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Transfer ionization in fast ion-atom collisions: Four-body Born distorted-wave theory
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The theory of transfer ionization in fast ion-atom collisions is investigated within the four-body distorted-
wave formalism. The four-body Born distorted-wave (BDW-4B) method, which was originally introduced for
double electron capture, is presently extended to transfer ionization. In the entrance and exit channel, the
BDW-4B method coincides with the four-body versions of the boundary-corrected first Born and the continuum
distorted wave approximations, respectively. An illustrative application of the present method is performed for the
previously most studied case of transfer ionization in proton-helium collisions at intermediate and high energies
(0.3–10 MeV). The obtained total cross sections are compared with all the available experimental data. Overall,
very good agreement is found, particularly at high impact energies that are within the expected region of validity
of the BDW-4B approximation.
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I. INTRODUCTION

Two-electron transitions in four-body fast ion-atom col-
lisions have been extensively studied in the last two decades
both theoretically and experimentally (see, e.g., the most recent
reviews and books with the references cited therein [1–4]). This
includes transfer ionization as a collision between a nucleus as
a projectile and a multi-electron target from which one electron
is captured and the other ionized. Transfer ionization still
remains one of the most challenging collisional processes with
two active electrons even in the simplest case, which involves
heliumlike targets. This scattering phenomenon has opened
interesting and fruitful discussions about different scattering
mechanisms, including the role of static as well as dynamic
electron correlations. In spite of a markedly rapid decrease of
the total cross section, much attention in the past literature has
been devoted to transfer ionization at relatively high impact
energies.

The first systematic measurements of total cross sections
for transfer ionization of He by fast H+, He2+, and Li3+ ions
were made by Shah and Gilbody [5,6]. Later, Mergel et al. [7]
measured total cross sections in H+-He collisions at projectile
energies 0.15–1.4 MeV by means of cold-target recoil-ion
momentum spectroscopy (COLTRIMS). They reported the
first kinematically complete experiment for transfer ionization.
Using a convenient combination of high-quality ion beams
that were available in the heavy-ion storage ring CRYRING
with the COLTRIMS setup and a pulsed extraction system,
Schmidt et al. [8–10] measured total cross sections for transfer
ionization in the high-energy range 1.4–5.8 MeV in H+-He
collisions. Woitke et al. [11] and most recently Sant’Anna
et al. [12] measured total cross sections of transfer ionization
for Li3+-He collisions at larger energies than those from the
experiments by Shah and Gilbody [5].

Several research groups have reported on theoretical studies
by focusing on total cross sections for transfer ionization. The
semiclassical independent-event model (IEM) of Dunseath and
Crothers [13] gave cross sections that were considerably larger
than those of the corresponding experiments in collisions of H+
and He2+ nuclei with a helium target. Using a coupled channel

semiclassical impact parameter approximation with a traveling
atomic orbital expansion and employing the independent
particle model (IPM), Singhal and Lin [14] obtained results
that overestimated the measured cross sections and clearly
revealed the inadequacy of simple uncorrelated models to
describe pure four-body problems of scattering. The IPM
was also employed in Ref. [15]. A simple variant within the
IPM based on the Bohr-Lindhard and the classical statistical
models has been developed in Ref. [16] for transfer ionization
of helium by ions Aq+ (q = 1–3). Both the IEM and IPM
ignore the inter-electron correlations from the outset and
compute the probability for transfer ionization as a product
of the individual probabilities for capture of one electron and
independent ionization of the other electron. Galassi et al. [17]
employed the IPM to compute total cross sections for transfer
ionization in (H+,He2+)-He collisions. In the latter study, the
single particle probabilities as a function of impact parameter
were computed using the continuum-distorted-wave eikonal
initial state (CDW-EIS) method. Their results [17] are in
better agreement with measurements than the computations
of Dunseath and Crothers [13], but are still larger than the
experimental values, especially for the case of H+ impact.
Using the second Born approximation, Godunov et al. [18]
found that the allowance for static electron correlation directly
determines how closely the obtained theoretical total cross
sections agree with the experimental data. The latter results
from the second-order computations [18] with the uncorrelated
functions differ considerably from experimental data, whereas
an approximate inclusion of static correlations gives noticeably
better agreement with the same measurements. In the compu-
tations from Ref. [18], an additional approximation was used
for the dynamic electron-electron correlation 1/|r1 − r2| from
the perturbation potential in the exit channel via −ZT/r1 +
1/|r1 − r2| � −(ZT − 1)/r1, where r1 and r2 are the position
vectors of the electrons e1 and e2 relative to the target
nuclear charge ZT, respectively. The four-body continuum
distorted wave (CDW-4B) method has been formulated and
implemented by Belkić et al. [19] for He2+-He collisions,
resulting in very good agreement with measurements. Later
on, the CDW-4B method employed by Mančev [20] was also
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found to be in very good agreement with the experimental data
for Li3+-He collisions.

Studying the collision mechanisms for transfer ionization
within differential cross sections has been the subject of
numerous investigations from the experimental and theoretical
standpoints [21–37]. In these examinations, transfer ionization
by proton impact clearly dominates because the exit channel
contains no three-body Coulomb interaction. This is due to
the fact that the proton captures one electron to become a
neutral hydrogen atom and, therefore, one could expect that
the postcollisional interaction with the projectile system would
be weak, as indeed turned out to be the case.

The present work is concerned with the extension of
the four-body Born distorted wave (BDW-4B) method from
its original inception for double charge exchange [38] to
transfer ionization. The BDW-4B theory is a fully quantum-
mechanical four-body formalism, since it explicitly considers
each individual particle and all the interactions among them in
the collision under investigation. This permits a systematic
study of the complete dynamics of four-body scattering
processes [38,39]. The BDW-4B method strictly preserves
the correct boundary conditions in both collisional channels
according to the principles of scattering theory [40] and the
asymptotic convergence problem introduced by Dollard [41].
This amounts to an explicit inclusion of all the Coulomb
distortion effects of the unperturbed channel states, with a
simultaneous and consistent subtraction of the static Coulomb
interactions from the perturbation potentials in the initial
and final states [1–3,40–43]. Thus, in the entrance channel,
the initial state is taken as being influenced only by the
motion of the two heavy scattering aggregates. This yields
a distortion of the initial scattering state through a logarithmic
phase due to the perturbation potential from the remaining
asymptotic Coulomb interaction between the projectile and
the point charge of the target as a whole. In the exit channel,
alongside the logarithmic phase for the motion of heavy
particles, an appropriate distortion of the final state is included
through the two full Coulomb wave functions for the ejected
and captured electron in the field of the bare and partially
screened target nuclear charge, respectively. Therefore, the
BDW-4B approximation coincides with the CDW-4B [19]
method in the exit channel. On the other hand, in the entrance
channel, the BDW-4B method reduces to the four-body
boundary-corrected first Born (CB1-4B) approximation [44].
After its formulation and implementation in the case of double
charge exchange [38], the BDW-4B approximation was also
successfully applied to single-electron capture by fast nuclei
and hydrogenic ions from heliumlike targets [45–47].

Multiple differential cross sections for transfer ionization
can undeniably yield the most detailed insight into versatile
collisional mechanisms. However, when it comes to the usage
of the abundant atomic databases in other neighboring fields
of fundamental and applied research, total cross sections were
most frequently needed. The primary reason for this is that
in various applications ranging from plasma physics through
thermonuclear fusion to hadron therapy in medicine, total
cross sections for atomic collisional processes are the principal
entries to comprehensive Monte Carlo simulation codes for
reliable assessment of energy losses of multiply charged
heavy ions during their passage through matter. In these

stochastic simulations, total cross sections directly determine
the stopping powers of heavy ions. For example, in hadron
therapy, radiation doses delivered by heavy ions to the
treatment site in patients are critically dependent upon the
accuracy of total cross sections (and the ensuing stopping
powers) for various atomic and nuclear collisions taking place
in the tissue during the treatment. A detailed exposition of
many essential applications of the theory of atomic collisions
to hadron therapy in cancer treatment can be found in the most
recent review [48]. The larger the charge of the projectile,
the higher the probability for multiple electron transitions,
including a combination of simultaneous formation of bound
states and emission of electrons into their continua, as is
actually the case in transfer ionization. Because of a widely
expressed and urgent need from many different applications in
interdisciplinary fields, we are concerned here with computa-
tions of mainly total cross sections for transfer ionization. For
an implementation and illustration of the proposed BDW-4B
method, we choose the prototype process in H+-He collisions
at impact energies E = 0.3–10 MeV, at which the three sets
of independent experimental data are currently available.

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

We examine a collision in which a fully stripped projectile
P of charge ZP impinges upon a heliumlike atomic system
consisting of two electrons e1 and e2 that are initially bound
to the target nucleus T of charge ZT. During such a collision,
one electron (e1) is captured by P into a bound state (ZP,e1)f ,

whereas the other electron (e2) is simultaneously ionized:

ZP + (ZT; e1,e2)i −→ (ZP,e1)f + ZT + e2(κ). (1)

Here, κ represents the momentum vector of the ejected electron
e2 with respect to its parent nucleus T. In Eq. (1), the small
parentheses symbolize the bound states, whereas the subscripts
i and f are the collective labels for the sets of the usual
quantum numbers. Thus, e.g., for the hydrogenlike system
(ZP,e1)f , we have f ≡ {nf ,�f ,mf }, where nf , �f , and mf

are the principal, angular, and magnetic quantum numbers,
respectively. Let sk and xk be the position vectors of ek (k =
1,2) relative to the nuclear charge ZP and ZT, respectively.
Further, let R denote the position vector of ZP with respect
to ZT. The vector of the distance between the two electrons
e1 and e2 is labeled r12, where r12 = x1 − x2 = s1 − s2. In
the quantum-mechanical four-body distorted wave formalism
[1–3], the post form of the transition amplitude for process
(1) is:

T +
if = 〈χ−

f |Uf |�+
i 〉. (2)

The initial wave function �+
i in the entrance channel with the

asymptotically correct boundary condition can be written as
follows:

�+
i = ϕi(x1,x2)eiki ·ri+iνi ln(vR−v·R), (3)

where vector r i is the relative vector of ZP with respect
to the center of mass of (ZT; e1,e2)i . Function ϕi(x1,x2)
represents the two-electron bound-state wave function of the

012703-2



TRANSFER IONIZATION IN FAST ION-ATOM . . . PHYSICAL REVIEW A 83, 012703 (2011)

atomic system (ZT; e1,e2)i , whereas ki is the initial wave
vector, νi = ZP(ZT − 2)/v, and v is the impact velocity vector.
The unperturbed part ϕi(x1,x2)eiki ·ri of the initial state �+

i

from Eq. (3) is distorted by eiνi ln(vR−v·R) even at infinite
separations between the two scattering aggregates. This is
due to the presence of the asymptotic Coulomb repulsive
potential, V ∞

i = ZP(ZT − 2)/R, between the projectile and
the screened target nucleus of point charge ZT − 2. Here,
V ∞

i is the asymptotic limit of the perturbation potential
Vi in the entrance channel, where Vi = ZPZT/R − ZP/s1 −
ZP/s2 −→ ZP(ZT − 2)/R as R → ∞, in which case we also
have sk → ∞ (k = 1,2).

In the BDW-4B theory, the distorting potential Uf and the
distorted wave function χ−

f are chosen according to

Uf = ZP

(
1

R
− 1

s2

)
+

(
1

r12
− 1

x1

)
− ∇s1 ln ϕf · ∇x1 , (4)

χ−
f = N−(ζ )N−(νT)φf ϕf (s1)e−ikf ·rf −iνf ln(vR+v·R)

× 1F1(−iζ,1,−ipx2 − i p · x2)

× 1F1(−iνT,1,−ivx1 − iv · x1). (5)

Here, φf = (2π )−3/2eiκ·x2 , ϕf (s1) is a hydrogenlike wave
function of (ZP,e1)f , rf is the position vector of T with
respect to the center of mass of (ZP,e1)f + e2 in the exit
channel, kf is the final wave vector, N−(ζ ) = 
(1 + iζ )eπζ/2,

and N−(νT) = 
(1 + iνT)eπνT/2, where νT = (ZT − 1)/v,

νf = ZP(ZT − 1)/v, ζ = ZT/p, and p = κ + v. The symbol
1F1(a,b,z) stands for the Kummer confluent hypergeometric
function. By means of the well-known asymptotic forms of
1F1(a,b,z), it is readily seen that the wave function χ−

f

obeys the correct boundary conditions in the asymptotic region
(R → ∞) [1–3].

Using Eqs. (3), (4), and (5), the expression for the transition
amplitude T +

if becomes

T +
if = N−∗

∫∫∫
d R dx1 dx2e

iα·s1+iβ·x1−iκ·x2L(R)ϕi(x1,x2)

× 1F1(iζ,1,ipx2 + i p · x2){[ZP(1/R − 1/s2)

+ (1/r12 − 1/x1)] 1F1(iνT,1,ivx1 + iv · x1)ϕ∗
f (s1)

−∇s1ϕ
∗
f (s1) · ∇x1 1F1(iνT,1,ivx1 + iv · x1)}, (6)

where N− = (2π )−3/2N−(νT)N−(ζ ). In Eq. (6), the auxiliary
function L(R) represents the product of the two logarithmic
Coulomb factors eiνi ln(vR−v·R) and eiνf ln(vR+v·R). Function
L(R) can advantageously be reduced to the following ex-
pression with only one remaining logarithmic Coulomb phase
factor:

L(R) = eiνi ln(vR−v·R)+iνf ln(vR+v·R) = (ρv)2iνi (vR + v · R)iξ ,

(7)

where ξ = ZP/v and ρ is the projection of vector R onto the
XOY plane (ρ = R − Z, ρ · Z = 0). Here, Z is the vectorial
component of R in the direction of the the Z axis. The
multiplying term (ρv)2iνi does not contribute to the total cross
section and, therefore, can be dropped from the transition
amplitudes [43]. In addition to this significant simplification,
we have also used the eikonal hypothesis (̂kf ≈ k̂i), since the
small-angle limit is amply justified for heavy particles, and

this yields

ki · r i + kf · rf ≈ α · s1 + β · x1, (8)

where α and β are the two momentum transfers introduced by

α = η −
(

v

2
− Ei − Ef − Eκ

v

)
v̂,

(9)

β = −η −
(

v

2
+ Ei − Ef − Eκ

v

)
v̂,

with v = (0,0,v) and η · v = 0. The quantity Ei is the
initial electronic binding energy of (ZT; e1,e2)i , whereas
the final discrete and continuous energies of e1 and e2 are
Ef = −Z2

P/(2n2
f ) and Eκ = κ2/2, respectively. The trans-

verse component of the change in the relative linear momentum
of a heavy particle is denoted by η = (η cos φη,η sin φη,0). By
inspection, it is at once seen that the BDW-4B method exactly
coincides with the CDW-4B method [19] in the exit channel,
and with the CB1-4B approximation [44] in the entrance
channel. Therefore, the BDW-4B method preserves the correct
boundary conditions in both scattering channels for transfer
ionization, as was originally the case for double electron
capture [38,39] within the same theoretical framework. The
initial state of (ZT; e1,e2)i is presently taken to be the ground
state (i = 1s2) and, as such, is described by the simplest
Hylleraas-type wave function [49] without static correla-
tions ϕi(x1,x2) = ϕb(x1)ϕb(x2), where ϕb(r) = Nb exp(−br),
Nb = (b3/π )1/2, and b is the Slater-type effective nuclear
charge (b = ZT − 0.3125).

Thus far, experience with computations of total cross
sections has shown that for different single- and double-
electron transitions [1–3], the terms VP,s2 ≡ ZP(1/R − 1/s2)
and V12,1 ≡ (1/r12 − 1/x1) give contributions of varying
significance, depending on the kind of collision examined.
Regarding the complexity of the analysis, one is faced with a
considerably increased computational demand when the per-
turbation potentials VP,s2 and V12,1 are explicitly incorporated
into the transition amplitude of any approximation, including
the BDW-4B method. This is due to the two additional three-
dimensional quadratures that arise from the Fourier trans-
form for VP,s2 and V12,1. Because of this circumstance,
the present application of the BDW-4B method to transfer
ionization will simplify the distorting perturbation Uf from
Eq. (4) to retain only the gradient-gradient term (∇ · ∇), as
was done in the majority of previous computations, e.g., in the
CDW method for heliumlike targets [1,2,40,43]. In such a case,
the transition amplitude is reduced to the following expression
for a particular case of the final ground state 1s (f =
{nf ,�f ,mf } = {1,0,0}) of the hydrogenlike system (ZP,e1)f :

T +
if = 1√

π
N−∗Z3/2

P N2
b

∫
d R(vR + v · R)iξ e−iα·RD1D2,

(10)

where

D1 =
∫

dx1e
−iv·x1−bx1

[∇s1e
−ZPs1

]
× [∇x1 1F1(iνT ,1,ivx1 + iv · x1)], (11)

D2 =
∫

dx2e
−iκ ·x2−bx2

1F1(iζ,1,ipx2 + i p · x2). (12)
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Using the following standard real integral for a convenient
representation of the confluent hypergeometric function [50]
in Eq. (11):

1F1(iνT,1,ivx1 + iv · x1)

= 1


(iνT)
(1 − iνT)

∫ 1

0
dt1fT(t1)ei(vx1+v·x1)t1 , (13)

where fT(t1) = t
iνT−1
1 (1 − t1)−iνT , the integral D1

becomes

D1 = 1


(iνT)
(1 − iνT)

∫ 1

0
dt1fT(t1)F1(R), (14)

where

F1(R) =
∫

dx1e
−iv·x1−bx1

[∇s1e
−ZPs1

] · [∇x1�(x1)
]
, (15)

with �(x1) = ei(vx1+v·x1)t1 . Integral F1(R) can be analytically
reduced to a one-dimensional integral following Ref. [38], as
outlined in the present appendix. With this result, the original
nine-dimensional integral for the matrix element T +

if is
reduced to a two-dimensional numerical quadrature with real
variables.

The triple differential cross sections for simultane-
ous transfer and ionization can be obtained from the
expression

Q+
if (κ) ≡ d3Q+

if

dκ
= 1

4π2v2

∫
dη|T +

if (η)|2. (16)

Here, the transition amplitude T +
if (η) is independent of

the azimuthal angle φη, i.e., T +
if (η ) = T +

if (η ). There-
fore, the integration over φη can be done analytically
to yield

Q+
if (κ) = 1

2πv2

∫ ∞

0
dη η|T +

if (η)|2. (17)

The total cross section is introduced as a triple integra-
tion over the momentum κ of the ejected electron, where
κ = (κ sin θκ cos φκ,κ sin θκ sin φκ,κ cos θκ ):

Q+
if

(
πa2

0

) ≡
∫

dκ Q+
if (κ) =

∫ ∞

0
dκκ2

∫ π

0
dθκ sin θκ

×
∫ 2π

0
dφκ Q+

if (κ). (18)

Here, the integration over φκ can be done analytically with the
result 2π, since T +

if (η) [and, hence, Q+
if (κ)] does not depend

upon φκ. However, the integrations over κ and θκ have to
be carried out numerically. Hence, according to the BDW-
4B method, the total cross section is derived in terms of a
five-dimensional numerical quadrature over real variables. The
main features of these numerical integrations, including the
Cauchy regularization of the quadrature over variable t1, are
given in the Appendix.

TABLE I. Total cross sections Q+
if in the BDW-4B method as a

function of the laboratory impact energy E for transfer ionization
H+ + 4He −→ H + 4He2+ + e. The numbers in square brackets
denote powers of 10, e.g., 7.88[−21] ≡ 7.88 × 10−21.

E (MeV) 0.3 0.4 0.5 0.75 1
Q+

if (cm2) 7.88[−21] 3.09[−21] 1.32[−21] 2.30[−22] 5.90[−23]

E (MeV) 1.5 2 5 7.5 10
Q+

if (cm2) 7.72[−24] 1.73[−24] 1.26[−26] 1.37[−27] 2.79[−28]

III. RESULTS AND DISCUSSION

As an illustration of the BDW-4B method for transfer
ionization, the following prototype collision between proton
and helium is investigated:

H+ + He −→ H + He2+ + e, (19)

with ZP = 1 and ZT = 2. The results from the present
computations of total cross sections for process (19), at impact
energies E = 0.3–10 MeV, are given in Table I, as well as in
Fig. 1. As can be seen from Fig. 1, the BDW-4B method
underestimates the experimental data [5,7,9] at energies
0.3−3 MeV. On the other hand, the agreement between the
theory and the measurement [9] is very good at impact energies
larger than 3 MeV. Based upon the earlier experience with
transfer ionization treated by the CDW-4B method [19,20], it
is anticipated that the explicit inclusion of the presently omitted
dynamic electron correlation effects would improve the overall
standing of the BDW-4B theory with respect to all the existing
experimental data at intermediate-to-high energies. The results
on this will be reported shortly.

FIG. 1. Total cross sections Qif as a function of the laboratory im-
pact energy E for transfer ionization H+ + 4He −→ H + 4He2+ + e.
Theory: the post form of the BDW-4B method (solid line: present,
Qif ≡ Q+

if ). Experimental data: • Shah and Gilbody [5], � Mergel
et al. [7], and � Schmidt et al. [9].
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IV. CONCLUSION

We have investigated the problem of transfer ionization in
collisions between bare ions and two-electron atomic systems.
A second-order theory termed the four-body Born distorted
wave (BDW-4B) method is formulated and implemented. The
scattering wave functions of the proposed method exhibit the
correct asymptotic behaviors in both the entrance and exit
channels, which was the objective of the Dollard asymptotic
convergence problem for atomic collisions with the presence
of Coulomb potentials at infinitely large separations between
the scattering aggregates. The BDW-4B theory is illustrated
by its application to transfer ionization in H+-He collisions at
impact energies E = 0.3–10 MeV. Agreement of the obtained
theoretical total cross sections with the available experimental
data is especially good at larger energies.
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APPENDIX

Integral F1(R) from Eq. (15) can be analytically reduced to
a one-dimensional integral following Ref. [38] with the final
result

F1(R) = 2πZPt1ωeiα·R
∫ 1

0
dt

t(1 − t)e−iQ1·R−�1R

�5
1

× [a1R
2 − b1R − c1 − d1(1 + �1R)R · v̂], (A1)

where

Q1 = αt − β1(1 − t),
(A2)

�2
1 = v2

1 t(1 − t) + Z2
Pt + λ2

1(1 − t),

β1 = β + vt1, v1 = v(1 − t1), λ1 = b − ωt1,
(A3)

a1 = �2
1δ

+
1 , b1 = c1�1,

ω = iv, δ1 = λ1 − γ1, γ1 = ωt(1 − t1), (A4)

c1 = 3δ−
1 , δ±

1 = �2
1 ± γ ′

1 δ1,
(A5)

d1 = −�2
1(γ ′

1 + δ1), γ ′
1 = ω(1 − t)(1 − t1).

On the other hand, the integral D2 from Eq. (12) can be
analytically calculated by means of the complex contour
technique of Nordsieck [51] so that

D2 = 8π

κ2 + b2
T

iζ

0 R0, (A6)

where

T −1
0 = 1 − 2

κ · p + ibp

κ2 + b2
,

(A7)
R0 = b

1 − iζ

κ2 + b2
+ iζ

b − ip

κ2 + b2 − 2κ · p − 2ibp
.

In this way, the expression for the transition amplitude
in Eq. (10) reads

T +
if = 16N−∗Z5/2

P N2
b π3/2ω


(iνT)
(1 − iνT)

T
iζ

0 R0

κ2 + b2

×
∫ 1

0
dt1fT(t1)t1

∫ 1

0
dt

t(1 − t)

�5
1

J (t1), (A8)

J (t1) = a1I3 − b1I2 − c1I1 + d1

ω
(K1 + �1K2), (A9)

where

In =
∫

d RRn−1(vR + v · R)iξ e−iQ1·R−�1R,

(A10)
(n = 1,2,3), Kn = v · ∇Q1In.

Integrals I1,2,3 and, consequently, K1,2 can also be analytically
calculated along the lines in Ref. [38], and the following result
is obtained for J (t1):

J (t1) = 8π
(1 + iξ )FD(A − iξB), (A11)

where

A = −2a1
D

�1
Aβ + b1

�1
Aα − c1 − 2

d1D

ω�1
(A1 − A2), (A12)

B = 2a1
D

�1
Bβ − b1

�1
Bα − c1C + 2

d1D

ω�1
(B1 − B2), (A13)

F = Biξ

Q2
1 + �2

1

, B = 2(v�1 − i Q1 · v)

Q2
1 + �2

1

, (A14)

C = v

B�1
− 1, A = �2

1

Q2
1 + �2

1

, D = A

�1
, (A15)

Aα = 1 − 4A, Bα = 1 + 2ACα,
(A16)

Cα = C[4 + (1 − iξ )C],

Aβ = 6(1 − 2A), Bβ = 2ACβ + 3Dβ, (A17)

Cβ = C[18 + 9(1 − iξ )C + (1 − iξ )(2 − iξ )C2],
(A18)

Dβ = 2 − (1 + iξ )C,

A1 = {2 + iξ [2 − (1 + iξ )C]}, B1 = uω[2 + (1 − iξ )C],

(A19)

A2 = {2(1 − 6A) + iξ [2AC2 + (3 + iξ )]}( Q1 · v),
(A20)

C2 = (1 + iξ )C[6 + (1 − iξ )C] − 6,

B2 = uω[(1 + iξ ) − 2AC ′
2],

(A21)
C ′

2 = (1 − iξ )C[6 + (2 − iξ )C] + 6, u = (1 + C)�1.

Therefore, this derivation reduces the nine-dimensional in-
tegration for the matrix element T +

if from Eq. (10) to a
two-dimensional numerical quadrature over the real variables
{t1,t}.

We made use of the Gauss-Legendre quadrature rule for
the numerical integrations over κ , θκ , and η in Eqs. (17)
and (18). To this end, it is convenient to introduce the
change of variables according to κ = √

2(1 + x)/(1 − x), x ∈
[−1,+1], cos θκ = u, u ∈ [−1,+1], η = √

2(1 + y)/(1 − y),
and y ∈ [−1,+1]. The latter change of variable in η is

012703-5
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very important, since it concentrates the integration points
near the forward cone [52], which gives the dominant
contributions because of the eikonal nature of scattering for
heavy projectiles. The singularities at x = 1 and y = 1 are
superficial, as they disappear after a full analytical scaling
of the integrand. By this scaling, the only place where the
inverses 1/(1 − x) and 1/(1 − y) appear in |T +

if (η)|2 is through

the overall multiplicative term S ≡ √
1 − x |(1 − x)9/2+iξ (1 −

y)1+iξ |2. Finally, the product of S with the differentials
κ2dκηdη yields 4

√
2(1 + x)(1 − x)7dx dy, so that all the

integrands in Eqs. (16)–(18) are regular functions at x = 1 and
y = 1.

Special attention has to be paid to the integration over t1.
Namely, this quadrature requires a numerical computation of
an integral of the type

I = 1

B(iνT,1 − iνT)

∫ 1

0
dt1t

iνT−1
1 (1 − t1)−iνTf (t1), (A22)

where B(iνT,1 − iνT) is the beta function [50] and f (t1) is
regular in the considered interval [0, 1]. Here, the integrand
possesses integrable branch-point singularities at t1 = 0 and
t1 = 1. Following Ref. [53], we apply the Cauchy regulariza-
tion of the whole integrand. With this goal in mind, we first
conveniently rewrite the expression for I as

I = 1

B(iνT,1 − iνT)

{ ∫ 1

0
dt1

(
t1

1 − t1

)iνT f (t1) − t1f1,0 − f (0)

t1
+ f1,0

∫ 1

0
dt1

(
t1

1 − t1

)iνT

+ f (0)
∫ 1

0
dt1

(
t1

1 − t1

)iνT 1

t1

}
,

(A23)

where f1,0 = f (1) − f (0). This is followed by the simultane-
ous Cauchy regularization of both branch-points singularities
at t1 = 0 and t1 = 1 :

I = i sinh(πνT)

π

∫ 1

0
dt1

(
t1

1 − t1

)iνT f (t1) − t1f1,0 − f (0)

t1

+ iνTf1,0 + f (0), (A24)

where we have utilized the well-known properties of the
beta and gamma functions [50]. In this way, the regularized
integration over t1 in Eq. (A24) becomes well adapted for
the application of the Gauss-Legendre numerical quadrature.
Another procedure which is also employed in our algorithm
consists of splitting the interval [0,1] into two sub-intervals:
(i) [0, 1/2] and (ii) [1/2,1]. This is followed by changing the
integration variable as in Ref. [54] via t1 = (1/2)e−w for [0,
1/2] and t1 = 1 − (1/2)e−w for [1/2,1], so that the integral from
Eq. (A24) is reduced to the form

∫ ∞
0 dw[f1(w) + f2(w)]e−w,

which can be evaluated by using the Gauss-Laguerre quadra-

ture method. Both procedures are found to yield the same
numerical results.

As a test of the numerical integration over κ in
∫ ∞

0 dκ g(κ),
instead of the change of the variable κ = √

2(1 + x)/(1 − x),
we also used the substitution κ = tan(π [x + 1]/4):∫ ∞

0
dκ g(κ)

=
∫ 1

−1
dx g{tan(π [x + 1]/4)}π

4
sec2(π [x + 1]/4). (A25)

Then, the Gauss-Legendre quadrature is applied to the right-
hand side of Eq. (A25) and the same numerical results
are obtained. Likewise, we also applied the Gauss-Laguerre
quadrature for integration over κ and arrived at the same
numerical results. The number of integration points for
each axis is gradually and systematically increased until
convergence to the preassigned two decimal places has reliably
been reached.
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[52] Dž. Belkić, Phys. Rev. A 37, 55 (1988).
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