large
distances. The probability flux that is lost to subchannels not
treated exactly is accounted for by the optical potential, which
is constructed using a resolvent that satisfies outgoing-wave
(rather than standing-wave) boundary conditions. We have
demonstrated the efficacy of the method by employing an
analytic basis to calculate cross sections for photoionization
of He accompanied by excitation to the 2s and 2p states of He+
at photon energies above the complete breakup threshold. The

use of an analytic basis together with the direct determination
of the K matrix at the boundary (by matching to the nearly
exact analytic solution beyond the boundary) makes the
method particularly well suited to the treatment of ultracold
collisions.

APPENDIX A: EXTERIOR REGION

In the region exterior to the box we attach a subscript to F (r)
and its elements to indicate the type of asymptotic boundary
condition that the solutions satisfy. The customary K-matrix
asymptotic boundary conditions satisfied by the ith column of
the channel matrix are, for r � R,

F
(i)
Kj (r) → 1√

2πkj

[
sin

(
kj r − 1

2
ljπ + γj ln 2kj r + σlj

)
δji

+ cos

(
kj r − 1

2
ljπ + γj ln 2kj r + σlj

)
Kji

]
.

(A1)

The index j refers to the subchannel in which the unbound
particle leaves the collision, h̄kj and lj are the asymptotic
momentum and the angular momentum quantum number,
respectively, of this particle, σlj (kj ) (which we abbreviate
as σlj ) is the Coulomb phase shift, and γj = Z′/(a0kj ) with
Z′ = Z − 1 and Z the atomic number of the nucleus. The
prefactor 1/

√
2πkj ensures that the solutions which satisfy

S-matrix boundary conditions (see below) are normalized on
the energy scale.

However, since orbital angular momentum is exchanged
over very large distances due to static dipole coupling, more
suitable asymptotic boundary conditions with no dependence
on angular momentum are (r � R)

F
(i)
K̃j

(r) → 1√
2πkj

[sin(kj r + γj ln 2kj r + σ0)δji

+ cos(kj r + γj ln 2kj r + σ0)K̃ji]. (A2)

We include the s-wave Coulomb phase shift σ0 in all
subchannels since this accounts for most of the Coulomb
scattering at large distances, particularly near threshold, and
its presence ensures smooth threshold behavior.

Following Seaton [7] we write

F K̃ (r � R) = F sin(r) + F cos(r)K̃, (A3)

where the matrices F sin(r) and F cos(r) are, for all r � R,

F sin(r) = X Gsin(r)X†, (A4)

F cos(r) = X Gcos(r)X†. (A5)

Here X is the constant, energy-independent, unitary matrix
that diagonalizes the Hermitian matrix which represents the
long-range static interaction of the unbound electron with the
residual one-electron ion, that is, the interaction −Z′e21/r +
(h̄2/2)A/r2, where A includes both the angular momentum
h̄2l(l + 1) of the unbound electron and the static dipole of
the residual ion that results from the coupling of degenerate
eigenstates. We denote a generic eigenvalue of A by µ(µ + 1);
thus, µ is a generalized orbital angular momentum quantum
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number. The matrices Gsin(r) and Gcos(r) are diagonal; their
diagonal elements are, respectively,

Gµ, sin(r) = (2πki)
−1/2

[
sin

(
µ

π

2
− σ̃µ

)
Iµ(r)

+ cos

(
µ

π

2
− σ̃µ

)
Rµ(r)

]
, (A6)

Gµ, cos(r) = (2πki)
−1/2

[
cos

(
µ

π

2
− σ̃µ

)
Iµ(r)

− sin

(
µ

π

2
− σ̃µ

)
Rµ(r)

]
, (A7)

where σ̃µ = σµ − σ0, where σµ is the generalized Coulomb
phase shift, defined for real and complex µ as

σµ = − i

2
ln

(
�(µ + 1 − iγi)

�(µ + 1 + iγi)

)
, (A8)

and where, with µ replacing the conventional orbital angular
momentum quantum number, Rµ(r) and Iµ(r) are, respec-
tively, the regular and irregular Coulomb wave functions,
normalized asymptotically to a (possibly complex) sine and
cosine with unit amplitude. Since Gµ, sin(r) and Gµ, cos(r),
respectively, have the form of a real sine and cosine with
amplitude 1/

√
2πki at asymptotically large distances, and

since they are solutions to real differential equations—the
generalized centrifugal barrier is real—they are real functions
for all r . Therefore, Gsin(r) and Gcos(r) are real, diagonal
matrices which, up to overall real factors of 1/

√
2πki and sine

or cosine, are equal to the identity matrix at asymptotically
large r . An arbitrary component of Eq. (A4) is

F
(i)
j, sin(r) =

∑
µ

XjµGµ, sin(r)X∗
iµ. (A9)

It follows that F sin(r) and F cos(r) are Hermitian matrices
which become diagonal when r � R, with diagonal elements
Fj, sin(r) and Fj, cos(r), respectively, that have the asymptotic
forms

Fj, sin(r) → (2πkj )−1/2 sin(kj r + γj ln 2kj r + σ0), (A10)

Fj, cos(r) → (2πkj )−1/2 cos(kj r + γj ln 2kj r + σ0), (A11)

in accord with Eq. (A2).
The eigenvalues of A are real. If a is any such eigenvalue

we have µ = − 1
2 ±

√
a + 1

4 . Hence, µ is complex if a < − 1
4 ,

in which case its real part is − 1
2 . When a < − 1

4 the repulsive
semiclassical angular momentum barrier h̄2(l + 1

2 )2/(2r2) is
overwhelmed by an attractive inverse-square potential, and
as discussed by Landau and Lifshitz the unbound particle
would spiral into the nucleus if the attractive potential were
to extend to the origin [20]. We choose the plus sign in
µ = − 1

2 ±
√

a + 1
4 in order that µ is real and positive when

a > 0, in which case the regular solution Rµ(r) vanishes
at the origin as required. Choosing the minus sign would
amount to interchanging the roles of the regular and irregular
solutions.

We have omitted from the Hamiltonian, in the exterior
region, the optical potential and all but the static monopole
and dipole interactions. The (approximate) general solutions of

Eq. (5) in the exterior region which satisfy K̃-matrix conditions
are elements of the vector

��K̃ (�r1,�r2) = F t
K̃

(r2 � R) �φ(r1,r̂1,r̂2). (A12)

The matrices N and K̃ are determined as usual by matching
the interior and exterior solutions, F (r < R) and F K̃ (r > R),
respectively, and their derivatives, at the boundary of the box.
This matching is numerically unstable at, and close to, those
discrete real energies at which one of the eigenvalues of the
K̃ matrix has a pole. However, such poles are of no physical
consequence (the corresponding poles of the S matrix have
residues that vanish). Furthermore, all other eigenvalues of K̃

matrix usually vary slowly over the neighborhood of a pole
on the real energy axis, so the K̃ matrix can be interpolated
accurately over this neighborhood.

Rather than relate K̃ to K , it is simpler to proceed
directly to the S-matrix. We start with the S̃-matrix boundary
condition,

F
(i)
S̃j

(r) → (2πkj )−1/2(e−i(kj r+γj ln 2kj r+σ0)δji

− ei(kj r+γj ln 2j kr+σ0)S̃j i), (A13)

where

S̃ = (1 + iK̃)/(1 − iK̃). (A14)

The solution �F (i)
S̃

(r) is a linear combination of solutions
�F (j )
K̃

(r). The matrix whose columns are �F (i)
S̃

(r) is

F S̃ = −iF K̃ (1 + S̃). (A15)

Hence, the general solution which satisfies S̃-matrix boundary
conditions is

��S̃ = −i(1 + S̃)t ��K̃. (A16)

The S matrix is defined by

F
(i)
Sj (r) → (2πkj )−1/2

(
e
−i(kj r− 1

2 lj π+γj ln 2kj r+σlj
)
δji

− e
i(kj r− 1

2 lj π+γj ln 2kj r+σlj
)
Sji

)
. (A17)

It follows that

Sji = e
i( 1

2 lj π−σ̃lj
)
S̃j ie

i( 1
2 liπ−σ̃li

), (A18)

that is,

S = D S̃ D, (A19)

where D is a diagonal matrix whose diagonal elements

are e
i( 1

2 lj π− ˜σlj
). We have FS = F S̃D, and hence the general

solution which satisfies S-matrix boundary conditions is

��S = D ��S̃. (A20)

The K matrix is defined by

K = i(1 − S)/(1 + S). (A21)

As shown above, K , and therefore S, are symmetric.

012714-12



R-MATRIX APPROACH WITH PROPER BOUNDARY . . . PHYSICAL REVIEW A 83, 012714 (2011)

APPENDIX B: K MATRIX

A. Symmetry

We denote the exact solutions of Eq. (5) which satisfy K-
matrix boundary conditions by P|�(i)〉 and P|�(j )〉, where the
superscripts (i) and (j ) denote entrance subchannels i and
j , respectively. By using Green’s theorem, integrating over
angular coordinates and the radial coordinate of the bound
electron, recalling that the φj (r1,r̂1,r̂2) are orthonormal, and
neglecting oscillating surface terms which average to zero over
large distances, we find that (with m the electron mass)

Kji − Kij = 8πm

h̄2 〈�(i)∗|[(PHP)† − PHP]|�(j )〉, (B1)

where |�(i)∗〉 is the space-time-reflected solution. Since the
only contribution to the integral comes from terms that are
bilinear in standing waves that are in phase with each other
at the surface, we can treat PHP as Hermitian, and hence
the integral vanishes. To see this another way, without using
Green’s theorem, let us first multiply Eq. (5) by ϒ, and use
Eq. (21) together with the antiunitarity of ϒ to write

[PHP + Vopt(E)† − E1]P|�(i)∗〉 = 0. (B2)

From this last result, and Eq. (5), it follows by adding and
subtracting Vopt(E) − E1 to (PHP)† − PHP that the right
side of Eq. (B1) does indeed vanish. Hence, the K matrix is
symmetric. However, if real transitions out of P space occur,
the K matrix is complex, and therefore not Hermitian; hence,
the S matrix is not, in general, unitary, in accord with the loss
of probability from P space.

B. Variational principle

Since Eq. (5) is homogeneous, the normalization of any
solution is arbitrary. Hence, the normalization matrix N can
be treated as an open variational “parameter” whose “optimal
value” can be determined from the Kohn variational principle
for the K-matrix K . The zeroth-order estimates of N and K are
those obtained by matching the interior and exterior solutions,
F (r < R) and F K̃ (r > R), respectively, and their derivatives,
at the boundary of the box. The Kohn variational principle
yields the first-order variational correction δK to K . Inclusion
of this correction gives a K matrix whose error is of second
order. After improving K we can improve N by rematching
the interior and exterior solutions.

The K-matrix satisfies the Kohn variational principle

δ

{
Kij + 4πm

h̄2 〈�(i)∗|P[E1 − Heff(E)]P|�(j )〉int

}
= 0 (B3)

even for dissipative systems. This follows from consideration
of

Mij ≡ 〈�(i)∗|P[E1 − Heff(E)]P|�(j )〉int, (B4)

which vanishes if P|�(j )〉 is an exact solution of Eq. (5). For
small variations about the exact solutions the change in Mij is

δMij = 〈�(i)∗|P(
H† − H

)
P|δ�(j )〉int. (B5)

Applying Green’s theorem, the only contribution to the integral
on the right side of Eq. (B5), after integrating over angular
coordinates and the radial coordinate of the bound electron, is

the surface term at the boundary r = R. Using an overdot to
indicate the derivative with respect to the radial coordinate of
the free electron and introducing the matrix M whose elements
are Mij , we have

(2m/h̄2)δM = F t(R−)δḞ (R−) − Ḟ
t
(R−)δF (R−)

+ Ḟ
t
K̃ (R+)δF K̃ (R+) − F t

K̃
(R+)δḞ K̃ (R+),

(B6)

where R− and R+, respectively, are infinitesimally smaller and
larger than R. The variations δF (R−) and δḞ (R−) arise from
the variation δN in the normalization matrix. Hence, taking
note that F (R−) = F K̃ (R+) and Ḟ (R−) = Ḟ K̃ (R+), we have

δF (R−) = F K̃ (R+)N−1δN, (B7)

δḞ (R−) = Ḟ K̃ (R+)N−1δN. (B8)

The variations δF K̃ (R+) and δḞ K̃ (R+) arise from the variation
δK̃ in the K̃ matrix. From Eq. (A3) we have

δF K̃ (R+) = F cos(R
+)δK̃, (B9)

δḞ K̃ (R+) = Ḟ cos(R
+)δK̃. (B10)

Introducing the Wronskian W(A,B) ≡ AtḂ − Ȧ
t
B, it follows

that

(2m/h̄2)δM = {W[F sin(R+),F sin(R+)]

+W[F sin(R+),F cos(R
+)]K

+K tW[F cos(R
+),F sin(R+)]

+K tW[F cos(R
+),F cos(R

+)]K}N−1δN

−W[F cos(R
+),F sin(R+)]δK

−K tW[F cos(R
+),F cos(R

+)]δK. (B11)

Since F sin(r) and F cos(r) are solutions of the Schrödinger
equation (a second-order differential equation with no first-
order derivative), and since the interaction is symmetric,
the Wronskian of these solutions can be evaluated at any
value of r > R. Letting r become infinite, F sin(r) and
F cos(r) become diagonal matrices—recall Eqs. (A10) and
(A11). When A is diagonal, W(A,A) vanishes, and there-
fore the first, fourth, and sixth Wronskians on the right
side of Eqs. (B11) vanish. Furthermore, the second and
third Wronskians cancel because W[F sin(R+),F cos(R

+)] =
− 1

2π
1 = −W[F cos(R

+),F sin(R+)] and because K is sym-
metric. Only the fifth Wronskian survives, and we arrive
at (2m/h̄2)δM = − 1

2π
δK; the Kohn variational principle

follows.
We can simplify the variational correction after observing

that

〈
�

(i)∗
scat

∣∣P[E1 − Heff(E)]P|�(j )〉int = 0, (B12)

as follows by projecting Eq. (30) onto the subspace spanned
by the “box basis,” to which |�(j )

scat〉 belongs. Therefore, we
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arrive at

δKij = 4π (m/h̄2)
〈
�(i)∗

inc

∣∣P[E1 − Heff(E)]P|�(j )〉int.

(B13)

Inclusion of the variational correction δKij yields a substan-
tial improvement in accuracy. After this correction has been
incorporated the normalization matrix should be recalculated
by matching the interior and exterior solutions (not their
derivatives) using the corrected value of the K matrix.
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