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Population kinetics in fluctuating plasmas
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We address a model for atomic population kinetics in fluctuating plasmas. An analytical expression for the
ensemble-average populations is obtained in terms of two statistical functions that can be retrieved experimentally,
namely the probability density function and the autocorrelation of the plasma fluid fields. This expression, allowing
for very fast calculations, is of great interest to thoroughly analyze the radiative properties of fluctuating plasmas.
Two limits, where the fluctuations are either faster or slower than the atomic relaxation time scales, are discussed
in detail. Finally, an application to atomic hydrogen is presented.
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I. INTRODUCTION

Atomic population kinetics models (PKMs) are extensively
used in plasma physics for interpreting experimental spectra or
modeling, e.g., the ionization balance [1]. If the atomic relax-
ation time scales are short compared to the typical time over
which the plasma parameters (density, temperature) evolve,
the atomic populations follow the fluctuations of the latter
adiabatically. In this case, only the stationary solution of the
balance equations is of interest [1–3]. However, in fluctuating
plasmas this condition is not necessarily satisfied, so that the
time dependence of the populations should, in principle, be
retained. The effect of plasma fluctuations on PKMs has been
addressed by several groups. A common approach consists
of adding a transport term to the balance equations. This
approach is justified for low amplitude fluctuations, e.g., in
the core of magnetically confined plasmas [4]. This transport
term, resulting from a time average of the balance equations,
can be strong enough to affect the averaged populations [5].

Another approach to account for fluctuations consists of
modeling them by superimposing a number of harmonic
functions. In [6], a numerical integration of the balance
equations has shown that the time-averaged populations can
be significantly modified by temperature fluctuations.

The approach we develop here consists of treating the
fluctuating field as a stochastic process, characterized by the
probability density function (PDF) and the autocorrelation
function of the fluctuating field. Turbulence frequencies are
supposed to be lower than the electron-ion collision frequency,
so that the plasma is locally Maxwellian. This approach
draws its inspiration from the so-called model microfield
method developed for spectral line broadening in plasmas [7].
Our method leads to an analytical formula for the average
populations, expressed as a function of the PDF and the
autocorrelation function of the fluctuating fluid fields and
is valid for any amplitude of the fluctuations. Recently [8],
we have presented a preliminary application of this model
to the study of radiative losses of lithium, in the context
of magnetic fusion plasmas. In that work, an exponential

*catoire@celia.u-bordeaux1.fr; Present address: CELIA, UMR
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correlation function was used. Here, we extend our approach
to a broader class of correlation functions and investigate the
effect of the plasma fluctuations on average atomic populations
more comprehensively.

This paper is organized as follows: First we describe the
general approach leading to an analytical expression of the
average populations when time-dependent stochastic plasma
fluid fields are taken into account. Next we present and discuss
the results for two regimes corresponding to fluctuation time
scales either larger or shorter than the characteristic atomic
time scales. Finally, the model is illustrated by an application
to atomic hydrogen and is compared to numerical methods.

II. GENERAL DESCRIPTION OF POPULATION
KINETICS MODEL (PKM)

In PKM, the vector containing the level populations is noted
X(t) = (x1(t), . . . xN (t)), where xj (t) is the population of j th
levels. The evolution of the vector X(t) is governed by an
equation of the form [1]

dX(t)

dt
= M(Y (t))X(t). (1)

In this equation the matrix M contains all the rates involving
the level populations xj , i.e., all the relevant processes leading
to transitions between them. The letter Y refers to fluid
fields such as the electron (ion) density, and/or electron
(ion) temperature, which will be taken as time-dependent
quantities in the following. The solution of Eq. (1) is given by
X(t) = G(t,0)X0 where G(t,t ′) is the Green function defined
by

∂tG(t,t ′) = M(t) G(t,t ′) with G(t,t) = I and
(2)

G(t,t ′) = G(t − t ′).

X0 = X(t = 0) is the initial value of the population vector
X and I the identity matrix. Usually, the fluid fields (Y ) are
assumed to evolve slowly compared to the atomic relaxation
time scales, and only the stationary solution (sometime
referred as quasi-steady state (QSS) for which dX

dt
= 0) is

considered [1]. The latter approach is valid provided that the
relaxation time scales of the atomic system is short compared
to the time scales over which Y evolves. If such a steady state
does exist, the solution of Eq. (1), noted X∞, is simply given
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by M(Y )X∞ = 0. The existence of this stationary solution is
conditioned by the following properties of the matrix M:

(i) det (M) = 0 in order to have X∞ �= 0.
(ii) The eigenvalues (except 0) of M have to be negative in

order to ensure the convergence at large times.
Since M is not invertible, the population vector X can be

normalized by the total population N0 = ∑
i xi which is a

constant in this model. As a consequence,
∑

i |xi(t)| = 1 ∀t .
The steady state X∞ is given by the eigenvector of eigenvalue
0 of the matrix M [9].

III. DESCRIPTION OF MODEL

Processes considered in this work are ergodic so that the
ensemble-average value is equal to the time-average one. In
order to calculate the ensemble average 〈G(t,0)〉, we consider
a stepwise constant process, for which the stochastic fluid field
(Y ) is assumed to be constant between two jumps with a value
sampled according to a given probability density function,
noted p(Y ). An example of such a process is illustrated in
Fig. 1, where Y represents the electron temperature.

These jumps are assumed to be instantaneous, and the
waiting time distribution (WTD) between two jumps is noted
ϕ(t). In the Appendix, we show that the correlation function
C(t) is related to the WTD by the relation

C(t) =
∫ ∞

t

dt ϕ(t). (3)

Since we consider general autocorrelation functions, the WTD
is not necessarily an exponential function, thus this model can
describe non-Markovian processes [10,11].

The stochastic Green function is the solution of Eq. (2).
Using the semigroup property of the Green function we have

G(t,0) = G(t,tN−1) · · · G(t2,t1)G(t1,0) =
N−1∏
i=0

G(ti+1,ti).

(4)

The interval [0,t] is split in N intervals as follows: 0 = t0 �
t1 � t2 · · · � tN−1 � tN = t . For each time interval [ti ,ti+1],
the stochastic term Y is constant and equals Yi . All Yi are
chosen independently at each step. At the ith step, the Green
function is written

G(ti+1,ti) = exp[(ti+1 − ti)M(Yi)] = G(ti+1 − ti), (5)

since the stochastic quantity, hence the matrix M , is constant
during the interval [ti ,ti+1]. Therefore for a given configuration
of jumping time, the average of the Green function is given by

〈G〉(t) = 〈G(t,tN−1) · · · G(t2,t1)G(t1,0)〉

=
N−1∏
i=0

〈G(ti+1,ti)〉 =
N−1∏
i=0

GST (ti+1,ti). (6)

In this expression GST represents the average of the static
Green function and takes the form

GST (ti+1,ti) = 〈G(ti+1,ti)〉 =
∫

dYp(Y )G[Y ](ti+1 − ti). (7)

The factorization of the averages in Eq. (6) is allowed because
the values of Y , before and after a jump, are independent. The
average of the Green function is the sum of the contributions
of the probabilities of having no jump, one jump, and so on.
By noting �(t) = 1 − ∫ t

0 ϕ(t ′)dt ′ the probability of having no
jump in the interval of time [0,t], 〈G〉(t) satisfies the following
equation:

〈G〉(t) = �(t)GST (t,0)

+
∫ t

0
�(t − t1)GST (t − t1) ϕ (t1)dt1GST (t1)

+
∫ t

0

∫ t1

0
�(t − t2)GST (t − t2) ϕ (t2)dt2GST (t2 − t1) ϕ (t1)dt1GST (t1) + · · · (8)

This expression has to be understood as follows: the first term
assumes that no jump occurs during the time interval [0,t].
The second term assumes that only one jump occurs during the
same time interval. If a jump takes place at a time t1 (t1 < t),
the probability of having a jump at that time is ϕ(t1)dt1and the
average Green function, from the time 0 to t1, is expressed by
GST (t1). During the remaining time interval [t1,t], the average

static Green function is given by GST (t − t1). The probability
that no more jump occurs during the time interval [t1,t] is
�(t − t1). The third term corresponds to the case where two
jumps take place, and so forth. It can be easily verified that
Eq. (8) is equivalent to the following integral equation:

〈G〉(t) = �(t)GST (t) +
∫ t

0
dt1〈G〉(t − t1)ϕ(t1)GST (t1). (9)
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FIG. 1. Example of the stochastic evolution of a plasma fluid
field as a function of time. For this illustration we consider the
electron temperature as being the fluctuating parameter (Y = Te).
Here a Gamma distribution is considered, with 〈Te〉 = 2 eV and
a fluctuation rate r = �Te/〈Te〉 = 0.9. The duration of each step
is sampled according to an exponential distribution of parameter
ν = 1500 µs−1.

This integral equation can be solved by using Laplace
transform techniques. We introduce the following notations:

e〈G〉(s) =
∫ ∞

0
dt exp(−st)〈G〉(t), (10a)

A�GST (s) =
∫ ∞

0
dt exp(−st)�(t)GST (t), (10b)

AϕGST (s) =
∫ ∞

0
dt exp(−st)ϕ(t)GST (t), (10c)

with

GST (t) =
∫ ∞

0
dYp(Y ) exp (M(Y )t). (10d)

The Laplace transform of Eq. (9) leads to the following
solution:

e〈G〉(s) = A�GST (s)[I − AϕGST (s)]−1, (11)

where I is the identity matrix. The main advantage of this
result is to express the average Green function by an analytical
formula which only relies on two probability distributions,
namely the PDF and the WTD, to describe the statistics of
the process under consideration. The PDF and the WTD are
functions which can be determined from statistical measure-
ments of turbulence. As a reminder, the WTD is related to
the autocorrelation function of the time-dependent plasma
fluid field. In the case of an exponential correlation function,
ϕ(t) = ν exp(−νt), where ν is the inverse of the turbulence
correlation time, Eq. (11) simplifies to

12e〈G〉(s) = [I − νeGST (s)]−1
eGST (s) (12a)

with
eGST (s) =

〈
1

s + ν − M

〉
. (12b)

This expression is similar to that of the Kubo-Anderson
model that was obtained in the context of Stark broadening [7].

The average of the Green function given by Eqs. (11)
and (12) is expressed in terms of GST given by Eq. (10d),
which remains a simple function of the static value of the
matrix M , even for nonexponential correlation functions. The
only restriction is that the WTD is independent of the stochastic
fluid field. In Sec. IV, we use the solution of Eq. (11) to
extract and discuss the limits where the turbulence frequency
is either larger or smaller than the atomic time scales for the
nonexponential correlation function.

IV. APPLICATION TO POPULATION KINETICS

The average of the population vector 〈X(t)〉, after a long
time compared to both the correlation time and the atomic
relaxation time, reaches a limit 〈X〉. The purpose of this section
is to make the link between the latter vector and the averaged
Green function as defined by Eq. (11).

A. Calculation of the ensemble-average population

In order to calculate 〈X〉, we make use of Eq. (11) and the
relation

lim
t→∞〈X(t)〉 = 〈X〉 = lim

s→0+
se〈X〉(s) = lim

s→0+
se〈G〉(s)X0, (13)

which links the solution in the time domain to that of
Eq. (11) in the Laplace domain. Two limits can be investigated
analytically, for any integrable correlation functions (i.e.,
having finite moments), corresponding to short and long
turbulence time scales compared to characteristic atomic time
scales. Let us consider the first finite moment:

ν−1 =
∫ ∞

0
dt tϕ(t), (14)

where ν is the jumping frequency associated to the fluctuating
fluid field Y . ν is actually the inverse of the turbulence
correlation time 〈t〉.

The limit ν � νat corresponds to the case where plasma
parameters may be considered as constant during the atomic
lifetime, characterized by the frequency νat. Inversely for
ν 	 νat, a case we call the diabatic limit, many plasma
field fluctuations occur during the atomic level lifetime. In
the two next sections, we infer the atomic population vector
corresponding to these two regimes.

B. Static limit

In order to investigate the static limit, ν � νat or in practice
ν → 0, let us start from Eq. (10c) which can be reformulated
as

AϕGST (s) =
〈∫ ∞

0
dt exp[−(s − M)t]ϕ(t)

〉
= 〈eϕ(s − M)〉,

(15)

whereeϕ(s − M) is the Laplace transform of ϕ(t) evaluated for
the matrix s − M . Equation (10b) can be integrated by parts
such that

A�GST (s) = 〈(s − M)−1〉 − 〈(s − M)−1
eϕ(s − M)〉. (16)

Now we focus on the calculation of Eq. (15) in the case
where ν → 0. The WTD is such that

∫ ∞
0 ϕ(t)dt = 1, meaning
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that limt→∞ ϕ(t) = 0. From Eq. (14),
∫ ∞

0 dt(1 − tν)ϕ(t) = 0
for all ν, where the function ϕ depends on ν. We split the
latter integral into two terms, one integrated from 0 to 1/ν

and one from 1/ν to ∞. A change of variable leads to∫ 1/ν

0 dt(1 − tν)ϕ(t) = ∫ ∞
0 du νuϕ(u + 1

ν
). One can show [9]

that the right-hand side of the equality goes to 0 when ν → 0,
so that limν→0

∫ 1/ν

0 dt(1 − tν)ϕ(t) = 0. Since the integrand
of the latter integral is positive for all ν and t , one gets
limν→0 ϕ(t) = 0. Translated into the laplace domain, the latter
relation implies

lim
ν→0

eϕ(s − M) = 0. (17)

From Eqs. (11) and (16), and using Eq. (17), the following
relation is obtained:

se〈G〉(s)X0
=

ν→0

〈
s

s − M
X0

〉
, (18)

since X0 does not depend on the fluctuating quantity Y . The
solution we are seeking is the limit when s → 0 of Eq. (18). It
can be shown (cf. [9]) that the solution of this equation is given
by the average value of the eigenvector of M corresponding to
the eigenvalue 0, i.e., XST = ∫

dYp(Y )X∞[Y ] where X∞ is
such that MX∞ = 0. This solution corresponds to the average
of the stationary solution over the fluctuation of Y as expected
intuitively and is called the static limit.

C. Diabatic limit

The diabatic limit corresponds to the case where ν 	 νat

or in practice ν → ∞. A Taylor expansion 1 of eϕ(s − M) for
small values of s (and a fixed large value of ν) gives

eϕ(s − M) ≈ 1 − (s − M)

ν
. (19)

Using Eqs. (19) and (16) we get

A�GST (s) ∼
ν→∞

1

ν
(20)

and

(s − 〈M〉)〈eG〉(s) ∼
ν→∞ I. (21)

It is interesting to notice here that the expression of 〈eG(s)〉 in
Eq. (21) is similar to that of Eq. (18) where 〈1/(s − M)〉 is
replaced by 1/(s − 〈M〉). Finally, introducing Eqs. (19) and
(21) into Eq. (11), the solution in the diabatic regime is such
that

〈M〉 lim
s→0

s〈eG〉(s)X0 = 〈M〉XDB = 0,

where XDB = lim
s→0

s〈eG〉(s)X0. (22)

As a consequence, the solution in the diabatic limit is the
unique element of ker(〈M〉). Unlike in the previous case, here

1Here we assume that ϕ satisfies the Carleman criterion. If it is not
the case, like for the log-normal distribution, ϕ cannot be expanded
as a Taylor series but can still be expanded around s = 0. Since
Eq. (21) does not depend on the first moment, the result of Eq. (22)
is valid as long as ϕ has finite moments.

the average over the quantity Y is performed on M . It can be
shown that the two solutions corresponding to the diabatic and
static limits do not depend on the initial condition X0 [9].

In the static limit, the population reaches its steady state
before a jump of Y . Since the steady state does not depend
on X0, consequently the average in the static regime does
not depend on the initial conditions. In the diabatic limit, this
property is more difficult to figure out. The independence of
the diabatic limit on X0 is linked to the ergodic theorem.
The correlation time can be seen as the time from which a
de-correlation with the initial conditions occurs. This is the
reason why the average population does not depend on the
initial conditions, even in the diabatic regime.

It must be underlined that the static and diabatic asymptotic
behaviors do not depend on the WTD, as long as the WTD
has finite moments. Therefore the WTD does not affect the
asymptotic trends of the population kinetics but only influences
the intermediate region between the static and diabatic limits.

The static and diabatic limits have been obtained for
WTD having finite moments, i.e., for integrable correlation
functions. The average population given by Eq. (11) has been
obtained for any correlation functions and can be applied
to correlation functions that are not integrable like the one
corresponding to Lévy WTD. But in this case, the two limits
previously analyzed need to be redefined.

V. FULL NUMERICAL INTEGRATION

In order to calculate the ensemble-average value 〈X(t)〉,
a straightforward procedure consists of solving Eq. (1)
numerically for a given turbulent field configuration. For
comparisons with the model detailed in the next section,
we have performed a numerical integration and made use
of the Crank-Nicolson algorithm [12]. The turbulent field
configuration was calculated by generating randomly a set
of independent values of the fluid field (Y ), as shown in
Fig. 1.

For a time long enough (longer than both the relaxation
time and the correlation time to ensure ergodicity, cf. [9]),
the ensemble-average value 〈X(t)〉 becomes time-independent
and the value reached corresponds to the ensemble-average
population vector. Typically a few hundred samples are needed
to ensure the convergence of the calculation. This is the reason
why this procedure may be time consuming and the model
proposed here turns out to be useful.

VI. RESULTS OF THE STOCHASTIC MODEL
AND DISCUSSIONS

In this section we illustrate the stochastic model using a
simple system formed by the 1s, 2s, and 2p levels of atomic
hydrogen. Figure 2 represents the different processes included
in our model:

(i) the spontaneous emission from 2p to 1s,
(ii) electron excitation and de-excitation from 1s to 2s and

1s to 2p,
(iii) ion excitation and de-excitation from 2s to 2p.

Here we assume that electrons and ions have equal densities
and temperatures.
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The matrix M(t) of Eq. (1) of the reduced system is given by

M(t) =

⎛
⎜⎝

−�1s→2s − �1s→2p �2s→1s A2p→1s + �2p→1s

�1s→2s −�2s→2p − �2s→1s �2p→2s

�1s→2p �2s→2p −�2p→2s − A2p→1s − �2p→1s

⎞
⎟⎠ , (23)

where �i→j = Neki→j (Te) and Ne, Te are, respectively, the
time-dependent electron density and temperature. The rate
coefficients (ki→j ) have been calculated from the cross section
presented in [13] assuming a Maxwellian velocity distribution
function. This simple model still reproduces quite well the
physics of the population dynamics and the usual static regime
is recovered [1]. Depending on the electron density (other pa-
rameters being fixed), three regimes can be distinguished [1,9]:

(i) High densities: the local thermodynamical equilibrium
is reached and all the populations follow the Boltzmann law.

(ii) Low densities: the collisional de-excitation rate coeffi-
cients can be neglected (k2p→1s and k2s→1s equals 0) and the
population density steady-state vector is given by

X∞ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

k2p→2sNe

A2p→1sk2s→2p

(k1s→2p + k1s→2s) + k1s→2s

k2s→2p

(k1s→2s + k1s→2p)Ne

A2p→1s

⎞
⎟⎟⎟⎟⎟⎟⎠

x∞
1s .

(24)

x∞
1s , corresponding to the value of the population density steady

state of the 1s level, is set such that
∑

i xi = 1. This regime is
called the coronal regime.

(iii) Intermediate densities: for which a collisional radiative
model is needed to describe the population kinetics.

A. Description of the statistics used in this work

In this section we introduce the plasma fluctuations and
apply the analytical result given by Eqs. (13) and (11) to
our system. As stated in Sec. II, the goal of this work is to
extract the main features of the average populations when
fluctuating plasma fluid fields are taken into account. In fact,
for low Ne (such that x∞

1s ≈ 1), the populations are linear
in electron density, so that no effects from a fluctuating
electron density are expected. Thus the electron temperature is
considered as the only fluctuating quantity in this work, while

FIG. 2. Schematic of the system; e stands for electrons, i for ions,
and se for spontaneous emission.

the electron density is assumed to be constant. The PDF of the
electron temperature is assumed to be a Gamma distribution,
which allows full analytical calculations in the diabatic and
static limit. For the sake of simplicity and since this is a
first application study, we consider an exponential correlation
function, i.e., an exponential WTD. We have shown in Sec. IV
that the diabatic and static limits are independent of the WTD.
Thus a nonexponential WTD would only affect our results
in the intermediate regime. Other WTDs, relaxing the Markov
approximation, will be investigated in a future work. The WTD
ϕ(t) and the PDF p(T ) describing the statistical properties of
the electron temperature are, respectively, given by

ϕ(t) = ν exp(−νt), (25a)

p(T ) = αβ

�(β)
T β−1 exp(−αT ). (25b)

The average value of the time intervals 〈t〉 on which Te

is constant is 〈t〉 = ∫ ∞
0 τϕ(τ )dτ = 1/ν. The average value of

the electron temperature is given by 〈T 〉 = ∫ ∞
0 Tp(T )dT =

β/α and the temperature dispersion is given by �T =√
〈T 2〉 − 〈T 〉2 = √

β/α. We introduce the fluctuation rate r =
�T/〈T 〉 = 1/

√
β. The system is then exhaustively described

by Ne, 〈Te〉 for the static description of the plasma, and ν, r

for the fluctuating part.

B. Average populations as a function of ν

In this paragraph, results for the average populations x2s

and x2p, respectively, for the 2s and 2p levels of the reduced
atomic hydrogen as a function of the turbulence frequency ν

are presented. We set the electron density to 1018 m−3 and
the average electron temperature to 2 eV (coronal regime).
The fluctuation rate of the electron temperature is set to 90%
(r = 0.9). In Fig. 3, the results obtained from the analytical
Eq. (12) (black solid line) are compared to the time-dependent
calculation solving Eq. (1) numerically (red dots), as explained
in Sec. V.

An excellent agreement between the two methods is found.
Moreover, our method is 20 times faster than the numerical
integration, and is even faster for small values of ν. The gain
in calculation time would have been even more significant if
the turbulent fields had been calculated from a turbulence code.
This highlights the interest of our approach.

The first noticeable result is the increase of populations
when turbulence is introduced. This result can be explained
by the spread of the PDF toward high temperatures. Since the
higher the temperature the higher the population, the averaging
provides an increase of population compared to the turbulence-
free case.

The population of the 2s level differs by a factor of 2 going
from the static to the diabatic limits requiring a change of two
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(a)

(b)

(       )

(       )

FIG. 3. (Color online) Plot of the average populations as a
function of the turbulence frequency (ν). The result for the 2s level is
given in (a) and that of the 2p level in (b). The dispersion around the
average value is indicated by error bars which represents the deviation
to ergodicity. The dashed region indicates the range of turbulence
frequency for which the ionizing regime approximation is not valid.
In the same way, the turbulence frequency has to be smaller than the
frequency of electron-ion, electron-electron, and ion-ion collisions,
in order to use the Maxwellian velocity distribution function. For this
example, the lowest of those frequencies is the ion-electron collision
that equals 1010 µs−1. The plasma frequency is equal to 3 × 104 µs−1.
The dot-dashed curve is the turbulence-free result.

orders of magnitude of the turbulence frequency (from 1 to
100 µs−1). This shows the strong effect on the population
kinetics of the plasma fluctuations.

This range of turbulence frequencies may be observed in
turbulent plasmas. Indeed, the plasma frequency is equal to
3 × 104µs−1, meaning that the highest achievable turbulence
frequency (of the order of a tenth of the plasma frequency) is
in the diabatic regime.

The population of the 2s level in the diabatic regime is
higher than the one in the static regime since x2s(Te) is
convex (cf. Jensen inequality [14]). The transition between
the two regimes occurs, as expected, at a frequency ν

close to those of the average rates of the atomic system
defined by Ne

∫
dTep(Te)k(Te), where k(Te) is the rate

coefficient (Ne〈k1s→2s〉 = 4.5 × 10−4 µs−1, Ne〈k1s→2p〉 =
8 × 10−4 µs−1, A2p→1s = 626 µs−1, while Ne〈k2s→2p〉 =
42.7 µs−1).

The values of the population in the diabatic and static limits
depend on the average value of the temperature and density.
For large values of the density, the diabatic and the static merge
since the thermodynamical equilibrium is reached.

From Fig. 3 we show that the average population of the 2p

level does not depend on the value of the turbulence frequency,
a peculiar result that is related to the limited number of levels
considered in this model. It can be checked in Eq. (24) that the
diabatic and static limits are indeed identical for this particular
level. Moreover, from Eq. (24) it can be seen that the 2s level
behaves differently from the 2p level due to the finite value of
the transition rate from 2s to 2p by ion impact.

C. Average populations as a function of 〈Te〉 and
the fluctuation rate r

In the previous paragraph, we have shown that the aver-
age populations are increased compared to the turbulence-
free case. The calculation has been performed for a low
average temperature (2 eV). We now focus on the effect of
the average temperature and the fluctuation rate r in order to
investigate whether the previous behavior remains the same.
In the following, the electron density is set to 1019 m−3 and the
turbulence frequency to 1000 µs−1 (i.e., close to the diabatic
limit). The average populations 〈x2s〉 and 〈x2p〉 are plotted in
Fig. 4, as a function of 〈Te〉 for different values of r .

The first feature to note is that the effect of fluctuations are
significant only for quite large fluctuation rates (several tens of
percents). Next the global trend of the populations remains the
same, i.e., an increase of the populations when 〈Te〉 increases,
and three regimes can be globally distinguished:

(i) 〈Te〉 < Tc for which the average populations decrease
when r decreases,

(ii) 〈Te〉 > Tc having the opposite behavior, namely the
average populations decrease when r increases,

(iii) 〈Te〉 ≈ Tc for which the average populations do not
depend on r .

We call Tc the “characteristic” temperature that is equal
to 5.7 eV for the 2s level and 5.4 eV for the 2p level. We
observed that Tc depends on Ne and ν for the 2s level, while
both parameters do not affect the value of Tc for the 2p level.

Tc can be estimated by expanding Eq. (22), in the diabatic
regime, i.e., using an expansion of the rate coefficients. Tc is
then defined such that the average population does not depend
on r up to the second order. Tc, in the diabatic regime, is found
to be equal to 5.2 eV for the 2p level and 5.0 eV for the
2s level, in good agreement compared to the values found in
Fig. 4 (10% discrepancy for the 2s level and 4% for the 2p

level).
Actually, the same behavior survives in the static regime

and is easier to interpret in this regime. Indeed, at large r

and 〈Te〉, the PDF becomes dominant at a low Te. Since the
population at low Te is small, the averaging at large r and
〈Te〉 reduces the value of the population. On the other hand, at
low average temperature, when r increases, the contribution
of high temperature becomes dominant. Since the higher the
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(a)

(b)

(    )

(    )

FIG. 4. (Color online) Plot of the average populations as a
function of the average electron temperature. (a) is for the 2s level,
and (b) is for the 2p level. The electron density and the turbulence
frequency have been set to Ne = 1019 m−3 and ν = 1000 µs−1.
The dotted curve is for r = 0.1, the dashed curve is for r = 0.5,
while the full curve is for r = 0.9. The squared curve is the solution
of the diabatic limit for r = 0.1, which corresponds to the turbulence-
free case. Tc is the characteristic temperature as defined in the text.

temperature the higher the population, the effect of the average
is to increase the value of the population.

We now give a physical interpretation of this behavior by
using our model in the static limit. The average population of
the ith level is then given by 〈xi〉(〈T 〉) = ∫

p(Te) xi(Te)dTe,
where p(Te) is the temperature PDF which depends on r and
〈Te〉. Expanding xi around the average temperature up to the
second order leads to

〈xi〉(〈Te〉) ≈ xi(〈Te〉) + x ′′
i (〈Te〉)r2〈Te〉2/2. (26)

From Eq. (26), 〈xi〉 does not depend on r at Tc up to the second
order if

x ′′
i (Tc) = 0, (27)

which does correspond to the inflection point of x(Te) given
by Eq. (24). In the case of the 2p level, the inflection point is
Tc = 5.17 eV in very good agreement with the value found in
Fig. 4 (discrepancy of 4%).

For the 2s level, the inflection point is found to be at
4.2 eV, corresponding to a discrepancy of 26% compared with
the value issued from Fig. 4. This discrepancy is not surprising
since the inflection point has been obtained in the static regime
while the data of Fig. 4 have been calculated in a regime close
to the diabatic limit.

As pointed out previously, Tc does not depend on Ne for the
2p level. Since the population in the 2p level is proportional
to Ne, Eq. (27) defines a Tc which also does not depend on Ne.

A last point that can be well explained by Eq. (26) is the
change of behavior of the average population as a function
of r , whether 〈Te〉 is larger or smaller than Tc. If 〈Te〉 < Tc,
then x ′′

i (〈Te〉) > 0 so when r increases, 〈xi〉(〈Te〉) increases at a
given value of 〈Te〉. Conversely, if 〈Te〉 > Tc, then x ′′

i (〈Te〉) <

0; as a consequence when r increases, 〈xi〉(〈Te〉) decreases for
a given value of 〈Te〉, exactly as observed in Fig. 4.

VII. CONCLUSION AND FUTURE WORK

A population kinetics model accounting for plasma fluc-
tuations has been developed. By using a stochastic descrip-
tion of the plasma fields, we have obtained an analytical
formula for the ensemble-average populations. This stochas-
tic description is shown to only depend on two functions
characterizing the plasma fields fluctuations, namely their
PDF and autocorrelation function, which can be matched to
experimental data.

Two limits, corresponding to characteristic turbulent time
scales either larger or smaller than the atomic time scales,
have been shown to be independent of the autocorrelation
function. The latter only affects the intermediate turbulence
frequencies range.

As an illustration of the effect of the fluctuating plasma on
the population kinetics, we have investigated a system formed
of the (1s, 2s, 2p) states of atomic hydrogen. The electron
temperature is assumed to be the stochastic field, described by
a Gamma PDF and an exponential correlation function. We
have observed a strong effect of the fluctuating temperature on
the averaged atomic populations of the upper levels (up to a
factor of 4). From this study we can conclude that the average
populations increase or decrease, respectively, for high and low
average temperatures. Consequently there is a characteristic
temperature for which the average populations are not affected
by turbulence. This temperature depends both on the plasma
conditions and the atomic system. For this particular reduced
atomic system, we have shown that the average population
of the 2s level increases with the turbulence frequency, while
that of 2p level remains constant, the latter behavior being the
consequence of a reduced system. Our model can be used for
more complex systems; this is ongoing work.
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APPENDIX: LINK BETWEEN THE AUTOCORRELATION
FUNCTION AND THE WTD

In this appendix we establish the link between the auto-
correlation function of the fluctuating parameter Y and the
WTD, noted ϕ(t). Using the same approach as in Sec. III, it
can be shown that the Laplace transform of the conditional
probability, Pt (Y |Y ′) for Y at the time t given Y ′ at the time
t = 0, is given by

ePs(Y |Y ′) = e�(s) δ(Y − Y ′) + p(Y )eϕ(s)

1 −eϕ(s)
. (A1)

eϕ(s) is the Laplace transform of ϕ(t) and e�(s) is the Laplace
transform of �(t), which is the probability of having no jumps
in the interval of time [0,t]. The covariance function of Y is

〈δY δY ′〉 = VarY (t) =
∫ ∫

dYdY ′(Y − 〈Y 〉)
× (Y ′ − 〈Y 〉)Pt (Y |Y ′)p(Y ′) (A2a)

with
δY = (Y − 〈Y 〉) and δY ′ = (Y ′ − 〈Y 〉). (A2b)

The Laplace transform of Eq. (A2a) gives

eVarY (s) =
∫ ∫

dYdY ′(Y − 〈Y 〉)
× (Y ′ − 〈Y 〉)ePs(Y |Y ′)p(Y ′), (A3)

so that, inserting Eq. (A1) in Eq. (A3), we get eVarY (s) =
σ 2
e�(s). Here σ 2 is the variance of Y . The inverse Laplace

transform of the latter expression gives

VarY (t) = σ 2�(t). (A4)

One can notice that the covariance function is only due to
the first term of Eq. (A1) corresponding to the contribution of
processes for which there are no jumps. The autocorrelation
of Y , which is usually a quantity that can be determined exper-
imentally, is simply proportional to �(t). The autocorrelation
function is given by CY (t) = VarY (t)/σ 2 and is simply equal
to �(t). Since the WTD is the opposite of the derivative
of �(t), the generalization of this model allows us to use
autocorrelation functions that are not necessarily exponential
and relax the Markov approximation. The link between the
autocorrelation function and the WTD allows an unambiguous

determination of the WTD from the autocorrelation. Moreover,
it is clear from Eq. (A4) that∫ ∞

0
CY (t) =

∫ ∞

0
tϕ(t) = 〈t〉 = 1/ν. (A5)

This relation is valid for autocorrelation functions that are
decreasing faster than 1/t at large values of t, meaning that
the autocorrelation function is integrable. Here it must be noted
that the derivative of the autocorrelation function is a PDF. As
such, this model cannot describe all classes of autocorrelation
fucntions. We have extended our analysis to the case where the
WTD depends on the fluctuating quantity Y , i.e., ϕ(t) becomes
ϕY (t). In that case, following the same procedure as the one
detailed in the text, the average Green function in the Laplace
domain is then

〈G̃〉(s) =
∫

dYp(Y )K̃Y (s) +
∫

dYp(Y )J̃Y (s)

×
(

1 −
∫

dYq(Y )J̃Y (s)

)−1 ∫
dYq(Y )K̃Y (s),

(A6)

with

K̃Y (s) = ∫
dt exp(−st)GST (t)�Y (t) and

(A7)
J̃Y (s) = ∫

dt exp(−st)GST (t)ϕY (t).

p(Y ) and q(y) are related by

q(Y ) = p(Y )
〈t〉q
〈t〉Y , (A8)

where

〈t〉Y =
∫

dt tϕY (t) and 〈t〉q

=
∫

dYq(Y )〈t〉Y =
(∫

dY
p(Y )

〈t〉Y

)−1

. (A9)

The correlation function is then

C(t) =
∫

dYp(Y )�Y (t)(Y − 〈Y 〉)2/σ 2. (A10)

The previous study, for which ν does not depend on Y ,
needs to be extended. This is the purpose of a coming work.
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