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Quantum-information analysis of electronic states of different molecular structures

G. Barcza and Ö. Legeza
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We have studied transition metal clusters from a quantum information theory perspective using the density-
matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and
interaction localization and discuss the application of the configuration interaction-based dynamically extended
active space procedure, which significantly reduces the effective system size and accelerates the speed of
convergence for complicated molecular electronic structures. Our results indicate the importance of taking
entanglement among molecular orbitals into account in order to devise an optimal DMRG orbital ordering and
carry out efficient calculations on transition metal clusters. Apart from these algorithmic observations, which lead
to a recipe for black-box DMRG calculations, our work provides physical understanding of electron correlation in
molecular and cluster structures in terms of entropy measures of relevance also to recent work on tensor-network
representations of electronic states. We also identify those molecular orbitals which are highly entangled and
discuss the consequences for chemical bonding and for the structural transition from an dioxygen binding copper
cluster to an bis-oxygen-bridged system with broken O–O bond.
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I. INTRODUCTION

The most important property of multicomponent quantum
systems is entanglement which denotes quantum correlations
between particles or a collection of particles forming a
larger subsystem [1]. The degree of entanglement is decisive
for understanding the physical behavior of multicomponent
quantum systems with consequences for numerical algorithms
developed to simulate such systems [2–11]. One such algo-
rithm is the density matrix renormalization group (DMRG)
method [2,3]. The concepts of quantum information theory
have been introduced to DMRG and created a fresh impetus to
the development of new methods that focus on entanglement
optimization [12,13].

It was shown that the quantum information entropy is a
direct measure of the behavior of quantum systems [1,14].
However, this fact has hardly been exploited for under-
standing electronic structures of molecules and clusters. In
quantum chemistry electronic correlations are quantified via
the contribution of one-electron states (orbitals) to electronic
configurations (i.e., Slater determinants or configuration state
functions) that are used to approximate the electronic wave
function. By contrast, concepts of quantum information theory
allow one to quantify such correlations in a more direct
way. Then, understanding molecular properties in terms of
single-particle states is in terms of entropy-based criteria.
One example is the magnetic behavior of transition-metal
clusters of interest as single-molecule magnets [15–17] to be
understood in terms of the “magnetic” orbitals of the cluster.
Thus, it is highly desirable to develop numerical methods and
techniques for obtaining as much information as possible from
entropy-based analyses [13,18–22].

The calculation of quantum-information measures is
strongly coupled to numerical procedures for approximating
the electronic wave function. Since the first application of

the DMRG algorithm to quantum chemical systems using the
full electronic Hamiltonian [23], the method has gone through
major algorithmic developments by various groups [24–28]. In
2002, two groups independently provided the first large-scale
calculations on diatomic molecules [29,30]. Calculations on
the F2 molecule by keeping more than 2000 block states (i.e.,
states defined on the active subsystem in DMRG) denoted
as M in the following, and on the water molecule using
6000 block states [31] confirmed that the DMRG method
is capable of reaching the limit of the full-CI method in
cases where most standard quantum chemical approaches fail
and cannot be applied due to the requirement of very large
active spaces. Efficient calculations of excited states and the
relation between the DMRG wave function and the standard
CI expansion have already been discussed in Ref. [32]. The
authors have also shown that the DMRG wave function is
also suited to study problems when the characteristics of the
wave function changes drastically, for example, when the bond
length between diatomic molecules is changed. Therefore, it
became evident that very accurate results can be obtained by
increasing the computational resources related to the DMRG
block states. On the other hand, the more important questions,
namely what is the minimum computational effort to obtain
results with a given accuracy is still unsolved and part of active
research [18,20,26,33].

A key ingredient of the DMRG method related to its
multicomponent subsystem wave-function representation is
entanglement. A controlled manipulation of it is expected
to extend capabilities of DMRG to treat larger systems in
a more efficient way. The development of entanglement
reduction algorithms (ERA) is thus very appealing. Matrix
product states (MPS) [34] that are inherently produced by the
DMRG algorithm can be used to localize the entanglement
by reordering sites [13,19,29,30,35] or by optimization of
the basis [11,20,33,36–41]. Considering the entanglement
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between arbitrarily chosen pairs of sites [10,19], a network
topology can be determined for tensor-network-state (TNS)
algorithms [11]. Further gain in speed of convergence can
be achieved by an optimization of the initialization pro-
cedure [13,42] in which highly entangled states are taken
into account from the very beginning. One such algorithm
is the dynamically extended active space (DEAS) method
[13], and its extension by including CI-expansion techniques
(CI-DEAS) [43,44]. In this article, we will show that the
proposed entropy-based optimization scheme including the
(CI-)DEAS and the dynamic block state selection (DBSS)
procedures are vital ingredients to obtain highly accurate
results with tremendous savings in computation resources and
time. In addition, it is a smart way of reducing the Hilbert space
which allows us to study large active spaces with a modest
number of renormalized states in contrast to inefficient and
expensive brute-force DMRG calculations at a fixed number of
renormalized states. DMRG calculations on complex chemical
systems using quantum information theory have not yet been
carried out, and are the subject of this work.

The very challenging binuclear oxo-bridged copper clusters
identified in Ref. [45] as a very difficult case for complete-
active-spacelike calculations pose an ideal test for the DMRG
algorithm. In a pioneering study, some of us investigated the
DMRG algorithm for the prediction of relative energies of
transition metal clusters of different molecular structures, the
bis(µ-oxo) and µ − η2 : η2 peroxo isomers of [Cu2O2]2+ [46].
Based on these results, we drew the conclusion that the
DMRG algorithm is suited to study transition metal complexes
and clusters. Kurashige and Yanai have picked up that same
problem as well and performed massively parallel DMRG
calculations employing 2400 renormalized basis states but
on a larger active space with a smaller one-particle basis
[47]. In their study, a new aspect was the inclusion of a
perturbative correction introduced originally by White [48]
for the one-site DMRG algorithm to prevent convergence to
local minima during the optimization process. In the present
study of [Cu2O2]2+, we show that no convergence acceleration
technique such as white noise [29] or perturbative correction
[47] is needed if an entropy-based optimization scheme is
employed.

The purpose of the paper is to show how quantum
information entropies can be efficiently exploited to perform
accurate calculations on complicated chemical systems such
as transition metal clusters which in turn provide physical
understanding of the corresponding electronic structure as
we shall see. Our results indicate that—within chemical
accuracy—much larger molecular systems can be studied than
before using comparatively little computational resources. In
Sec. III, we briefly discuss the various technical aspects of our
calculations while the entropy analysis of the two isomers are
presented in Sec. IV. In Sec. V, extensions to tensor-network-
state methods are discussed and our conclusions are given.

II. THE CHALLENGE OF BINUCLEAR
COPPER CLUSTERS

The reliable first-principles description of transition metal
complexes and clusters remains an important task for theo-
retical molecular physics and quantum chemistry—especially

because of the role of such molecules in catalysis and
bioinorganic chemistry [49–52].

In 2006, Cramer et al. investigated several theoretical
models on the [Cu2O2]2+ molecule and found incisive dis-
crepancies between them [45]. The CASSCF calculations
even yield a qualitatively wrong interpretation of the energy
difference between the two isomers. The reason for this
striking failure lies in the inability of the CASSCF method
to include all relevant molecular orbitals into the one-particle
active space that would be necessary to obtain a qualitatively
correct description of the electronic structure. Already the
qualitative picture of an extended Hückel calculation indicated
the requirement of more than doubling the active space for bin-
uclear transition metal clusters compared to the mononuclear
analog [46]. An additional support for the fact that a very large
active space is needed for a correct description of the electronic
structure of transition metals is the finding of Pierloot et al.
to include a second d shell to obtain accurate results [53]. As
we showed in our previous work [46], the DMRG algorithm
is an ideal candidate to tackle the description of challenging
electronic structures that require large active spaces occurring
in transition metal chemistry.

This work reinvestigates the dicopper clusters with an
improved methodology transforming the DMRG approach
eventually into a black-box method with significantly reduced
computational requirements. For our DMRG calculations, the
same active space, one-particle basis set and effective core
potential as in Ref. [46] were used. All quantities calculated in
this paper will be given in Hartree atomic units of which the
energy unit is one Hartree.

III. NUMERICAL PROCEDURE

In this section, we outline the procedures and methods
needed for the entropy-based optimization scheme to effi-
ciently carry out DMRG calculations. Examples and figures
will be presented for the µ − η2 : η2 peroxo isomer of
[Cu2O2]2+ while for the bis(µ-oxo) isomer only the final
results are given.

A. Molecular Hamiltonian in second quantization

In quantum chemical (QC-)DMRG applications, the
electron–electron repulsion is taken into account by an iterative
procedure that minimizes the Rayleigh quotient corresponding
to the electronic Hamiltonian given by

H =
∑
ijσ

Tij c
†
iσ cjσ +

∑
ijklσσ ′

Vijklc
†
iσ c

†
jσ ′ckσ ′clσ , (1)

and thus determines the full-CI wave function. In Eq. (1),
ciσ and c

†
iσ are the usual electron annihilation and creation

operators, Tij denotes the one-electron integral comprising the
kinetic energy of the electrons and the external electric field
of the nuclei. Vijkl stands for the two-electron integrals and
contains the electron-electron repulsion operator, defined as

Vijkl =
∫

d3x1d
3x2

φ∗
i (�x1)φ∗

j (�x2)φk(�x2)φl(�x1)

|�x1 − �x2| . (2)

We obtain the Hartree-Fock orbitals in a given one-particle
basis of atomic Gaussian functions and transform the
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FIG. 1. (Color online) Pictorial representation of the magnitude
of components Tij of the one-electron operator for the µ − η2 : η2

peroxo isomer of [Cu2O2]2+. For better visibility the one-dimensional
orbital chain is plotted on a circle with modulated radius in
a clockwise direction. Orbitals belonging to different irreducible
representations are shown by different symbols. Numbers next to
the symbols label molecular orbitals.

one-electron and two-electron integrals in the atomic basis set
to the Hartree-Fock molecular orbital basis using the MOLPRO

program package [54], which we also employ to obtain ref-
erence complete-active-space self-consistent field (CASSCF)
and complete-active-space configuration-interaction (CASCI)
energies.

In the QC-DMRG algorithm, a one-dimensional chain
is built up from molecular orbitals obtained from a suit-
able mean-field or multiconfiguration self-consistent field
(MCSCF) calculation. As will be discussed later, the one-
orbital entropy function [13] and the two-orbital mutual
information [19] provide a good starting configuration. The
irreducible representations of the orbitals can also be used
in the DMRG procedure to carry out calculations for a
given point-group symmetry [13]. This will be used in the
present work, and as an example, the components Tij of the
one-electron operator are shown in Fig. 1 for the µ − η2 : η2

peroxo isomer of [Cu2O2]2+.

B. Two-site variant of the DMRG method

For our DMRG calculations, we employ the two-site
variant of the DMRG method introduced by White [2]. In the
superblock configuration, two sites are between two blocks
(sets) of orbitals. To fix the notation for the rest of the
paper, we label the block states of the left block containing
l orbitals, the two intermediate sites and the right block with
r orbitals by Ml,ql+1,ql+2,Mr , respectively. The total number
of orbitals N is l + 2 + r . When a larger block is formed
during the renormalization steps by adding a single site to the
left or to the right block the new block states are denoted by
ML and MR where L = l + 1 and R = r + 1. The one-site
variant of the DMRG [48] related to the MPS approach was
first applied in quantum chemistry in Ref. [30] for a fixed
number of block states but convergence properties were found

considerably worse than for the two-site DMRG algorithm.
This can be improved by the introduction of a local density
operator [48] which was used by Kurashige and Yanai for
the calculation of the transition metal cluster compound with
2400 block states [47]. Although the size of superblock Hilbert
space is smaller in this case, we use the two-site variant since
this configuration allows one to control the number of block
states dynamically and convergence to local minima is less
likely [30].

C. Dynamic block state selection

A fundamental concept related to the inseparability and
nonlocality of quantum mechanics is entanglement. Since the
QC-DMRG algorithm approximates a composite system with
long-range interactions, the results of quantum information
theory can be used to understand the criteria of its convergence.

The two-site variant of the DMRG method has originally
been employed with a fixed number of block states while the
degree of entanglement between the DMRG blocks for a given
superblock configuration is related to the Schmidt number
rSchmidt. For a pure target state |�TS〉 ∈ � = �L ⊗ �R , with
dim �L = ML, dim �R = MR , the Schmidt decomposition
states that

|�TS〉 =
rSchmidt�min(ML,MR )∑

i=1

ωi |ei〉 ⊗ |fi〉, (3)

where |ei〉 ⊗ |fi〉 form a bi-orthogonal basis 〈ei |ej 〉 =
〈fi |fj 〉 = δij , and 0 � ωi � 1 with the condition

∑
i ω

2
i = 1.

If rSchmidt > 1 then according to Ref. [55] |�TS〉 is inseparable
and the two blocks are entangled.

Since possible measures of entanglement for fermionic
systems are the von Neumann and Rényi entropies, it is more
efficient to control the truncation error [30] or the quantum
information loss χ at each renormalization step [18]. In the
DMRG procedure, during the renormalization step the block
BL is formed of the subblock Bl and the l + 1th site. Denoting
by sL(l) the entropy of the left subblock of length l and by sl+1

the entropy of the l + 1th site, the change of the block entropy
by forming a larger block, BL(l + 1), is given as

sL(l) + s(1)l+1 + IL(l) = sL(l + 1), (4)

where the von Neumann entropy of a block with l orbitals is
given as

sL(l) = −
∑

α

ωα ln ωα, (5)

where ωα stands for the eigenvalues of the reduced density
matrix of the block Bl . The so-called mutual information
IL(l) � 0 quantifies the correlation between the subsystem
and the site and it is zero if and only if the two blocks are
uncorrelated.

In order to control the quantum information loss, ML

(or MR) is increased systematically at each renormalization
step until the following condition holds

sL(l + 1) − sTrunc
L (l + 1) < χ, (6)

where χ is an a priori defined error margin. For sL(l + 1)
(i.e., before the truncation), α = 1 . . . Ml × ql+1 while for
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G. BARCZA, Ö. LEGEZA, K. H. MARTI, AND M. REIHER PHYSICAL REVIEW A 83, 012508 (2011)

sTrunc
L (l + 1) according to Eq. (6) MTrunc

L < Ml × ql+1 is used.
This approach guarantees that the number of block states
are adjusted according to the entanglement between the
DMRG blocks and the a priori defined accuracy can be
reached [18]. In addition, an entropy sum rule can be used
as an alternative test of convergence [18]. Therefore, we set
the minimum number of block states to Mmin and χ . By
setting Mmin � q3 or q4, convergence to local minima can
be avoided. In our implementation, we have q = 4 and the
basis states correspond to the |0〉,| ↓〉,| ↑〉 and | ↓↑〉 states.
The maximum number of block states selected dynamically
during the course of iterations will be denoted by Mmax. This
approach, however, does not work for the one-site variant of
the DMRG algorithm since the Schmidt number of a one-site
superblock configuration ML = Ml × ql+1 cannot be larger
than Mr . This prevents Ml to increase above Mr according to
Eq. (3).

D. Entanglement and interaction localization

The von Neumann and Rényi entropies have been studied
for quantum chemical systems as well and it was shown that
orbitals lying closer to and further away from the Fermi surface
possess larger and smaller orbital entropy, respectively [13].
The orbital entropy is related to the mixture of a local state
and it is expressed by the eigenvalues of the reduced density
matrix for a given orbital, namely

s(1)i = −
∑

α

ωα,i ln ωα,i, (7)

where i = 1 . . . N labels the orbital index while ωα,i stands for
α = 1 . . . qi the eigenvalues of the reduced density matrix of
orbital i. In Fig. 2, the single-orbital entropy is shown for the
µ − η2 : η2 peroxo isomer of [Cu2O2]2+ calculated by setting
the quantum information loss χ = 10−5.

Orbitals with a large entropy significantly contribute to the
correlation energy whereas other slightly entangled orbitals
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FIG. 2. (Color online) Single-orbital entropy function obtained
for the µ − η2 : η2 peroxo isomer of [Cu2O2]2+ by setting the quan-
tum information loss χ = 10−5. The symbols indicate corresponding
point-group symmetries of the energetically ordered orbitals.

do not. Since the orbitals possess different single-orbital
entropies, the ordering of orbitals along the one-dimensional
chain of orbitals in the DMRG algorithm has a major impact on
the block entropy s(l), so that the block entropy profile can be
changed based on the ordering of the orbitals [13]. The block
entropy also determines the required computational resources
to reach a given accuracy [13,18]. If an optimized ordering
is used, DMRG results can be obtained using a considerably
smaller number of block states for a given error bound.

An optimal orbital alignment by means of speed of
convergence can be obtained by reordering the orbitals, so
that the DMRG blocks are entangled only for a few iterations.
This can be achieved by placing highly entangled orbitals at
one of the ends or close to the center of the chain.

Unfortunately, this is not true in general, since the in-
dependent interaction terms, like Tij and the local direct,
pair-hopping, and spin-flip terms of Vijkl act as independent
quantum channels; they all generate different amounts of
entanglement [20]. Hence, localizing entanglement generated
by one channel (e.g., the one-electron term) might lead to
delocalized entanglement in another channel. As an example,
the one-electron operators are analyzed for the µ − η2 : η2

peroxo isomer of [Cu2O2]2+ shown in Fig. 1. In this case
they do not couple orbitals among different irreducible
representations of the D2h point group while the two-electron
Coulomb repulsion operator does. A proper cost function to
take care of interaction and entanglement localization can be
expressed based on the two-orbital mutual information,

Ii,j = s(2)i,j − s(1)i − s(1)j , (8)

where s(2)i,j is the two-orbital entropy between a pair of
sites which was introduced to the QC-DMRG by Rissler
et al. [19]. If the electron-electron interactions are neglected,
the two-orbital mutual information has a similar structure as
shown in Fig. 1, where only the orbitals of the same irreducible
representations are entangled. The resulting single-orbital
entropy, block-entropy, and the mutual information are shown
in Fig. 3 obtained by the DMRG method after the seventh
sweep. The block entropy oscillates and is exactly zero when
all orbitals of the same irreducible representations belong to
the left or to the right DMRG block. Therefore, the total
wave function can be expressed as a product state of the wave
functions of the subblocks of irreducible representations.

When the two-electron integrals are also considered,
orbitals among different irreducible representations are also
entangled as shown by the components of the two-orbital
mutual information in Fig. 4 for the µ − η2 : η2 peroxo isomer
of [Cu2O2]2+.

Since the one-electron integrals are usually an order of
magnitude larger in chemical systems, an optimal ordering
can be found by reordering the orbitals within the same irre-
ducible representation and reordering the blocks of different
irreducible representations [18,19,43]. In this way, the block
entropy can be reduced significantly but the one-electron terms
having the strongest interaction remain as local as possible. To
draw the analogy to the Hubbard model, most chemical sys-
tems would therefore correspond to the so-called small U limit.

The reordering concept can be put in a more rigorous
form by minimizing the entanglement distance, which can
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FIG. 3. (Color online) (a)The single-orbital entropy, (b) block
entropy, and (c) the mutual information obtained for the µ − η2 : η2

peroxo isomer of [Cu2O2]2+ after the seventh DMRG sweep while
neglecting the electron-electron interactions.

be expressed as a cost function,

Îdist =
∑
i,j

Ii,j |i − j |η, (9)
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FIG. 4. (Color online) Components of the two-orbital mutual
information which are larger than 10−4 for the µ − η2 : η2 peroxo
isomer of [Cu2O2]2+ obtained with χ = 10−5 and for the energetical
ordering. The role of symbols and numbers is the same as in Fig. 1.
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FIG. 5. (Color online) Similar to Fig. 4, but for the reordered
orbitals.

where the entanglement between pair of sites is weighted by
the distance in the chain between the orbitals. In Ref. [19],
the effect of the parameter η = −2 has been analyzed using
simulated annealing. Additional parameters to weight the
off-diagonal elements of I have been studied as well. In our
approach, we use both η = 1 and 2. The latter choice also has
the advantage that it can be related to the spectral algorithms
of seriation problems [56]. The main aim is to sequence a set
of N objects, that is, to bijectively map the elements to the
integers 1, . . . ,N based on a real valued correlation function
f (i,j ) = f (j,i) which reflects the desire for items i and j to
be near each other in the sequence. The two-orbital mutual
information is such a function which can also be seen as a
weighted graph. In general, the problem of finding all ways to
sequence the elements, so that the correlations are consistent,
becomes NP complete [57] in the presence of inconsistencies.
In such a case, there may be no consistent solution and one
needs to find the best approximation. If a consistent ordering is
possible, the problem is well posed. Most of the combinatorial
algorithms for well-posed problems break down when the data
is inconsistent, limiting their value for many problems. In our
approach, the minimization is performed iteratively with the
constraint that orbitals of the same irreducible representations
are kept together, thus reordering of orbitals is allowed
within irreducible representations and reordering the blocks
of orbitals of the irreducible representation is also allowed.
As a result, a highly optimized ordering can be obtained as
is shown in Fig. 5. The value for the energetical ordering
Îdist = 821.4 is reduced to 134.1 using η = 2. A smaller
value of 63 could be reached by excluding the constraint
discussed earlier. However, the DMRG calculations perform
considerably worse for that ordering.

A further justification of our cost function can be discussed
in terms of spectral algorithms. Since the minimization of
the cost function g(π ) = ∑

ij f (i,j )(πi − πj )2 is hard in
terms of permutations π , it can be approximated by a cost
function like Îdist of continuous variables xi that maintains
its structure. From spectral graph theory it follows that the
so-called Fiedler vector x = (x1, . . . xN ) is the solution that
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minimizes F (x) = x†Lx = ∑
ij Ii,j (xi − xj )2 subject to the

following constraints that
∑

i xi = 0 and
∑

i x
2
i = 1, where

the graph Laplacian is L = D − I with Di,i = ∑
j Ii,j . The

second eigenvector of the Laplacian is the Fiedler vector
[58,59] which defines a (one-dimensional) embedding of the
graph on a line that tries to respect the highest entries of
Ii,j and the edge length of the graph. Ordering the entries
of the Fiedler vector by a nondecreasing or nonincreasing
way provides us a possible ordering. A naive application of
optimization methods based on the Fiedler vector yielded a
worse ordering than the one shown in Fig. 5. A more detailed
analysis of energetical ordering based on the Fiedler vector will
be part of our subsequent work. Numerical results obtained by
the optimized ordering will be further discussed in Sec. IV.

Note that a new electronic wave-function ansatz in terms of
the complete-graph tensor network (CGTN) parametrization
[10] might contain the same information as the weighted graph
of the cost function in Eq. (9). This efficient parametrization
might also be used to devise an optimized orbital ordering.

E. Efficient calculation of the single-orbital entropy

The single-orbital entropy can be calculated for each
renormalization step of a full sweep, thus s(1)i can be obtained
for i = 1 . . . N . Therefore, the single-orbital entropy profile
for a given ordering of molecular orbitals can be determined
as a function of sweeps [13,43]. Once the wave function
has converged by means of the entropy sum rule [18], the
single-orbital entropy profile for the given target state can be
obtained. This well-known procedure of collecting data points
from subsequent renormalization steps of a full sweep was
also used by Ghosh et al. to efficiently calculate four-point
correlation functions [41]. The one-orbital entropy, on the
other hand, can also be expressed in terms of the occupation-
number representation [19]. Therefore, the calculation of s(1)i
is also possible once the required operators are determined for
the given superblock configuration. A direct comparison of
data points obtained by the two approaches provides a reliable
error estimate.

F. Efficient calculation of the two-orbital entropy function

The two-orbital entropy function can be expressed in terms
of the occupation-number representation [19]. Unfortunately,
it requires the calculation of 23 independent two-point corre-
lation functions. Since all two-point correlation functions have
to be renormalized and stored in memory or on disk due to the
truncation of the superblock Hilbert space, the efficient cal-
culation of these operators is crucial for feasible calculations
with respect to wall time and computational resources.

In a standard real space DMRG procedure, the correlation
functions are usually calculated for the symmetric superblock
configuration (i.e., when the size of the left and right blocks are
equal). This configuration provides the most accurate result for
a fixed number of block states since the block entropy reaches
its maximum value, so that the highest level of entanglement
can be reached [18]. In fact, the largest error in a measurable
quantity is related to the largest truncation error within a full
DMRG sweep [60]. In contrast to this, using the DBSS method,
the error can be kept below an a priori defined threshold, and
hence an accurate calculation of the correlation functions is

possible for the nonsymmetric superblock configurations as
well. In addition, if two noninteracting orbitals are attached to
both ends of the chain the reduced block density matrix at the
turning points of a sweep, where all orbitals belong to the left or
the right block, has only one nonzero eigenvalue according to
the Schmidt decomposition. Renormalized operators required
for the two-orbital entropy function reduce to single numbers
(Ml = Mr = 1) [18,43], consequently. Even without this trick,
an efficient calculation of the correlation function at the turning
points is possible because the environment block contains q

basis states and the system block only Mmin states when the
DBSS procedure is used. This is crucial in the quantum infor-
mation analysis since the construction of the mutual entropy
is very costly. In our approach, all the required operators are
generated only for the superblock configuration at the turning
points for which the correlation functions are calculated. This
is achieved by subsequent renormalization of the operators
based on the a priori determined transformation matrices [34].

G. Configuration-interaction-based dynamically extended
active space (CI-DEAS) procedure

The nonlocal version of the DMRG method is very sensitive
to the initialization procedure. If a poorly approximated
starting configuration is used, the convergence can be very
slow and the DMRG can even be trapped in local minima [42].
This can, however, be avoided by including highly entangled
orbitals from the very beginning and expanding the active
space dynamically [13]. This approach has also been extended
to include protocols based on the configuration interaction (CI)
procedure [43,44] and applied to systems with sizes up to 60
orbitals. Here, we briefly summarize the main aspects of the
method as required for the discussion in this work.

Taking a look at Fig. 4, some orbitals are highly entangled
with several other orbitals while others are entangled with a few
orbitals only. The number of entanglement bonds emerging
from the orbitals based on Fig. 4 is shown in Fig. 6.
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FIG. 6. (Color online) Number of entanglement bonds emerging
from the orbitals based on Fig. 4. The meaning of the symbols is the
same as in Fig. 2.
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In order to guarantee fast convergence the highly entangled
orbitals—those with several entanglement bonds—should be
included from the very beginning of the calculations. If the
bonds are also weighted with their strength, by summing I

column-wise, one gets back the diagonal entries of the graph
Laplacian which corresponds to the single-orbital entropy. In
the DEAS procedure, we introduce a complete-active-space
(CAS) vector that selects the highly entangled orbitals. The
CAS vector (CASV) is formed by ordering orbitals with
decreasing entropy values.

Since the DMRG algorithm itself is a basis-state transfor-
mation protocol that transforms single-particle basis states to
multiparticle basis states, the environment block in the DEAS
procedure is formed for each DMRG iteration step from the
one-particle basis states of those orbitals which possess
the largest single-orbital entropies. In the first iteration step
the left block (system block) contains one orbital represented
by q states while the right block (environment block) r =
N − l − 2 orbitals. Since the exact representation of the right
block would require qN−l−2 states which is too large for
large systems, only a subset of orbitals is included to form
the active space. Therefore, at each DMRG iteration step of
the warm-up procedure (i.e., for iterations 1 . . . N − 3) the
Mr states are formed from those components of the CAS
vector which belong to the environment block and possess
largest entropies. The starting value of Mr (Mstart) is set prior
to the calculation but during the iteration procedure Mr is
adjusted as Mr = max(Ml,Mstart) in order to construct at least
as many environment states as the left block has in order
to satisfy the constraints set by the Schmidt decomposition.
Identifying orbitals of the right block as doubly filled, empty,
or active orbitals the effective size of the environment block
can be reduced significantly. The empty orbitals can be
neglected, while a partial summation over the doubly filled
orbitals results in a constant shift in the energy. If DMRG
auxiliary operators [61] are formed by partial summations
on the left block, the effective system size of the problem is
determined by the active orbitals only [13,43,44]. Therefore,
in the warm-up procedure the effective size of the system
is reduced to five to seven orbitals which allows one to use
larger Mstart without a significant increase in computational
time.

In order to construct even better environment states, we also
utilize CI expansion procedures. In standard CI techniques, the
trial wave function is written as a linear combination of deter-
minants with expansion coefficients determined by requiring
that the energy should be minimized [62]. The molecular
orbitals used for building the excited Slater determinants are
taken from a CASSCF calculation and kept fixed. Therefore,
in the CI method the number of determinants included in
the treatment is increased systematically in order to achieve
a better accuracy. Determinants which are singly, doubly,
triply, quadruply, etc. excited relative to the Hartree-Fock (HF)
configuration are indicated by the subscripts S, D, T , Q. The
exact wave function in a given one-particle basis, the full-CI
wave function, is then given as

�CI = a0�HF +
∑

S

aS�S +
∑
D

aD�D +
∑
T

φT �T + · · · .

(10)

Since the segment of the HF orbitals belonging to the en-
vironment block is known, the restricted subspace of the
environment block can be formed for a given CI level in the
DEAS procedure. Therefore, the right block contains states
for a given CI level while the total wave function can contain
higher excitations as well due to the correlation between the
two blocks. The environment block states are constructed at
each iteration step, so that the environment block is always
optimized for the renormalized system (left) block. This
procedure guarantees that several highly entangled orbitals are
correlated from the very beginning and both static and dynamic
correlations are taken into account. The reduced density matrix
is well defined, thus block states can be selected efficiently
based on the entropy considerations and convergence to
local minima can be avoided. Since a significant part of the
correlation energy can be obtained in this way, usually at the
end of the initialization procedure (i.e., after one-half sweep),
chemical accuracy is often reached. The initial CAS vector
can be determined based on the chemical character of the
molecule or in a self-consistent fashion. In the latter approach,
the CAS vector is set first as CASV = [N,N − 1, . . . ,1] to
include long-range interactions between the left block and the
rightmost sites of the chain and a calculation using small values
of Mmin and Mstart is performed. After a full sweep, the entropy
functions are calculated and the ordering as well as the CAS
vector are determined. Even though the DMRG wave function
has not yet converged, most relevant information of the system
can already be extracted. In addition, the DMRG results can be
systematically improved using the optimized ordering and the
CAS vector as a starting point for new DMRG calculations.
The CI-DEAS method allows a simple and fast calculation of
all physical quantities at the end of the first sweep.

In the following section, the DBSS and CI-DEAS pro-
cedures are applied to chemical systems and the results are
discussed in more detail.

IV. RESULTS

In this section, we present results for the two isomers of
[Cu2O2]2+. We discuss our DBSS/CI-DEAS procedures by
analyzing the peroxo isomer while for the bis(µ-oxo) isomer
only the final results will be given.

A. Electronic ground state of the two [Cu2O2]2+ cores

Here, we summarize the main steps of our entropy-based
optimization procedures. First, we perform a short DMRG
calculation using a limited set of block states in order to obtain
the most important characteristics of the entropy functions and
to determine the low-lying energy spectrum. In order to use
DMRG in an automated manner as a black-box method, we
do not use any specific ordering or CAS vector related to the
chemical characteristics of the problem.

In order to determine the multiplicity of the converged target
state, we also calculate the expectation value of the S2 operator
given as

S2 =
∑
ij

S−
i S+

j +
∑
ij

Sz
i S

z
j +

∑
i

Sz
i . (11)

The expectation value is equal to S(S + 1) in Hartree atomic
units (i.e., zero for a singlet state and two for a triplet state).
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FIG. 7. (Color online) (a) Convergence of the ground-state energy
in Hartree for various parameters for the µ − η2 : η2 peroxo isomer.
The dashed line gives the ground-state energy obtained in Ref. [46]
using M = 800 block states. (b) Number of block states as a function
of iteration steps for χ = 10−4 corresponding to Fig. 9.

We performed a calculation with fixed M = 64 states, using
the energetical ordering, and the CAS vector was simply set
to CASV ≡ [N,N − 1, . . . ,1]. This latter choice guarantees
that during the initialization procedure long-range interaction
between the system block (left block) and the rightmost sites
of the chain is taken into account. In this calculation, we have
restricted the CI-DEAS procedure to include determinants
with at most triple excitations from the Hartree-Fock state. The
convergence of the ground-state energy in the Ag irreducible
representation of the point group D2h is shown in Fig. 7(a) as
the square symbols.

Although the convergence is rather slow, the results ob-
tained in our previous work with M = 800 block states [46]—
shown by the dashed line—can be reached after eight sweeps.
The convergence to the singlet state has been confirmed by the
expectation value of the total-spin operator 〈S2〉 = 10−3.

The block entropy profile converges very slowly as shown
in Fig. 8(b). In fact, the entropy profile corresponding to the
CI-DEAS procedure represented by the circle symbol is almost
zero for most of the superblock configurations which indicates
the lack of entanglement between the DMRG blocks. As
a consequence, the DMRG algorithm selected inappropriate
states for the description of the environment blocks.

A detailed analysis of the entropy functions provides even
better convergence properties.

The obtained single-orbital and block entropies as a
function of DMRG sweeps are shown in Fig. 8. By comparing
Figs. 8(a) and 2, we see that orbitals with large entropies can
already be identified and a reasonable CAS vector can thus
be constructed. In Fig. 8(b), one also recognizes that once
the third orbital is pushed in the left block (i.e., for l � 3 the
block entropy increases significantly). This is because the third
orbital is highly entangled with the 14th and 25th orbitals as
can be seen in Fig. 4. The largest values of the block entropy is
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FIG. 8. (Color online) (a) Single-orbital entropy, (b) block en-
tropy, and (c) mutual information profile for the µ − η2 : η2 peroxo
isomer of [Cu2O2]2+ using energetical ordering, without optimized
CAS vector for the singlet ground state of Ag symmetry with fixed
M = 64 block states. The convergence of the ground-state energy in
Hartree is shown in Fig. 7(a) by the square symbol.

reached for 13 < l < 35 when the highly entangled orbitals 13
and 35 belong to the two different blocks. In order to localize
entanglement, ordering optimization based on the two-orbital
mutual information can also be carried out according to the
procedure described in Sec. II and a block entropy profile
shown in Fig. 9(b) is obtained.

By comparing Figs. 8(b) and 9(b) it is clear that in the latter
case the block entropy is highly localized (i.e., it takes large
values only for a few superblock configurations). Repeating
the calculation with fixed M = 64 block states again but using
an optimized ordering and CAS vector yields a ground-state
energy estimate of Eperoxo = −541.55533 Hartree. The fast
convergence is shown in Fig. 7 by the diamond symbol. In
fact, the ground-state energy after the first half sweep (i.e., at
the end of the CI-DEAS procedure) is already far below the
one given by Ref. [46] and the block entropy profile has the
same structure as the one obtained after eight sweeps. This
can be attributed to the CI-DEAS procedure for selecting the
appropriate environment block states at each iteration step by
taking care of the renormalized system block and the inclusion
of the highly entangled orbitals from the beginning.

There is no need to use additional methods to guarantee
convergence like white noise [29] or perturbative correction
[47] which is an interesting observation in view of the results
of Kurashige and Yanai. The optimized ordering and CAS
vectors used in the calculation are summarized in Table I.
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TABLE I. Optimized ordering and CAS vector for the µ − η2 : η2 peroxo isomer of [Cu2O2]2+.

ORD = [44 41 42 43 40 31 30 33 32 29 11 10 9 8 7
20 21 19 18 22 1 2 5 6 4 3 14 12 17 16
15 13 35 34 36 38 37 39 25 26 24 27 28 23]

CASV = [35 13 14 34 3 25 26 18 4 36 7 15 12 10 2
19 40 20 8 33 29 42 21 32 24 16 11 43 1 41
17 44 31 30 9 22 6 39 38 5 27 23 37 28]

Carrying out the same procedure for the bis(µ-oxo) isomer
of [Cu2O2]2+, the convergence of the ground-state energy with
fixed M = 64 states without optimized ordering and CAS
vector is shown in Fig. 10(a) by the square symbol. We also
observe for the bis(µ-oxo) isomer, that our DMRG energies
reproduce the results given in Ref. [46] with a fraction of the
computational resources.

It is clear that the convergence of the energy is very slow to
the value given in Ref. [46], however, after the entropy-based
optimization procedures, a much faster convergence to a much
lower value can be reached. As a result, the optimized CAS
vector based on the single-orbital entropy shown in Fig. 11 is
given in Table II.
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FIG. 9. (Color online) (a) Single-orbital entropy, (b) block en-
tropy, and (c) mutual information obtained for the µ − η2 : η2 peroxo
isomer of [Cu2O2]2+ as a function of DMRG sweeps with optimized
ordering, CAS vector, and by setting the quantum information loss
χ = 10−4. The CI-DEAS initialization procedure corresponds to
symbols with circle. The optimized ordering and CAS vector is given
in Table I.

The highly localized two-dimensional entanglement matrix
for the optimized ordering is understood from the comparison
of Figs. 12 and 13. The optimized ordering vector utilized
in the calculation is given in Table II. The entanglement
distance Îdist = 1043 for the energetical ordering is reduced
to Îdist = 102.5 for the optimized ordering.

The resulting entropy profiles as a function of sweeps are
shown in Fig. 14. Again the block entropy takes large values
only for a few iteration steps within a full sweep.

Since a very important observable related to transition metal
clusters is the energy difference between the two isomers, the
ground-state energies should be calculated for the same error
margin. This cannot be guaranteed with a fixed number of
block states but it can be achieved by the DBSS procedure
(or an automated Richardson-type error protocol [26]). We
have thus calculated the ground-state energies of the two
isomers using the same parameter set, namely for Mmin = 64,
χ = 10−4, Mstart = 256. The convergence of the ground-state
energy is plotted in Fig. 7(a) by the triangle symbol, while the
number of block states is selected dynamically in Fig. 7(b).
Since the block entropy is highly localized for the optimized
ordering for most of the superblock configurations the number
of block states were determined by Mmin as can be seen
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FIG. 10. (Color online) (a) Convergence of the ground-state
energy in Hartree for various parameters for the bis(µ-oxo) isomer.
The dashed line gives the ground-state energy obtained in Ref. [46]
using M = 800 block states. (b) Number of block states as a function
of iteration steps for χ = 10−4.
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TABLE II. Optimized ordering and CAS vector for the bis(µ-oxo) isomer of [Cu2O2]2+.

ORD = [44 41 43 40 42 31 30 33 32 29 11 10 9 8 7
20 21 19 18 22 1 2 5 6 4 3 12 17 16 15
14 13 35 34 36 38 37 39 25 26 24 27 28 23]

CASV = [35 13 14 34 3 25 26 18 7 4 8 36 22 15 12
2 9 10 19 40 5 42 1 11 29 24 43 44 33 41

32 30 6 21 17 31 27 20 28 38 23 29 16 37]

in Figs. 7(b) and 10(b). We found Eperoxo = −541.55628
Hartree and Ebisoxo = −541.51416 Hartree yielding an energy
difference of 0.04212 Hartree (i.e., 110 kJ/mol). For both
isomers we have obtained 〈S2〉 = 10−4 for the ground state as
expected from the given error margin.

The convergence of the ground-state energy for the
bis(µ-oxo) isomer is shown in Fig. 10(a) by the triangle
symbol. The fast convergence is again evident. The effective
size of the environment block during the first N iteration steps
(i.e., for the CI-DEAS procedure) was found to be less than
five orbitals. Therefore, using a larger number of block states
for the environment block (Mstart) increases the computational
time insignificantly. This result indicates that the application
of DBSS and CI-DEAS procedures in the entropy-based
optimization guarantees that the DMRG algorithm can be used
in a black-box fashion, and that chemical accuracy can be
reached using very limited computational resources. In fact,
the reduced effective system size in the CI-DEAS procedure
allows one to obtain the most relevant characteristics of the
entropy functions within a few minutes.

To ensure that during the CI-DEAS procedure even better
represented environment blocks are constructed, we have
repeated the calculations using Mmin = 256 and Mstart = 1024.
After eight sweeps, we obtained the following Eperoxo =
−541.57900 Hartree and Ebisoxo = −541.53599 Hartree with
a gap of 113 kJ/mol. In addition, we have performed
more accurate calculations for χ = 10−5, Mmin = 256, and
Mstart = 1024. The maximum number of block states selected
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FIG. 11. (Color online) Similar to Fig. 2 but for the bis(µ-oxo)
isomer of [Cu2O2]2+.

dynamically was around 2000 for both isomeric clusters. In
both calculations, we obtained 〈S2〉 = 10−5 as expected for a
singlet state. For the given error margin, we found Eperoxo =
−541.58114 Hartree, Ebisoxo = −541.53853 Hartree, thus the
difference is 0.04261 Hartree that is 112 kJ/mol.

In Table III, all relevant DMRG calculations for the
bis(µ-oxo) and µ − η2 : η2 peroxo isomers of the binuclear
copper cluster are listed.

Total electronic energies of the two isomers reported by
Malmqvist et al. [63] and Kurashige and Yanai [47] were
calculated in a different active space. The latter authors then
carried out new DMRG calculations [38], where they reduced
their active space, but applied the canonical-transformation
(CT) approach [37] and optimized the orbitals. A comparison
of absolute energies is therefore not very meaningful as the
total energy depends on the size of the CAS and the type
of orbitals chosen. Instead we shall focus on the relative
energy which is central to the chemistry of such systems. Our
entropy-based DMRG calculations agree quantitatively with
the RASPT2(24,28) and DMRG-SCF/CT calculations, even
though no procedure—such as canonical transformation—has
been employed to account for dynamical correlation in our
studies. However, this is not surprising because Yanai et al.
found [38] that the effect of CT is only about 4 kJ/mol in
the given one-particle basis set. In the first study [46] on
this problem we already found the relative DMRG energies
converge faster than the absolute energies of each isomer. This
finding has been confirmed by Yanai et al. [38].
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FIG. 12. (Color online) Similar to Fig. 4, but for the bis(µ-oxo)
isomer of [Cu2O2]2+.
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TABLE III. The relative energies for the bis(µ-oxo) and µ − η2 : η2 peroxo [Cu2O2]2+ isomers obtained in this work and from
previously published studies are listed in kJ/mol. All total energies are given in Hartree. The CAS is denoted in parentheses as
“(electrons,orbitals)” while the information on DMRG block states M is given in brackets. Note that total energies for different CAS
and different types of orbitals cannot be directly compared. All results from this work employ entropy-based optimization applying
the DBSS and CI-DEAS procedures. The “∗” denotes keeping slightly more DMRG environment states during the initialization
than necessary for a given quantum information loss χ . The square brackets [Mmin/Mstart/χ ] state that the DMRG calculation starts
with Mstart block states, and the minimal number of block states is set to Mmin, respectively.

Ref. Method Ebisoxo Eperoxo �E

Reference energies
[45] CASSCF(16,14) −541.503 07 −541.503 45 1
[45] CASPT2(16,14) −542.062 08 −542.064 35 6
[45] bs-B3LYP −544.194 19 −544.278 44 221
[63] RASPT2(24,28) 120

Previously published DMRG energies
[46] DMRG(26,44)[800] −541.467 79 −541.497 31 78
[27] DMRG(26,44)[128] −541.473 08 −541.514 70 109
[47] DMRG(32,62)[2400] −541.968 39 −542.025 14 149
[38] DMRG(28,32)[2048]-SCF −541.766 59 −541.807 19 107
[38] DMRG(28,32)[2048]-SCF/CT 113

DMRG energies from this work
DMRG(26,44)[64/256/10−4] −541.514 16 −541.556 28 111
DMRG∗(26,44)[256/512/10−4] −541.534 99 −541.578 96 115
DMRG∗(26,44)[256/1024/10−4] −541.535 99 −541.579 00 113
DMRG(26,44)[256/512/10−5] −541.537 37 −541.580 57 113
DMRG∗(26,44)[256/1024/10−5] −541.538 53 −541.581 14 112

It is evident from Table III that already our first DMRG
estimate [46] for this relative energy was much closer than
the CASSCF result to the correct splitting, which we may
expect between 110 and 160 kJ/mol based on the RASPT2
calculation and the Kurashige-Yanai DMRG result for a much
larger active space. Our improved result for the splitting [27],
which we obtained for the original active space but with a
reduced number of block states Ml = 128 is with 109 kJ/mol
already very close to the DMRG-SCF/CT and RASPT2 results
of 113 and 120 kJ/mol, respectively. Even the total energies
turned out to be improved and in the case of the peroxo copper
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FIG. 13. (Color online) Similar to Fig. 12, but for the optimized
ordering.

cluster below the small-CAS CASSCF result as it should be.
In view of the fact that a discrepancy in relative energy of
about 5–10 kJ/mol is acceptable for chemical accuracy, we
emphasize that all DMRG results tend to converge and that
hence already the small DMRG calculation is a feasible means
to yield such relative energies.

B. Entropic analysis of the two isomers

Besides the relative energies of the two isomers, one might
deduce more information from the entropy functions related
to the chemical properties of the binuclear copper cores. By
comparing Figs. 2 and 11, it is clear that the importance
of the orbitals is different for the two isomers as shown
by the different distribution of the single-orbital entropy. In
general, almost all orbitals possess some 10%–20% larger
entropy for the bis(µ-oxo) isomer but some of the orbitals have
2.5–3 times larger entropy than those of the peroxo isomer. For
example, orbitals 3, 14, 34 produce much larger contributions
to the total entanglement in case of the bis(µ-oxo) isomer.
The total quantum correlation encoded in the ground state,
ITot = ∑

i=1,...N s(1)i , is 3.49 and 5.39 for the µ − η2 : η2

peroxo and bis(µ-oxo) isomers, respectively. Thus, the bis(µ-
oxo) isomer is more entangled which is also reflected by the
larger maximum value of the block entropy for the bis(µ-oxo)
isomer as can be seen by comparing Figs. 9 and 14.

The highly entangled molecular orbitals for the µ − η2 : η2

peroxo and bis(µ-oxo) isomers are shown in Figs. 15 and 16.
The molecular orbital analysis shows that the highly entangled
orbitals have an occupation number that strongly deviates from
either being doubly occupied or empty. The entropy-based
optimization scheme accurately determines those orbitals and
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FIG. 14. (Color online) (a) Single-orbital, (b) block entropy,
and (c) mutual information obtained for bis(µ-oxo) isomer of
[Cu2O2]2+ as a function of DMRG sweeps with optimized ordering
and CAS vector and for setting the quantum information loss to
χ = 10−4. The CI-DEAS initialization procedure corresponds to
symbols with circle. The optimized ordering and CAS vector is
given in the text.

thus allows one to perform efficient DMRG calculations with
the smallest possible active space for a desired accuracy in
the DMRG energy. The selected orbitals are close to the
Fermi surface and would be included in a standard CASSCF
calculation if one could employ these large active spaces as in
DMRG calculations.

FIG. 15. (Color online) Molecular orbital pictures of the highly
entangled orbitals for the bis(µ-oxo) isomer. The orbitals were
selected with respect to their one-site entropy as shown in Fig. 11.
The number below each orbital corresponds to the orbital index and
the occupation number is written in the parentheses.

FIG. 16. (Color online) Molecular orbital pictures of the highly
entangled orbitals for the peroxo isomer. The orbitals were selected
with respect to their one-site entropy as shown in Fig. 2. The number
below each orbital corresponds to the orbital index and the occupation
number is written in the parentheses.

V. SUMMARY AND PERSPECTIVE

A. Relation to tensor network states

Our procedure has been demonstrated on a one-dimensional
spatial topology related to the DMRG method, while the
obtained two-dimensional entanglement matrix could be em-
ployed more efficiently in methods based on tensor-network-
state (TNS) approaches. For example, the two-orbital mutual
information can provide an optimal value for the coordination
number of each orbital in case of the tree tensor-network-state
(TTNS) approach [11] and an optimized network topology
can be determined. Since in this latter method the distance
between highly entangled orbitals can be reduced significantly
compared to the DMRG topology entropy-based optimizations
are expected to boost its convergence properties to a great
extent. As an example, we present calculations performed with
the TTNS method on the Be atom studied recently in Ref. [11].
The components of the two-orbital mutual information larger
than 10−4 are shown in Fig. 17(a). The convergence of the
ground-state energy with a fixed bond dimension D = 2
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FIG. 17. (Color online) (a) Similar to Fig. 4, but for the Be atom.
(b) Convergence of the ground-state energy for the Be atom obtained
with the TTNS method with a fixed bond dimension D = 2 and
coordination number z = 3 for three different network topologies
shown in Fig. 18 [64].
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FIG. 18. (Color online) Three different network topologies were
used for the TTNS method. The topology shown in (c) is optimized
based on the two-orbital mutual information.

and coordination number z = 3 for three different topologies
shown in Fig. 18 is plotted in Fig. 17(b).

It is found that for this setup the relative error in the ground-
state energy dropped by an order of magnitude if an optimized
topology based on the two-orbital mutual information is
used. For the one-dimensional DMRG topology and for the
energetical ordering, we found that Îdist = 0.7251 whereas it
is reduced to 0.236 for the optimized topology of the TTNS
method. For the topologies shown in Figs. 18(a) and 18(b) we
found considerably larger values. We want to emphasize that
for the one-dimensional DMRG topology the lowest value of
Îdist is 0.30 by including all permutations of the orbitals. For the
optimized ordering based on the Fiedler vector, Îdist is 0.319
for which, in fact, we obtained the lowest ground-state energy
(Erel = 1.69 × 10−5) when fixed M = 8 DMRG block states
were used. A detailed study based on spectral analysis and
graph theory and extension of our approach to larger systems
is under progress and will be part of a subsequent work.

The optimization of the spatial arrangement of orbitals
and network topologies has a significant influence on the
convergence properties of MPS and TNS algorithms. However,
the total entanglement encoded in the wave function, ITot,
cannot be changed. The optimization of the one-particle
basis can yield entanglement reduction in the system and
the value of ITot can be manipulated, consequently. In fact,
as discussed in Ref. [19] by constructing an optimal basis
it might be that ordering is either obvious or irrelevant. In
the past few years, various procedures have been developed
for orbital optimizations [11,33,36–41]. We will therefore
continue to examine mutual information with respect to orbital
optimization in our subsequent work.

B. Conclusion and discussion

In this paper, we have studied a transition metal cluster from
a quantum information theory perspective using the DMRG
method. By calculating various entropy functions and the two-
orbital mutual information we were able to quantify electronic
correlations among the one-electron states of this cluster. An
algorithmic consequence of this work is the proposition of
recipes to perform DMRG calculations in a black-box fashion
on complex chemical compounds. Chemical characteristics of
the two isomers of [Cu2O2]2+ have also been analyzed and
interpreted in terms of the entropy functions.

From the one- and two-orbital entropies we can deduce
information on the physical nature of the clusters. It was
possible to clearly identify the highly entangled orbitals in
our model oxide-copper. These orbitals neither belong to the
essentially doubly occupied “closed-shell” molecular orbitals
nor to those that have vanishing natural occupation numbers.
Interestingly, from Figs. 15 and 16 it is clear that in both cluster
structures the highly entangled orbitals are very similar as can
be understood in terms of the nodal surfaces of each molecular
orbital. We note that the orbitals that feature large one-orbital
entropies lead to particularly large two-orbital entropies.
However, while orbital pairs 3–14 and 13–35 are highly
entangled in the peroxo structure, this is the case for all five
orbitals 3, 13, 14, 34, and 35 in the quadrangular bis(µ-oxo)
structure. In the former case, we note that the entropy is large
for corresponding bonding and antibonding orbitals, while in
the latter case we see a uniformly distributed entanglement
which both reflect the different molecular structures of the
two clusters: The O–O bond is intact in the peroxo structure;
we find four equivalent Cu–O bonds in the bisoxo structure.
Moroever, most of the highly entangled orbitals possess nodal
planes between the two oxygen atoms which is an indication
of the O–O bond breaking process that is described by the
transition from the peroxo to the bisoxo isomer. For the
description of static correlation the highly entangled orbitals
are indispensable as is clear from the entropy analysis. Their
proper treatment in the DMRG algorithm guarantees that
the approximate DMRG wave function has all qualitatively
correct features which eventually makes the calculations
quantitatively predictive.

We have also shown that optimizations based on the
two-orbital mutual information can be related to graph theory
and spectral analysis of seriation problems. Our cost function
is interpreted in terms of the Fiedler vector of the graph
Laplacian and confirms the importance of taking entanglement
among molecular orbitals into account. Our results indicate
that highly entangled orbitals form subgroups. Therefore,
a coarse-graining approach might be possible which could
be efficiently implemented by the multiscale-entanglement-
renormalization ansatz (MERA) [8].

The present work confirms our previous findings that even
small-M DMRG calculations provide a qualitatively correct
description of transition metal clusters as demonstrated in
Ref. [27,46]. In future work, we shall explore the promising
DBSS/CI-DEAS method in DMRG calculations on a set of test
molecules featuring states whose relative energy is difficult
to calculate. Such states are relevant, for instance, to predict
and improve on magnetic and spin-crossover phenomena in
metal compounds [65–67]. Furthermore, additional options
for algorithmic improvement like extrapolation schemes [26]
shall be investigated.
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Ö.L. acknowledges support from the Alexander von Humboldt
foundation. K.M. and M.R. gratefully acknowledge financial
support through a TH Grant (Grant No. TH-26 07-3) from ETH
Zurich. The authors also acknowledge computational support

012508-13
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