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Lower Rydberg 2 D states of the lithium atom: Finite-nuclear-mass calculations with explicitly
correlated Gaussian functions
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Very accurate variational nonrelativistic calculations are performed for the five lowest Rydberg 2D states
(1s2nd1, n = 3, . . . ,7) of the lithium atom (7Li). The finite-nuclear-mass approach is employed and the wave
functions of the states are expanded in terms of all-electron explicitly correlated Gaussian function. Four thousand
Gaussians are used for each state. The calculated relative energies of the states determined with respect to the
2S 1s22s1 ground state are systematically lower than the experimental values by about 2.5 cm−1. As this
value is about the same as the difference between the experimental relative energy between 7Li+ and 7Li in
their ground-state energy and the corresponding calculated nonrelativistic relative energy, we attribute it to the
relativistic effects not included in the present calculations.
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I. INTRODUCTION

The NIST atomic spectra database [1] list 10 2D states
among the 182 states of the lithium atom. These states cor-
respond to the Rydberg electron configurations 1s2nd, where
n = 3,4, . . . ,12. A literature search reveals that only the lowest
state of this series has been calculated with high accuracy
using the variational method by Yan and Drake [2]. Their
energy obtained using the infinite-nuclear-mass approach
was −7.335 523 541 10(43) a.u. (an extrapolated result). We
recently recalculated this energy using an extended set of
explicitly (or exponentially) correlated Gaussian (ECG) basis
functions and we obtained the value −7.335 523 542 82 a.u.,
which is noticeably lower than that of Yan and Drake (in
the present work an even lower energy value of −7.335 523
542 97 a.u. was obtained). We also calculated the energy
of the lowest 2D state of 7Li, as well as the energy of the
second-lowest state, using the finite-nuclear-mass approach.
The calculation was an example included in the work [3] that
featured implementation of the ECG variational method for
calculating D states of small atomic systems. In that approach,
high accuracy of the results is achieved by employing the
analytical energy gradient determined with respect to the ECG
nonlinear parameters in optimizing those parameters by the
variational energy minimization [3–5].

Our ECG method for atomic D states [3] not only enables
us to perform calculations with an infinite nuclear mass, but
also enables finite-nuclear mass calculations. This is possible
because the Hamiltonian we use in the calculations is ob-
tained by rigorously separating out the center-of-mass motion
from the all-particle laboratory-frame Hamiltonian; thus, it
explicitly retains the dependency on masses of all particles
of the systems (the electrons and the nucleus). Therefore, the
energy of the ground and excited states determined in the
calculations at the basis set limit correspond to exact solutions
of the nonrelativistic Schrödinger equation.

Very accurate quantum mechanical calculations of the
ground and excited states of small atoms have always provided
testing grounds for new approaches for atomic calculations.
Very accurate gas-phase spectra of these systems make such

testing possible. Excited D states of small atoms are among
the most precisely measured [1]. Therefore, calculations using
state-of-the-art methods is an interesting undertaking.

As the ECG functions depend on the interelectron distances,
they provide a very effective basis for calculations that deal
with the electron correlation effects. Very accurate results for
three-, four-, and five-electron atoms (with all electrons in s

states or one electron in a p state and the rest in s states)
have been obtained with those functions [6–13]. The main
advantage of using Gaussians in atomic calculations is due
to the simplicity of the Hamiltonian and overlap integrals
with those functions, which can be evaluated analytically
in a compact form for an arbitrary number of electrons.
However, Gaussians do not satisfy the Kato cusps conditions
and are too fast decaying at large distances. These deficiencies
cause a certain slowdown of the convergence to the exact
nonrelativistic wave function. Fortunately, as the calculations
have shown [6–13], they can be effectively remedied by using
longer expansions and by performing extensive optimization
of the Gaussian nonlinear parameters using the variational
energy minimization.

II. THE HAMILTONIAN

The standard atomic quantum-mechanical calculations are
performed with infinite nuclear mass, that is, assuming the
Born-Oppenheimer (BO) approximation. If a higher accuracy
is needed, the BO energy is augmented by corrections
accounting for the finite mass of nucleus. As our approach
aims at calculating the atomic states with very high accuracy,
the account for the finite nuclear mass is done at the zero-order
level by using a Hamiltonian that explicitly depends on the
nuclear mass. This Hamiltonian, called the internal Hamil-
tonian, is obtained from the laboratory-frame nonrelativistic
Hamiltonian by rigorously separating out the center-of-mass
motion. For an atom with N electrons, this is done by a
transformation from the laboratory-frame coordinates to a new
set of coordinates comprising three Cartesian coordinates of
the center of mass and 3N − 3 internal Cartesian coordinates
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describing the positions of the electrons with respect to the
nucleus. By eliminating the center-of-mass motion we obtain
the following internal Hamiltonian:
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where n = N − 1, ri is the distance between the ith electron
and the nucleus, m0 is the nucleus mass (12 786.3933me for 7Li
and 10 961.898me for 6Li, where me = 1 is the electron mass),
q0 is its charge, qi are electron charges, and µi = m0mi/(m0 +
mi) are electron reduced masses. The Hamiltonian (1) de-
scribes the motion of n (pseudo)electrons, whose masses are
the reduced masses, in the central field of the nuclear charge.
This motion is coupled through the Coulombic interactions,∑n
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III. THE BASIS SET

In this work we consider a Rydberg series of the five lowest
2D states of the lithium atom. Even though the states are
described as corresponding to the 1s2nd1, n = 3,4, . . . ,7,
configurations, they also contain small contributions from
other configurations, in particular the 1s12p2 configuration.
To effectively describe all these contributions with ECGs the
following functions need be included in the basis set [3]:

φk = (
xik xjk

+ yjk
yik − 2zik zjk

)
exp[−r′(Ak ⊗ I3)r], (2)

where electron labels ik and jk are either equal or not equal to
each other and they can vary from 1 to n. Ak in (2) is an n × n

symmetric matrix, ⊗ is the Kronecker product, I3 is a 3 × 3
identity matrix, and r is a 3n vector that has the form
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Using the general quadratic form r′Wkr in place of (xik xjk
+

yik yjk
+ 2zik zjk

), we can write the basis functions (2) as

φk = (r′Wkr) exp[−r′Akr]. (4)

Wk is a sparse 3n × 3n symmetric matrix that
for ik = jk comprises only three nonzero elements,
W3(ik−1)+1,3(ik−1)+1 = 1, W3(ik−1)+2,3(ik−1)+2 = 1, and
W3(ik−1)+3,3(ik−1)+3 = −2, and for ik �= jk it comprises
six elements, W3(ik−1)+1,3(jk−1)+1 = W3(jk−1)+1,3(ik−1)+1 = 1

2 ,

W3(ik−1)+2,3(jk−1)+2 = W3(jk−1)+2,3(ik−1)+2 = 1
2 , and

W3(ik−1)+3,3(jk−1)+3 = W3(jk−1)+3,3(ik−1)+3 = 1.
As the basis functions (2) are used in expanding wave

functions of bound states, they have to be square integrable.
This happens if the Ak matrix is positive definite. Rather than
restricting the Ak matrix elements, which usually leads to cum-
bersome constraints, we use the following Cholesky factored
form of Ak: Ak = LkL

′
k , where Lk is a lower triangular matrix.

This makes Ak automatically positive definite for any values
of the Lk matrix elements ranging from ∞ to −∞. Thus,
the variational energy minimization with respect to the Lk

parameters can be performed without any restrictions. It should
be noted that the LkL

′
k representation of Ak matrix does not

limit the flexibility of basis functions, because any symmetric
positive matrix can be represented in a Cholesky factored form.

IV. THE WAVE FUNCTION AND ITS VARIATIONAL
OPTIMIZATION

Appropriate symmetry projections are used to make the
wave function antisymmetric with respect to the permutation
of the electron labels. In this work, we use the spin-free
formalism. In this formalism, the symmetry projections acting
on the spatial parts of the wave function, that is, the basis
functions, can be represented using the Young projection
operators, Ŷ , which are linear combinations of permutational
operators, P̂γ . As the Hamiltonian is invariant with respect
to all permutations of the electrons, in the calculation of the
overlap and Hamiltonian matrix elements the permutational
operators can be applied to the ket (or the bra) only. More
specifically, the ket basis functions in those matrix elements
are operated on with the permutation operator Ŷ †Ŷ (the dagger
stands for conjugate), where the Ŷ operator is derived using the
appropriate Young tableaux for the state under consideration
(for details of the formalism, see, for example, [14]). For
2D states of lithium the Young operator can be chosen as
Ŷ = (1̂ + P̂34)(1̂ − P̂23), where the nucleus is labeled as 1,
and the electrons are labeled as 2, 3, and 4, 1̂ is the identity
operator, and P̂ij is the permutation of the ith and j th electron
labels.

In the linear coefficients of the expansion of the wave
function in terms of the basis functions, the elements of the Lk

matrices are optimization variables. For each basis function
the ik and jk indices are also subject to optimization. The
optimization of ik and jk is only done once for each basis
function when the function is first added to the basis set.

The standard variational approach involving minimization
of the Rayleigh-Ritz variational energy functional is used in
the present calculations. The functional is minimized in terms
of the Lk Gaussian parameters and the ik and jk indices. As
described before [3], in the energy minimization with respect
to Lk , we employ the analytical gradient. The calculation for
each state is performed independently from other states and
the parameters of the basis functions are optimized specifically
for that particular state. In this process, the basis set is grown
from a small randomly selected set of functions or from a
small set taken from the next lower state to the final set of
4000 functions. In the growing process, functions are added to
the basis set one by one with the Lk parameters guessed based
on the parameters of the functions already included in the set.
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TABLE I. The convergence of the total variational finite-mass energies (in hartrees) of the five lowest 2D states of 7Li with the number of
the Gaussian basis functions. The 6Li and ∞Li energies are also shown for the basis set of 4000 Gaussians. In parantheses we show estimates
of the remaining error in the norelativistic energy.

Basis 1s23d1 1s24d1 1s25d1 1s26d1 1s27d1

7Li
1500 −7.334 926 995 76 −7.310 595 039 75 −7.299 333 955 70 −7.293 217 366 17 −7.289 528 735 55
2000 −7.334 927 301 78 −7.310 595 225 70 −7.299 334 059 55 −7.293 217 637 00 −7.289 529 803 71
2500 −7.334 927 304 17 −7.310 595 234 33 −7.299 334 083 67 −7.293 217 697 58 −7.289 530 047 16
3000 −7.334 927 305 17 −7.310 595 238 60 −7.299 334 093 11 −7.293 217 721 01 −7.289 530 114 13
3500 −7.334 927 305 66 −7.310 595 240 54 −7.299 334 096 82 −7.293 217 729 79 −7.289 530 142 67
4000 −7.334 927 305 99(60) −7.310 595 241 52(200) −7.299 334 098 85(300) −7.293 217 734 51(500) −7.289 530 165 34(2000)
6Li
4000 −7.334 828 079 52(60) −7.310 496 331 21(200) −7.299 235 334 92(300) −7.293 119 050 12(500) −7.289 431 528 90(2000)
∞Li
4000 −7.335 523 542 97(60) −7.311 189 578 43(200) −7.299 927 555 94(300) −7.293 810 713 64(500) −7.290 122 856 24(2000)

After a function is selected, its ik and jk indices and the Lk

parameters are optimized. At this stage, the function is checked
for any linear dependency with the functions already included
in the basis set and, if such linear dependency appears, the
function is rejected. After a certain number of new functions
are added, the whole set is reoptimized by cycling over all
functions one by one and reoptimizing their Lk parameters.
After parameters of a function are reoptimized, it is checked
for linear dependency with all other functions in the set. If
such dependency is found, the parameters of the functions are
reset to their values before the reoptimization.

This elaborate scheme used in the present work to avoid
linear dependency between the basis functions is necessary
to keep the calculation numerically stable. An instability may
arise if two or more functions become nearly identical and
their linear coefficients have opposite signs. In that case, some
undesirable and uncontrollable numerical noise may appear
in the energy eigenvalues, leading to inefficiencies or even
failures in the minimization process.

V. RESULTS

The present calculations target the lowest five states of the
2D Rydberg series of the lithium atom. The optimization of
the ECG basis sets for these states have been performed for
the 7Li isotope and then used to also calculate the 2D energy
levels of the 6Li isotope, as well as of the lithium atom with an
infinite nuclear mass (∞Li). The ∞Li are shown because they
can be compared with the results obtained in the standard way
that involves the BO approximation.

The first set of results is presented in Table I. It shows
the convergence of the total energies of the 7Li states with
the number of basis functions. In the table, we also show the
energies of 6Li and ∞Li calculated with 4000 ECGs, that is,
the largest basis sets used in the calculations. One can see
that the energies of all five states are very well converged. As
expected, the convergence is somewhat better for the lowest
states than for the upper states.

The next set of results is shown in Table II. It concerns the
relative energies of the five 2D states of 7Li, 6Li, and ∞Li with

TABLE II. Energies (in cm−1) of the five lowest 2D states of 7Li determined with respect to the ground 2S (1s22s1) state and their
comparison with the experimental energies. Only the results of the calculations performed with 4000 Gaussians are shown. The uncertainty of
the calculated values due to finite size of the basis is less than 0.01 cm−1.

1s23d1 1s24d1 1s25d1 1s26d1 1s27d1 1s2∞d1b

7Li
Calculateda 31 280.54 36 620.81 39 092.35 40 434.73 41 244.06 43 484.60
Experiment [1] 31 283.08 36 623.38 39 094.93 40 437.31 41 246.5 43 487.15
�c −2.54 −2.57 −2.58 −2.58 −2.44 −2.55
6Li
Calculateda 31 280.19 36 620.30 39 091.80 40 434.17 41 243.49 43 484.00
∞Li
Calculateda 31 283.21 36 623.90 39 095.62 40 438.12 41 247.51 43 488.22

aCalculated relative to the ground 1s22s1 state of Li. E(7Li) = −7.477 451 930 7 hartree, E(6Li) = −7.477 350 681 2 hartree, and E(∞Li) =
−7.478 060 323 8 hartree taken from [8].
bEnergy difference between the ground 1s22s1 state of Li and the ground 1s2 state of Li+. E(7Li+) = −7.279 321 519 72 hartree from [3], and
E(6Li+) = −7.279 223 016 09 hartree and E(∞Li+) = −7.279 913 412 58 hartree calculated in this work with 500 Gaussians.
cDetermined as the calculated energy difference minus the experimental energy difference.
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TABLE III. Energy differences (in cm−1) between adjacent 2D states of 7Li, 6Li, and ∞Li. For 7Li we show the convergence of the differences
with the basis-set size. For 6Li and ∞Li we only show the results obtained with 4000 Gaussians. For 7Li the results of the calculations are
compared with the experimental values.

Basis 1s23d1–1s24d1 1s24d1–1s25d1 1s25d1–1s26d1 1s26d1–1s27d1

7Li
1500 5340.25 2471.52 1342.44 809.56
2000 5340.27 2471.54 1342.40 809.39
2500 5340.27 2471.54 1342.39 809.35
3000 5340.27 2471.54 1342.39 809.34
3500 5340.27 2471.54 1342.39 809.33
4000 5340.27 2471.54 1342.39 809.33
Experiment [1] 5340.30 2471.55 1342.38 809.2
6Li
4000 5340.20 2471.50 1342.37 809.32
∞Li
4000 5340.69 2471.73 1342.49 809.39

respect to the corresponding ground 2S (1s22s1) states of these
systems. For 7Li, we also include the experimental values [1]
and the differences between those values and the calculated
ones. Since the present calculations do not include relativistic
and QED corrections, the agreement with the experimental
values cannot be expected to be perfect. As one can see, the
calculated values are systematically off from the experiment by
almost a constant value of −2.58 to −2.54 cm−1. This almost
constant discrepancy can be explained by the fact that the
magnitude of the relativistic and QED corrections changes very
little as the valence electron gets excited to increasingly higher
d state. The magnitude of the discrepancy is consistent with the
estimate of 3.4 cm−1 one can obtain using the simple Desclaux
approximation [15]. The discrepancy for the highest 1s27d1

state (−2.4 cm−1) is different from −2.58 cm−1 because
the experimental energy of this state is only given with one
significant figure after the decimal point.

There is an additional data point in the table which is
related to the energy difference between the Li and Li+ ground
states. The nonrelativistic value for this energy difference is
−2.55 cm−1 off from the experimental value. This number
is very similar to the other differences shown in the table, as
it should be, because, as those other differences correspond
to excitations of the valence electron to states which are
increasingly further removed from the atom, the Li/Li+
difference corresponds to the complete removal of the electron
from the atom.

In the last table, Table III, we show the energy differences
between adjacent 2D states for 7Li, 6Li, and ∞Li isotopes. For
7Li the calculated results are compared with values determined
from the experimental data. As the relativistic effects are

very similar for all five states, the energy differences agree
very well with the experiment. The 1s24d1 → 1s25d1 and
1s25d1 → 1s26d1 transitions only differ from the experiment
by 0.01 cm−1. However, for the 1s26d1 → 1s27d1 there is a
more noticeable difference mainly caused by not-so-accurate
experimental energy value for the 1s27d1 state. The results of
the present calculations allow for refinement of this energy.
This can be done by taking the experimental energy of
the 1s26d1 state of 40 437.31 cm−1 and adding to it our
very well-converged 1s26d1 − 1s27d1 energy difference of
809.33 cm−1. Due to a negligible contribution of the relativistic
and QED effects, the energy value of 41 246.64 cm−1 obtained
this way should be quite accurate. This value is slightly
different from the experimental value of 41 246.5 cm−1 in [1].
The same procedure can be applied to determine the energies
of the 2D states of 6Li, once the energy of the 1s23d1 level
becomes available from the experiment.

VI. SUMMARY

The following have been accomplished in this work.
(i) Very accurate variational calculations have been per-

formed for the first five Rydberg states of the 7Li atom using
all-electron ECG basis functions. The results agree very well
with the experimental data.

(ii) The calculated energies allow for slight refinement of
the energy of the 1s27d1 state of 7Li, which is known with
somewhat lower precision than the energies of the lower states.

(iii) The results obtained for 6Li may help in performing
measurements of yet unmeasured Rydberg 2D states of this
system.
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