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S-matrix calculations of energy levels of the lithium isoelectronic sequence
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A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented.
A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-
photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with
Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections,
a comprehensive tabulation of the 2s, 2p1/2, and 2p3/2 energy levels as well as the 2s–2p1/2 and 2s–2p3/2

transition energies for Z = 10–100 is presented.
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I. INTRODUCTION

The many-body problem in atoms and ions is most often
treated in a Hamiltonian formalism. As a starting point the
many-electron Schrödinger equation, or a relativistic extension
of it, is treated with many-body perturbation theory (MBPT)
[1], and QED corrections are then included as perturbations.
An example of the first part of this approach is the MBPT
treatment of the lithium-like [2] and sodium-like [3] isoelec-
tronic sequences, where a Hartree-Fock potential is taken
as a starting point of a perturbation expansion that includes
Coulomb interactions through third order, instantaneous Breit
interactions through second order, and the effect of retardation
on the Breit interaction in lowest order. In these early works
discrepancies with experiment were used to infer the QED
corrections, but since then the direct calculation of the one-loop
Lamb shift has been carried out [4], and the bulk of the
discrepancy is removed when the one-loop Lamb shift is added
to the MBPT results.

While this approach is successful in accounting for the
spectra of the aforementioned sequences at the few tenths
of an eV level, subtle effects relating to retardation and
negative energy states begin to be important when levels
under 0.1 eV are reached in modern experiments for high-Z
ions [5–7]. It is rather complicated to restore the effect
of negative energy states, which are usually omitted from
Hamiltonian treatments in order to avoid the continuum
dissolution problem [8], and in addition the treatment of
retardation is problematical [9]. These issues can be avoided
altogether if the Hamiltonian formalism is simply abandoned
and replaced with the Feynman-diagram-oriented approach
offered by S-matrix theory [10], which is used here, or the
essentially equivalent Green’s function techniques used by the
St. Petersburg group [11].

The application of either QED-based theory to highly
charged ions is analogous to the QED treatment of the
electron anomalous magnetic moment, where evaluation of
a limited, unambiguous set of Feynman diagrams accounts
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for all relevant physics up to a given precision governed by
powers of the fine structure constant α. For highly charged
many-electron ions, the relevant expansion parameter is the
number of virtual photons in the Feynman diagrams, with
factors of α or 1/Z providing strong suppression of diagrams
with three or more photons. For this reason, only the relatively
few diagrams involving one or two photons need to be treated,
although weak-field expansion in the parameter Zα, which
simplifies the treatment of light systems, is not suitable for
high-Z ions and bound-state electron propagators have to be
used. Residual contributions from the large number of three-
photon graphs have not yet been calculated with QED methods.
They are dominated by correlation diagrams involving photon
exchanges between different electrons, and, as is discussed in
what follows, can be approximated by using the Hamiltonian
method described in the first paragraph. This QED approach
has been implemented for highly charged lithium-like ions
in Refs. [11] and [12]. The latter paper concentrated on a
single transition energy, the 2s–2p3/2 splitting for lithium-like
bismuth, and used basis-set techniques to evaluate two-photon
exchange diagrams. In this paper, we replace the basis-set
techniques with differential equation methods and give a
complete treatment of the 2s, 2p1/2, and 2p3/2 energy levels,
as well as the 2s–2p1/2 and 2s–2p3/2 transition energies along
the isoelectronic sequence.

Three additional theoretical issues enter when high preci-
sion is required. The first has to do with the finite mass of the
nucleus, which leads to recoil corrections. While suppressed
by a factor of m/M , where m is the electron mass and M

the mass of the nucleus, these corrections, which are highly
nontrivial to calculate, must be included. The second issue is
higher-order contributions to the Lamb shift, specifically the
two-loop Lamb shift. This effect is sufficiently large at high Z

that its value was inferred in Ref. [12] for lithium-like bismuth,
but, as with the one-loop Lamb shift, it can now be calculated
directly [13,14]. Finally, the polarizability of some nuclei is
large enough that a small but non-negligible effect results.
These nuclear polarization corrections have been studied for
the n = 2 states of heavy lithium-like ions [15] and will be
included in the present ionization and transition energies.

In our previous work [12] we showed that essen-
tially identical results were obtained regardless of the
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model potential used to define the QED representation.
Here we specialize to the Kohn-Sham potential [16], a
self-consistent local potential similar to the Dirac-Fock
potential. In the next section, the S-matrix formalism
is described, and the Kohn-Sham potential defined. In
Sec. III, one-photon diagrams are treated. In Sec. IV,
two-photon diagrams, with the exception of the two-loop
Lamb shift, are evaluated. In Sec. V, the smaller corrections
from three-photon diagrams, nuclear recoil, two-loop Lamb
shift, and nuclear polarization are discussed. The main result
of this paper, Table I, is a comprehensive tabulation of the
ionization potentials of the 2s, 2p1/2, and 2p3/2 states for
Z = 10–100, along with the 2s–2p1/2 and 2s–2p3/2 transition
energies. For the sake of brevity, only the complete theoretical
result is presented for the isoelectronic series, but to illustrate
the importance of the various corrections, the breakdown of
contributions for a few ions along the isoelectronic sequence
will be given in Table II. A discussion of the comparison of the
present theory with experiment and other calculations, along
with directions for future progress, is given in the concluding
section.

II. S-MATRIX FORMULATION

S-matrix calculations [10] of atomic structure use the fact
that energy levels of an atom can be related to matrix elements
of an operator that evolves the atom from t = −∞ to t = ∞,

Sε,λ = T (e−iλ
∫

dte−ε|t |HI (t)), (1)

through E = E0 + �E, where

�E = lim
ε→0

iε

2
lim
λ→1

∂

∂λ
ln〈�0|Sε,λ|�0〉. (2)

Here E0 is the energy of the atom at times t = ±∞, where the
interaction Hamiltonian, defined in what follows, is suppressed
by the adiabatic damping factor ε. For the isoelectronic
sequence we will be treating here, the state |�0〉 can be
represented in a manner identical to that used in MBPT,

|�0〉 = a†
v|0c〉, (3)

where v represents a valence electron and |0c〉 a filled helium-
like core. The wave functions are defined by the interaction
representation chosen to define HI and obey the Dirac equation
in a spherically symmetric potential U (r),

[�α · �p + βm + U (r)]ψn(�x) = εnψn(�x), (4)

where r = |�x|. Natural units in which h̄ = c = 1 are used in
this work unless otherwise specified. The lowest-order energy
E(0) is given by

E(0) = εv + 2εa, (5)

where a represents the 1s1/2 core state. The second term in
the preceding formula for E(0), which does not contribute
either to valence ionization or transition energies, will be
suppressed in the following, and this convention will be
followed for the higher-order corrections considered in this
paper.

While there are sufficiently few electrons in lithium-like
ions that reasonable results can be obtained starting from the
Coulomb potential

UC(r) = −Znuc(r)α

r
, (6)

we instead choose to incorporate some screening by using the
Kohn-Sham potential [16] defined by

UKS(r) = UC(r) + α

∫
dr ′ 1

r>

ρt (r
′) − 2

3

[
81

32π2
rρt (r)

]1/3
α

r
,

(7)

where

ρt (r) = g2
v(r) + f 2

v (r) + 2
[
g2

a(r) + f 2
a (r)

]
. (8)

Here g(r) and f (r) are the upper and lower components of
Dirac wave functions self-consistently determined, v is the 2s

valence electron, and Znuc(r) accounts for the finite size of the
nucleus using a Fermi distribution with parameters taken from
[17], except for thorium and uranium, where the c parameters
are changed from 6.9264 and 6.9868 fm in [17] to 7.0598
and 7.137 53 fm, as deduced from measurements [18,19]. A
related potential that will arise in the treatment of screening of
the Lamb shift is the core-Hartree (CH) potential defined by

UCH(r) = UC(r) + α

∫
dr ′ 1

r>

ρc(r ′), (9)

with

ρc(r) = 2
[
g2

a(r) + f 2
a (r)

]
. (10)

Neglecting core energies, the binding energies εv associated
with the Kohn-Sham potential are shown as E(0) for a few
lithium-like ions in Table II.

When dealing with free-electron processes, the most ap-
propriate treatment of QED is the interaction representation,
which is a unitary transformation that subtracts the free-
electron Hamiltonian H0 from the full Hamiltonian. Early
applications of QED to the bound-state problem were primarily
concerned with hydrogen and employed a different kind of
interaction representation known as the Furry representation
[20] in which the interaction of the electron with the Coulomb
field of the nucleus is also kept in H0. Specifically, the
transformation from a Schrödinger picture wave function |�S〉
to a Furry picture wave function |�I 〉 is

|�I 〉 = eiH0t |�S〉, (11)

where

H0 =
∫

d3xψ†(�x,t)[�α · �p + βm + UC(r)]ψ(�x,t), (12)

and the interaction Hamiltonian is defined as

HI (t) = e

∫
d3xψ̄(�x,t)γµAµ(�x,t)ψ(�x,t), (13)

with normal ordering understood. This formalism applies
equally well to the case when the Coulomb potential UC(r) in
Eq. (12) is replaced with a non-Coulomb local potential U (r),
chosen here to be UKS(r), providing that a counterpotential
term is added to the interaction Hamiltonian,

δHI (t) =
∫

d3xψ†(�x,t)[UC(r) − U (r)]ψ(�x,t). (14)
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TABLE I. Ionization potentials (a.u.) and transition energies (eV) for the n = 2 states of lithium-like ions.

Z 2s 2p1/2 2p3/2 2s–2p1/2 2s–2p3/2 Z 2s 2p1/2 2p3/2 2s–2p1/2 2s–2p3/2

10 −8.786 573 −8.202 716 −8.195 174 15.8876 16.0928 56 −390.1477 −385.5147 −369.4820 126.069 562.342
11 −11.019 75 −10.363 38 −10.351 40 17.8606 18.1867 57 −405.4716 −400.7209 −383.4008 129.272 600.577
12 −13.505 30 −12.776 26 −12.758 13 19.8382 20.3315 58 −421.1434 −416.2728 −397.5850 132.534 641.057
13 −16.243 73 −15.441 79 −15.415 39 21.8219 22.5403 59 −437.1677 −432.1748 −412.0351 135.863 683.892
14 −19.235 55 −18.360 47 −18.323 22 23.8123 24.8258 60 −453.5492 −448.4315 −426.7520 139.261 729.189
15 −22.481 44 −21.532 87 −21.481 76 25.8118 27.2026 61 −470.2924 −465.0478 −441.7361 142.713 777.058
16 −25.981 97 −24.959 61 −24.891 07 27.8198 29.6850 62 −487.4023 −482.0293 −456.9878 146.206 827.621
17 −29.737 94 −28.641 42 −28.551 28 29.8380 32.2907 63 −504.8851 −499.3811 −472.5078 149.772 881.033
18 −33.750 11 −32.578 98 −32.462 52 31.8681 35.0371 64 −522.7451 −517.1085 −488.2968 153.379 937.386
19 −38.019 21 −36.773 09 −36.624 90 33.9086 37.9411 65 −540.9890 −535.2170 −504.3554 157.063 996.849
20 −42.546 21 −41.224 62 −41.038 60 35.9623 41.0242 66 −559.6227 −553.7123 −520.6846 160.830 1059.56
21 −47.332 11 −45.934 51 −45.703 81 38.0308 44.3084 67 −578.6484 −572.6002 −537.2850 164.579 1125.56
22 −52.377 81 −50.903 71 −50.620 65 40.1124 47.8148 68 −598.0810 −591.8871 −554.1573 168.545 1195.23
23 −57.684 41 −56.133 26 −55.789 33 42.2089 51.5677 69 −617.9178 −611.5790 −571.3025 172.486 1268.47
24 −63.252 98 −61.624 22 −61.210 02 44.3209 55.5918 70 −638.1702 −631.6827 −588.7214 176.535 1345.57
25 −69.084 77 −67.377 75 −66.882 97 46.4505 59.9142 71 −658.8459 −652.2056 −606.4146 180.693 1426.73
26 −75.180 98 −73.395 00 −72.808 37 48.5989 64.5620 72 −679.9497 −673.1556 −624.3826 184.876 1512.06
27 −81.542 95 −79.677 33 −78.986 46 50.7662 69.5656 73 −701.4919 −694.5404 −642.6262 189.159 1601.82
28 −88.171 98 −86.226 08 −85.417 44 52.9507 74.9548 74 −723.4766 −716.3678 −661.1463 193.441 1696.10
29 −95.069 61 −93.042 67 −92.101 62 55.1558 80.7632 75 −745.9182 −738.6462 −679.9436 197.881 1795.26
30 −102.2373 −100.1285 −99.039 21 57.3821 87.0231 76 −768.8199 −761.3839 −699.0192 202.345 1899.37
31 −109.6765 −107.4851 −106.2305 59.6316 93.7714 77 −792.1926 −784.5898 −718.3739 206.882 2008.71
32 −117.3890 −115.1141 −113.6758 61.9035 101.044 78 −816.0463 −808.2734 −738.0087 211.510 2123.51
33 −125.3765 −123.0172 −121.3753 64.1994 108.879 79 −840.3900 −832.4441 −757.9245 216.218 2244.00
34 −133.6408 −131.1962 −129.3294 66.5196 117.317 80 −865.2323 −857.1120 −778.1223 220.966 2370.38
35 −142.1836 −139.6528 −137.5384 68.8659 126.401 81 −890.5884 −882.2884 −798.6029 225.855 2503.05
36 −151.0070 −148.3890 −146.0027 71.2399 136.174 82 −916.4651 −907.9848 −819.3671 230.760 2642.17
37 −160.1129 −157.4066 −154.7224 73.6423 146.682 83 −942.8748 −934.2122 −840.4160 235.721 2788.04
38 −169.5035 −166.7079 −163.6981 76.0731 157.974 84 −969.8326 −960.9831 −861.7507 240.806 2941.06
39 −179.1809 −176.2949 −172.9300 78.5335 170.097 85 −997.3441 −988.3106 −883.3720 245.814 3101.34
40 −189.1475 −186.1698 −182.4185 81.0253 183.104 86 −1025.424 −1016.208 −905.2811 250.776 3269.26
41 −199.4054 −196.3351 −192.1641 83.5488 197.047 87 −1054.097 −1044.691 −927.4787 255.954 3445.45
42 −209.9572 −206.7929 −202.1670 86.1041 211.982 88 −1083.366 −1073.772 −949.9662 261.083 3630.00
43 −220.8055 −217.5459 −212.4277 88.6964 227.969 89 −1113.254 −1103.467 −972.7445 266.311 3823.46
44 −231.9527 −228.5967 −222.9467 91.3199 245.066 90 −1143.741 −1133.791 −995.8155 270.743 4025.25
45 −243.4017 −239.9480 −233.7242 93.9791 263.338 91 −1174.936 −1164.768 −1019.179 276.669 4238.37
46 −255.1554 −251.6026 −244.7608 96.6765 282.849 92 −1206.719 −1196.406 −1042.837 280.652 4459.46
47 −267.2166 −263.5631 −256.0570 99.4141 303.667 93 −1239.273 −1228.736 −1066.790 286.708 4693.50
48 −279.5882 −275.8327 −267.6132 102.192 325.858 94 −1272.477 −1261.769 −1091.040 291.376 4937.14
49 −292.2738 −288.4144 −279.4299 105.020 349.502 95 −1306.418 −1295.529 −1115.588 296.308 5192.76
50 −305.2764 −301.3113 −291.5076 107.897 374.668 96 −1341.095 −1330.038 −1140.435 300.890 5460.25
51 −318.5993 −314.5269 −303.8468 110.816 401.436 97 −1376.544 −1365.321 −1165.582 305.400 5740.56
52 −332.2459 −328.0650 −316.4479 113.769 429.885 98 −1412.778 −1401.403 −1191.031 309.526 6034.05
53 −346.2207 −341.9290 −329.3114 116.781 460.124 99 −1449.814 −1438.309 −1216.782 313.055 6341.12
54 −360.5261 −356.1228 −342.4379 119.821 492.206 100 −1487.696 −1476.073 −1242.837 316.288 6662.94
55 −375.1674 −370.6500 −355.8279 122.923 526.255

When the field operators in the preceding equation are replaced
with specific wave functions, we encounter the frequently
occurring matrix element

Ũij ≡
∫

d3xψ
†
i (�x)Ũ (r)ψj (�x), (15)

where Ũ (r) ≡ UC(r) − U (r) = UC(r) − UKS(r) here. In this
paper we are concerned with terms up to fourth order in HI (t)
and second order in δHI (t), which correspond to Feynman
diagrams with up to two virtual photons.

III. ONE-PHOTON PHYSICS

The diagrams involving one photon are shown in Fig. 1. If
we define the matrix element

gijkl(E) = α

∫
d3xd3y

eiE|�x−�y|

|�x − �y| ψ̄i(�x)γ µψk(�x)ψ̄j (�y)γµψl(�y),
(16)

the one-photon exchange term of Fig. 1(a) and the counterpo-
tential term of Fig. 1(b) give the energy shift

E(1) =
∑

a

[gavav(0) − gavva(Eva)] − Ũvv, (17)
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(c) (d)

(a) (b)

FIG. 1. One-photon correlation and radiative diagrams. A cross
inside a circle represents a counterpotential.

where Eva = εv − εa . This part of one-photon physics we refer
to as structure-related, as we do with any diagram that has, as a
limit, an expression from MBPT. Specifically, while we work
in the Feynman gauge, were we to work in the Coulomb gauge,
the Coulomb photon part of E(1) would exactly reproduce
first-order MBPT results when only Coulomb interactions are
included. We note here that because we use a local potential,
gauge invariance ensures that a complete Coulomb gauge
calculation, including retarded transverse-photon exchange,
would reproduce the results of the present Feynman gauge
calculation. The contributions of E(1) are given in Table II.
We present only its real part, but note that an imaginary part,
related to the decay rate of the ion, is also in general present.
While this plays no role in one-photon exchange, it plays a
role in the two-photon calculations described below.

More difficult to evaluate are the radiative diagrams of
Figs. 1(c) and 1(d) for the one-loop vacuum-polarization and
self-energy, respectively. The vacuum polarization term in the
Uehling approximation is given by

EVP
Uel = α2

4π2

∫ 1

0
dy

y2(1 − y2/3)

1 − y2

∫
d3xψ†

v (�x)ψv(�x)

×
∫

d3r
e
− 2m|�x−�r|√

1−y2

|�x − �r|
�∇2

r

(
Zeff(r)

r

)
, (18)

where Zeff(r) = −rUKS(r)/α is the effective charge for the
Kohn-Sham potential. In addition, Wichmann-Kroll [21]

corrections EVP
WK, must be added. We have developed tech-

niques for the evaluation of both parts of the vacuum polariza-
tion calculation. The Wichmann-Kroll part of the calculation,
in particular, is similar to the self-energy calculation and
involves partial-wave expansions in configuration space using
numerical bound-state Green’s functions. Our method has been
described in Ref. [22]. The present vacuum polarization results
are shown as “Uehling” and “WK” in Table II.

The self-energy (SE) can be written as ESE
1γ = �vv(εv),

where

�jl(ε) ≡ −ie2
∫

d3x

∫
d3y

∫
dnk

(2π )n
ei�k·(�x−�y)

k2 + iδ

× ψ̄j (�x)γµSF (�x,�y; ε − k0)γ µψl(�y), (19)

and the self-mass counterterm is understood to be included.
In the preceding equation, n = 4 − ε is used to regulate the
integral over k, and after renormalization the limit ε → 0 is
taken. Here, self-energies are calculated nonperturbatively to
all orders of Zα with partial-wave expansions in configuration
space using numerical bound-state Green’s functions. Subtrac-
tion terms involving the free-electron propagator are evaluated
in momentum space with Fourier-transformed wave functions.
Details of these calculations, with references to earlier works,
can be found in [23]. As mentioned earlier, we do not consider
the self-energies of the core states, but note that they enter into
the two-photon calculation. As with one-photon exchange,
imaginary parts are generally present and play a role in the
two-photon calculation. The real parts of the self-energies are
presented as “SE” in Table II.

IV. TWO-PHOTON PHYSICS

A. Structure diagrams

We begin our discussion of two-photon physics with
correlation diagrams in which there is only one electron
propagator between two virtual photons that are exchanged
among three different electrons [Fig. 2(a)], between a virtual
photon and a counterpotential [Fig. 2(b)] and between two
counterpotentials [Fig. 2(c)]. Since we omit diagrams in which
the photons interact with only core electrons, there will always
be one valence electron v and up to two core electrons a and b.
Defining Eij = εi − εj , we find

�E2γ =
i 
=v∑
abi

[gbvbi(0) − gvbbi(Evb)][giava(0) − giaav(Eva)]

εv − εi

+
i 
=a∑
abi

[gvavi(0) − gvaiv(−Eva)][gibab(0) − gibba(Eab)]

εa − εi

+
i 
=a∑
abi

[gviva(0) − givva(−Eva)][gabib(0) − gabbi(Eab)]

εa − εi

−
∑
abi

[gavbi(Eab) − gavib(Evb)][gibva(Eab) − gibav(Evb)]

εa + εv − εi − εb

+
∑
abi

[gbavi(−Evb) − gabvi(−Eva)]givba(−Eav)

εa + εb − εv − εi

−
i 
=v∑
ai

[gavai(0) − gvaai(Eva)]Ũiv + Ũvi[gaiav(0) − giaav(Eav)]

εv − εi

−
i 
=a∑
ai

[gaviv(0) − gvaiv(−Eva)]Ũia + Ũai[givav(0) − givva(−Eva)]

εa − εi

+
i 
=v∑
i

ŨviŨiv

εv − εi

. (20)
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(a)

(b) (c)

(d) (e)

FIG. 2. Two-photon correlation diagrams. A cross inside a circle
represents a counterpotential.

Note that the sign of E in gijkl(E) is significant. Furthermore,
there is a second kind of contribution coming from these graphs
known as derivative terms, which are sensitive to that sign.
They are associated with the i = v and i = a terms excluded
in the preceding equation and are given by

�E′
2γ =

∑
ab

g′
avvb(Eva)[gvbva(0) − gvbav(Eva)]

−
∑
ab

g′
vbav(−Eva)[gvaba(0) − gvaab(0)]

−
∑
ab

g′
vbbv(Eva)[gvava(0) − gvaav(Eva)]

+ Ũvv

∑
a

g′
vaav(Eva) + Ũaa

∑
a

g′
vaav(−Eva). (21)

The second structure-related class of two-photon diagrams
are shown in Figs. 2(d) and 2(e), which we refer to as the
ladder (L) and crossed-ladder (X) diagrams, respectively. They
give the energy shifts

�EL = i

2π

∑
aij

∫ ∞

−∞
dz

× gijav(z)[gavij (z) − gavji(z − Eva)]

[εa + z − εi(1 − iδ)][εv − z − εj (1 − iδ)]
(22)

and

�EX = i

2π

∑
aij

∫ ∞

−∞
dz

×
{

gajiv(z)givaj (z)

[εa + z − εi(1 − iδ)][εv + z − εj (1 − iδ)]

− gajia(z)givvj (z − Eva)

[εa + z − εi(1 − iδ)][εa + z − εj (1 − iδ)]

}
.

(23)

The analysis of these diagrams, which are structure-related
inasmuch as they include contributions to the second-order
MBPT result, is complicated, but parallels the treatment of the
ladder and crossed ladder for excited states in helium [24],
where more details can be found. The most computationally
intensive part of the evaluation of these diagrams involves
the z integration. A Wick rotation z → iω leads to terms
in which the contour surrounds poles or photon cuts plus
the ω integral, which is evaluated with Gaussian integration.
If done with finite basis sets, considerable computational
time is needed even when the partial-wave expansion of the
propagators is relatively limited. To avoid this problem, we
use differential equation techniques instead. When using this
method, the relative magnitudes of the four position vectors
involved must be considered, which leads to 24 regions for
each diagram (x < y < z < w, y < x < z < w, etc.). While
this entails more coding than that required for finite basis
sets, the resulting programs run far more quickly and allow
us to extend the partial-wave expansion to l = 20. Use of this
form of the propagator encounters one complication of note,
which involves the fact that certain intermediate states must
be excluded. As differential equation techniques implicitly
include all intermediate states, they lead to linear divergences
in two of the diagrams, the ladder direct and crossed-ladder
direct. It can be shown, however, that the excluded states that
cancel these divergences are equal and opposite in sign, so we
simply combine these terms to obtain a finite answer. The result
still includes certain finite terms coming from states that should
be excluded, but these are simply evaluated independently and
subtracted.

The sum of the two-photon structure diagrams is denoted
E(2) in Table II. It is notable that this rather involved set of
calculations gives a result quite close to the MBPT procedure
of Ref. [2], even though MBPT excludes contributions from
the negative energy states and its treatment of retardation
is less complete than the present approach. However, small
differences that are important at the level of the most precise
experiments do exist. An important example involves the
2s–2p3/2 transition energy of lithium-like bismuth, where
the inference of the two-loop Lamb shift requires a QED
approach [12]. Specifically, the Hamiltonian method described
in the Introduction contributes 0.174 eV in second order. While
this calculation is part of the complete QED calculation, from
Table II we see a very different E(2) result of 0.052 eV.
The difference of 0.122 eV is relatively small compared
to most experimental uncertainties, but the high-precision
electron-beam ion trap (EBIT) measurement [5] for lithium-
like bismuth, which has achieved an accuracy of 0.039 eV,
makes it important. In particular, since this difference is
about the same size as the two-loop Lamb shift but of the
opposite sign, were MBPT to be used and combined with
an accurate screened Lamb-shift calculation, agreement with
experiment would have been found, and the two-loop Lamb
shift would have been inferred to be negligible. Use of the
correct treatment of the structure term in Ref. [12], however,
led to a discrepancy of 0.175 eV, which was identified as due
mainly to the two-loop Lamb shift, a finding subsequently
confirmed by the St. Petersburg group [13,14] with direct
calculations.
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(c)

(a) (b)

FIG. 3. Screened vacuum polarization diagrams. A cross inside a
circle represents a counterpotential.

B. Lamb-shift screening diagrams

Excluding two-loop Lamb shift, the two-photon diagrams
that involve radiative corrections are shown in Figs. 3 and 4.
We have in a previous paper [22] described the evaluation
of screening corrections to vacuum polarization, depicted in
Fig. 3, and refer details of these calculations to that work.
The treatment of screening of the self-energy requires the
evaluation of the graphs of Fig. 4. We begin with Figs. 4(a)
and 4(b) in which a self-energy diagram is present with
an exchanged photon or a counterpotential to one side.
When the intermediate propagator is represented as a spectral
decomposition and has no states degenerate with the core or
valence states, the effect of these diagrams can be treated as
self-energy diagrams with one state replaced with a perturbed
orbital, and we have the contributions

�PO = �vṽ + �ṽv +
∑

a

(�aã + �ãa), (24)

where

ψṽ(�y) ≡ α
∑

m
=v,a

∫
d3zd3w

|�z − �w|
ψm(�y)

εv − εm

× [ψ̄m(�z)γµψv(�z)ψ̄a( �w)γ µψa( �w)

− eiEva |�z− �w|ψ̄m(�z)γµψa(�z)ψ̄a( �w)γ µψv( �w)]

−
∑
m
=v

∫
d3z

ψm(�y)

εv − εm

ψ†
m(�z)Ũ (z)ψv(�z) (25)

is a valence orbital perturbed either by the exchange of a photon
with the core electrons or else by the counterpotential Ũ (z),
and

ψã(�y) ≡ α

κm=κa∑
m
=a

∫
d3zd3w

|�z − �w|
ψm(�y)

εa − εm

× [ψ̄m(�z)γµψa(�z)ψ̄v( �w)γ µψv( �w)

− eiEva |�z− �w|ψ̄m(�z)γµψv(�z)ψ̄v( �w)γ µψa( �w)] (26)

is a core orbital perturbed by the exchange of a photon with
the valence electron.

(a) (b)

(d)(c)

FIG. 4. Screened self-energy diagrams. A cross inside a circle
represents a counterpotential.

When there is a degeneracy, derivative terms arise in which
either the energy dependence of the self-energy function or the
one-photon exchange part of the diagram gets differentiated.
This leads to a single expression for the valence derivative
term,

Eder(v) = E(1)
v �′

vv(εv) −
∑

a

g′
vaav(Eva)�vv(εv), (27)

and a set of core derivative terms,

Eder(a) = �′
aa

∑
a

[gvava(0) − gavva(−Eva)]

−�aa

∑
a

g′
avva(−Eva). (28)

These derivative terms have ultraviolet divergent parts that
cancel with the vertex diagrams discussed in what follows. The
ultraviolet divergent part comes from the part of the electron
propagator when it is free, so this term is treated separately.
The remaining term, where the full propagator has the free
propagator subtracted to form an ultraviolet finite quantity,
breaks into two terms upon the Wick rotation k0 → iω, one
in which the ω integration is carried out numerically and
one in which double poles are encircled during the Wick
rotation, which leads to a derivative term. The ω integration
has singularities at small ω that we regulate through the
device of taking εv → εv(1 − δ) and εa → εa(1 − δ). The
resulting integrals have a ln(δ) dependence that cancels similar
behavior present in the vertex diagrams discussed in what
follows.

We now treat the two vertex diagrams of Figs. 4(c) and 4(d),
calling the contributions �Ei , i = 1 − 5, where

�E1 = −4iπα2
∑

a

∫
d3x d3y d3z d3w

1

|�y − �w|

×
∫

dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄v(�x)γµSF (�x,�y; εv − k0)

× γνSF (�y,�z; εv − k0)γ µψv(�z)ψ̄a( �w)γ νψa( �w), (29)
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�E2 = 4iπα2
∑

a

∫
d3x d3y d3z d3w

eiEva |�y− �w|

|�y − �w|

×
∫

dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄v(�x)γµSF (�x,�y; εv − k0)γν

×SF (�y,�z; εa − k0)γ µψa(�z)ψ̄a( �w)γ νψv( �w), (30)

�E3 = −4iπα2
∑

a

∫
d3x d3y d3z d3w

1

|�y − �w|

×
∫

dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄a(�x)γµSF (�x,�y; εa − k0)γν

×SF (�y,�z; εa − k0)γ µψa(�z)ψ̄v( �w)γ νψv( �w), (31)

�E4 = 4iπα2
∑

a

∫
d3x d3y d3z d3w

eiEva |�y− �w|

|�y − �w|

×
∫

dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄a(�x)γµSF (�x,�y; εa − k0)γν

×SF (�y,�z; εv − k0)γ µψv(�z)ψ̄v( �w)γ νψa( �w), (32)

�E5 = −4iπα

∫
d3x d3y d3z

×
∫

dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄v(�x)γµSF (�x,�y; εv − k0)γ0

×Ũ (y)SF (�y,�z; εv − k0)γ µψv(�z). (33)

Here �E1 and �E2 are the direct and exchange vertex
terms of Fig. 4(c) for the valence electron while �E3

and �E4 are those for the core electron. As for �E5, it is
the counterpotential vertex term of Fig. 4(d). We can combine
�E1 and �E5 because angular momentum and parity selection
rules restrict the value of ν to 0 in the former, which allows
the d3w integration and summation over a to be carried out,
leading to the screening part of the core-Hartree potential,
UCH(y) − UC(y) = α

∫
dy ′ 1

y>
ρc(y ′), defined in Eq. (9). Rather

than evaluate �E1 and �E5 separately, we instead treat their
sum,

�E15 = 4iπα

∫
d3x d3y d3z

∫
dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄v(�x)γµSF

×(�x,�y; εv − k0)γ0�U (y)SF (�y,�z; εv − k0)γ µψv(�z),

(34)

where �U ≡ U − UCH = UKS − UCH here. Note that had
one used the core-Hartree potential, so that U = UCH, �E15

would vanish. Similar cancelations also take place between
the valence-direct side term and the counterpotential side
term arising from the first and third terms in Eq. (25), as
well as between the valence-direct and counterpotential terms
in screened vacuum polarization calculations. The use of
the core-Hartree potential thus simplifies the evaluation of
screened Lamb shifts for alkali-like ions, a fact utilized by
Blundell [25] in his QED calculations.

Besides combining �E1 and �E5 into �E15, a further
simplification occurs for the core-direct term �E3 which, like
the valence-direct term �E1, can be shown to have only ν = 0.

In this case the core electron can be thought of as being
screened by the valence electron with the potential

Yvv(r) = α

∫
dr ′ 1

r>

[gv(r ′)2 + fv(r ′)2], (35)

and we can write

�E3 = −4iπα
∑

a

∫
d3x d3y d3z

∫
dnk

(2π )n
ei�k·(�x−�z)

k2
ψ̄a(�x)γµ

×SF (�x,�y; εa − k0)γ0Yvv(y)SF (�y,�z; εa − k0)γ µψa(�z).

(36)

No simplifications are possible for the two exchange terms
�E2 and �E4 outside of noting that they are equal to one
another: Their evaluation is the most challenging part of the
screening calculation.

All of the preceding expressions are ultraviolet divergent
as n = 4 − ε → 4, but the divergences arise only from
terms in which both electron propagators are treated as free
propagators. For this reason we begin by evaluating �Ei

in this approximation, denoting such terms �Ei(0,0). It is
possible to isolate the ultraviolet divergent part of these
terms, which behave as 1/ε and can be shown to exactly
cancel the divergences arising from the derivative terms
mentioned earlier. There remains the ultraviolet finite part of
�Ei(0,0), which involves certain difficulties associated with
the treatment of angular momentum and the fact that there are
imaginary parts in the integrals, which are treated as described
in Ref. [12].

We next form the ultraviolet finite combination
�Ei − �Ei(0,0) in coordinate space. As with the ladder and
crossed-ladder diagrams, we first carry out a Wick rotation
of the k0 integration, k0 → iω, which passes a set of poles.
The remaining integration over ω has the same singularities
mentioned in connection with the derivative terms and are
regulated in the same manner. The sums of all the correction
terms give the screened self-energy contributions, which are
shown as “SE-screen” in Table II, along with the screened
vacuum polarization contributions which are shown as
“VP-screen.”

V. RESIDUAL CORRECTIONS

A. Three-photon effects

A QED treatment of three-photon effects is a large-scale
task that has not yet been carried out. However, as discussed
earlier, second-order MBPT roughly reproduces the full QED
calculation. For this reason, to approximate three-photon
effects we simply use third-order MBPT (tabulated as E(3) in
Table II), including only the dominant Coulomb correction. An
alternative approach would be to use configuration-interaction
(CI) techniques which can give all-order results. To do this,
one would have to carefully subtract out from the CI result
the lowest-, first-, and second-order MBPT corrections using
the same potential and would then have a more complete
treatment of higher-order corrections. However, because
of the 1/Z expansion, these corrections are already quite small
and this approach is not followed here.
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B. Nuclear recoil

Recoil corrections arise from the small effect of the
finite mass of the nucleus. For hydrogenic ions, while it
suffices to simply use a reduced mass Rydberg constant as
an overall scaling factor nonrelativistically, this is not valid
when relativistic corrections are important. In the hydrogenic
case, an exact treatment of terms first order in recoil leads to
the formula [26]

E(n,j ) = mf (n,j ) + m2(Zα)2

2Mn2

+m2(Zα)4

M

[
− 1

2n4
+ 1

2n3(j + 1/2)

]

+m2(Zα)5

M
R(n,κ,Zα), (37)

where R(n,κ,Zα) is given in Table III of Ref. [26] and

f (n,j )

=
{

1 + (Zα)2[
n − (j + 1/2) +

√
(j + 1/2)2 − (Zα)2

]2

}−1/2

(38)

is the Dirac-Coulomb energy in units of mc2. While we are
dealing with lithium-like ions, we make the approximation of
using the recoil corrections in Eq. (37) for the n = 2 states
considered here. To gauge the accuracy of doing this, we note
that at Z = 50 the hydrogenic energy mf differs from the
Kohn-Sham eigenvalues by only 5% . A comparable screening
correction to the already small recoil term can definitely be
ignored.

For many-electron systems such as the lithium-like ions,
there is an additional recoil term given by the expectation
values of the operator

HMP = 1

2M

∑
i 
=j

{ �pi · �pj + U (ri)[�αi + (�αi · r̂i)r̂i] · �pj }. (39)

The first term in Eq. (39) is the mass polarization term and
the second term is the leading relativistic correction [27]. The
latter has been shown in Ref. [28] to arise from the exchange
of one transverse photon in a QED formalism. The same work
also showed that higher-order contributions from the exchange
of two transverse photons, though extremely small at low Z,
increase very rapidly along the isoelectronic sequence and are
no longer negligible at high Z. Indeed, for the 2p1/2 state
of hydrogenic uranium, contributions from the two terms in
Eq. (39) give −0.085 and 0.068 eV for a sum of −0.017 eV,
while the higher-order correction is comparable in size at
−0.013 eV. Evaluations of these higher-order corrections
with QED are nontrivial, but we find that they can be
well approximated by the expectation values of the operator

1
2M

∑
i 
=j �qi · �qj , where

�qi = 1
2U (ri)[�αi + (�αi · r̂i)r̂i]. (40)

Indeed, hydrogenic results thus obtained consistently agree
with the QED results of [28] to within a few percent over a

change of five orders of magnitude from Z = 10 to Z = 100.
We thus use the operator

H rel
MP = 1

2M

∑
i 
=j

[ �pi · �pj + 2�qi · �pj + �qi · �qj ] (41)

to evaluate the relativistic mass polarization corrections for
lithium-like ions with Kohn-Sham wave functions. Total recoil
corrections as given by the sums of the hydrogenic mass
correction factor and the expectation values of H rel

MP are
tabulated as “Recoil” in Table II.

C. Two-loop Lamb shift

One of the major advances in QED bound-state theory of
recent years has been in the treatment of the two-loop Lamb
shift. For hydrogen, this effect must be understood precisely
before the proton size can be determined, and considerable
effort had to be put into the Zα expansion of the effect before
this could be done. As mentioned earlier, at high Z the effect,
which in this case has to be calculated exactly without making
the Zα expansion, is large enough that it could be clearly
seen when comparing theory and experiment for lithium-like
bismuth [12]. In terms of a function G(Zα), the two-loop
Lamb shift can be parameterized as

�E2-loop = mα2

π2n3
(Zα)4G(Zα). (42)

The exact calculation of G(Zα) is quite complicated, but
enough Z values have been evaluated [13,14] that an inter-
polation can be made, and the results are tabulated as “2-loop”
in Table II.

D. Nuclear polarization

By far the largest uncertainty associated with the properties
of the nucleus in a lithium-like ion is the root-mean-square
charge radius. We discuss in the next section how the use of
different values of this parameter lead to significant changes
in the 2s energy. However, a smaller effect is beginning to
become important as higher precisions are reached, which is
the effect of the polarizability of the nucleus. This is a large
effect in muonic atoms [29] and, while smaller, needs to be
included for highly charged heavy ions. The graphs involved
are of the same form as the ladder and crossed-ladder diagrams
of Figs. 2(d) and 2(e), with the bottom electron replaced
with a nucleus that is understood to be in an excited state.
This nuclear polarization effect from the collective nuclear
excitations, including vibrations, rotations, and giant dipole
resonances, has been studied by Plenum and Soff [15] for
even isotopes of actinide nuclei. Results from that work are
included in our ionization and transition energies for some of
the high-Z ions and are listed as “NucPol” in Table II.

VI. DISCUSSION AND CONCLUSION

As we have mentioned in the Introduction, most works on
high-precision calculations of the energy levels of lithium-like
ions are based on the Hamiltonian approach for structure calcu-
lations, with QED corrections calculated separately. Examples
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TABLE II. Breakdown of contributions to the ionization potentials (a.u.) for the n = 2 states of selected lithium-like ions. See text for term
notations.

State Terms Z = 20 Z = 40 Z = 60 Z = 74 Z = 83 Z = 92

2s1/2 E(0) −41.078 21 −186.1698 −449.2213 −718.3888 −937.4309 −1201.067
E(1) −1.471 73 −3.0515 −4.6537 −5.8045 −6.5674 −7.360
E(2) −0.003 44 −0.0057 −0.0098 −0.0141 −0.0178 −0.023
E(3) −0.000 02 0.0000 0.0000 0.0000 0.0000 0.000

Recoil 0.000 69 0.0013 0.0020 0.0027 0.0035 0.005
Uehling −0.000 52 −0.0094 −0.0579 −0.1656 −0.3123 −0.582

WK 0.000 00 0.0001 0.0015 0.0060 0.0136 0.029
SE 0.007 29 0.0896 0.3967 0.9017 1.4586 2.314

VP-screen 0.000 03 0.0003 0.0013 0.0033 0.0060 0.011
SE-screen −0.000 30 −0.0020 −0.0070 −0.0147 −0.0233 −0.037

2-loop −0.000 01 −0.0002 −0.0009 −0.0026 −0.0046 −0.008
NucPol −0.001

Sum −42.546 21 −189.1475 −453.5492 −723.4766 −942.8748 −1206.719

2p1/2 E(0) −39.785 90 −183.3083 −444.4356 −711.9216 −929.7361 −1192.233
E(1) −1.431 20 −2.8467 −3.9741 −4.4418 −4.5141 −4.305
E(2) −0.007 43 −0.0122 −0.0226 −0.0364 −0.0502 −0.070
E(3) 0.000 07 0.0000 0.0001 0.0001 0.0001 0.000

Recoil 0.000 33 0.0006 0.0009 0.0012 0.0016 0.002
Uehling 0.000 00 −0.0002 −0.0033 −0.0157 −0.0399 −0.098

WK 0.000 00 0.0000 0.0001 0.0008 0.0025 0.007
SE −0.000 22 −0.0014 0.0086 0.0570 0.1422 0.321

VP-screen 0.000 03 0.0003 0.0012 0.0032 0.0060 0.012
SE-screen −0.000 30 −0.0020 −0.0067 −0.0147 −0.0243 −0.041

2-loop 0.000 00 0.0000 0.0001 0.0001 0.0001 0.000
NucPol 0.000

Sum −41.224 62 −186.1698 −448.4315 −716.3678 −934.2122 −1196.406

2p3/2 E(0) −39.582 48 −179.3907 −422.1043 −655.2997 −833.7473 −1035.279
E(1) −1.449 44 −3.0233 −4.6710 −5.9317 −6.8275 −7.830
E(2) −0.006 97 −0.0093 −0.0124 −0.0146 −0.0159 −0.017
E(3) 0.000 06 0.0000 0.0000 0.0000 0.0000 0.000

Recoil 0.000 33 0.0005 0.0008 0.0010 0.0011 0.001
Uehling 0.000 00 0.0000 −0.0003 −0.0010 −0.0021 −0.004

WK 0.000 00 0.0000 0.0000 0.0001 0.0003 0.001
SE 0.000 20 0.0059 0.0395 0.1070 0.1852 0.303

VP-screen 0.000 03 0.0002 0.0008 0.0016 0.0025 0.004
SE-screen −0.000 33 −0.0019 −0.0052 −0.0089 −0.0120 −0.016

2-loop 0.000 00 0.0000 0.0000 −0.0001 −0.0002 −0.001
NucPol 0.000

Sum −41.038 60 −182.4185 −426.7520 −661.1463 −840.4160 −1042.837

are the relativistic many-body perturbation theory (RMBPT)
calculations of Blundell [25] and the relativistic configuration-
interaction (RCI) calculations of Chen et al. [30].
The works of the St. Petersburg group [14,31–33], on
the other hand, should be comparable to the present
S-matrix calculations, as both use similar QED-based ap-
proaches which treat electron correlations and radiative correc-
tions consistently and systematically according to the number
of virtual photons exchanged between electrons. Comparing
the present work with other calculations on different contri-
butions to the ionization and transition energies can reveal
QED effects on the structure energies not attainable in the
Hamiltonian approach and show the importance of the rigorous
treatments of screened QED corrections.

In Table III, the present structure and nuclear recoil energies
for the 2s–2p transitions are presented. At low Z, uncertainties
in the structure energies are estimates based on the incomplete
three- and more-photon correlation calculations. At mid- to
high Z, they are due mainly to uncertainties in the nuclear
radii which are discussed in the following. As for the recoil
energies, error estimates come from the use of the hydrogenic
formula Eq. (37) for the one-electron recoils and the use of the
�qi · �qj term in Eq. (41) for the two-electron recoils. Also shown
in Table III are the RMBPT energies of Blundell [25], which
include some recoil corrections, and the structure energies of
RCI [30] and the St. Petersburg group (StPete) [32]. Structure
energies relative to the present results are shown in Figs. 5
and 6 for the 2s–2p1/2 and 2s–2p3/2 transitions, respectively.
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TABLE III. The present structure and recoil energies (eV) for the 2s–2p transitions of lithium-like ions are compared with other theoretical
results. Blundell’s RMBPT energies [25] already include recoil corrections. RCI [30] and St. Petersburg group’s results StPete [32] are structure
energies only.

2s–2p1/2 2s–2p3/2

Z Structure Recoil Blundell RCI StPete Structure Recoil Blundell RCI StPete

10 15.906(1) −0.004 15.903 15.907 15.906 16.110(1) −0.004 16.107 16.111 16.110
12 19.872(1) −0.005 19.867 19.872 20.364(1) −0.005 20.359 20.364
15 25.884(1) −0.006 25.878 25.886 25.885 27.272(1) −0.007 27.267 27.275 27.273
18 32.005(1) −0.008 31.998 32.006 35.167(1) −0.008 35.161 35.169
20 36.162(1) −0.010(1) 36.154 36.167 36.163 41.213(1) −0.010(1) 41.206 41.218 41.215
21 38.267(1) −0.009(1) 38.268 44.532(1) −0.010(1) 44.534
26 49.101(1) −0.012(1) 49.106 49.103 65.030(1) −0.012(1) 65.037 65.033
28 53.603(1) −0.014(1) 53.603 75.560(1) −0.014(1) 75.563
30 58.211(1) −0.014(1) 58.199 58.213 87.789(1) −0.015(1) 87.777 87.793
32 62.940 −0.014(1) 62.928 62.948 62.942 102.00 −0.015(1) 101.98 102.01 102.00
36 72.798 −0.016(1) 72.801 137.60 −0.017(1) 137.60
40 83.267 −0.019(1) 83.250 83.270 185.14 −0.020(1) 185.12 185.15
42 88.755 −0.019(1) 88.740 88.774 88.759 214.39 −0.021(1) 214.37 214.41 214.39
47 103.33 −0.023(1) 103.34 307.20 −0.024(1) 307.20
50 112.74 −0.023(1) 112.73 112.74 379.03 −0.025(2) 379.00 379.03
52 119.31 −0.024(1) 119.31 434.87 −0.026(2) 434.88
54 126.14 −0.025(2) 126.13 126.17 126.14 497.88 −0.028(2) 497.84 497.93 497.89
60 148.37 −0.030(2) 148.37 148.38 737.35 −0.033(2) 737.31 737.36
64 164.79(1) −0.032(2) 164.81 164.74 947.61(1) −0.036(2) 947.69 947.59
66 173.54(1) −0.033(2) 173.47 1070.96(1) −0.038(2) 1070.88
70 192.16(1) −0.036(2) 192.17 192.10 1359.62(1) −0.042(3) 1359.55 1359.56
74 212.46(2) −0.040(2) 212.43 212.41 1713.27(2) −0.048(3) 1713.40 1713.28
79 240.24(2) −0.046(3) 240.26 2265.85(2) −0.056(3) 2265.86
80 246.09(3) −0.047(3) 246.11 246.13 2393.28(3) −0.057(3) 2393.15 2393.32
82 258.20(3) −0.050(3) 258.25 258.23 2667.29(3) −0.061(4) 2667.43 2667.31
83 264.38(4) −0.052(3) 264.43 2814.35(4) −0.064(4) 2814.39
90 309.13(5) −0.065(4) 309.17 309.21 309.78 4061.21(5) −0.084(5) 4060.98 4061.42 4061.91
92 322.23(6) −0.071(4) 322.33 322.29 322.33 4498.69(6) −0.092(5) 4498.93 4498.79

While all calculations agree at low Z, it can be seen that
RMBPT and RCI energies deviate more and more from the
present results as Z increases, demonstrating the importance
of rigorous QED treatments in calculating correlation energies
beyond the no-pair approximation.

It is notable that the structure energies of the St. Petersburg
group appear to scatter around our results at mid- to high Z

and deviations can be as large as 0.7 eV at Z = 90. Apparently,
these discrepancies are due mainly to the finite nuclear size
effect from the use of different root-mean-square nuclear
radii in the two calculations which affects the 2s states
considerably more than the 2p1/2 and 2p3/2 states; hence
the similar scattered patterns in Figs. 5 and 6. While we use
nuclear radius parameters from the tabulation of Johnson and
Soff [17], except for thorium (Z = 90) and uranium (Z = 92),
which are derived from measurements [18,19], recent works
of the St. Petersburg group [14,32,33] use data from the
tabulation of Angeli [34] except for Z = 43, 61, 85, 89, and
91, where data are not available from [34] and have to be
taken from Johnson and Soff [17]. Unfortunately, nuclear sizes
are somewhat uncertain, and the fact that they can lead to
large, irregular discrepancies such as those shown in Figs. 5
and 6 for high-Z lithium-like ions can be seen in the 2s–2p1/2

structure energy of thorium, which is listed in Table III as

309.78 eV from the St. Petersburg group’s 2007 paper [32],
but is given as 309.19 eV in their earlier 2001 paper [31],
which is much closer to the present value of 309.13 eV. At

-0.2

-0.1

0

0.1

0.2

0.3

20 40 60 80 100

∆E
(e

V
)

Z

∆E = 0.65 eV at Z = 90

FIG. 5. (Color online) Structure energies (eV) of the 2s–2p1/2

transition relative to the present results. Solid squares, Blundell [25];
solid circles, RCI [30]; dotted line, St. Petersburg group [32].
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FIG. 6. (Color online) Structure energies (eV) of the 2s–2p3/2

transition relative to the present results. Solid squares, Blundell [25];
solid circles, RCI [30]; dotted line, St. Petersburg group [32].

close to 0.7 eV, this is a very large change. Fortunately, errors
from these nuclear uncertainties are small and only those in the
lowest-order structure energies E(0) matter at high Z. QED and
other small corrections are hardly affected. Also, the works
of Blundell [25] and RCI [30] both use the same nuclear
parameters as the present work. Otherwise, it will be very
difficult, if not impossible, to draw any useful conclusions
from those comparisons.

As for the recoil energies, our results shown in Table III are
in very good agreement with those of the St. Petersburg group
[14,31,33]. Recoil energies in Blundell and RCI are obtained
approximately from the reduced mass and mass polarization
corrections and differ slightly from the present results at
high Z. For simplicity, recoil energies from other calculations
are not shown here.

In Table IV, the present screened one-loop QED ener-
gies are shown and are compared with results from other
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FIG. 7. (Color online) Screened QED energies (eV) of the
2s–2p1/2 transition relative to the present results. Solid squares,
Blundell; solid circles, RCI; open circles, RCI relaxed QED; open
triangles, St. Petersburg group. See Table IV for references.
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FIG. 8. (Color online) Screened QED energies (eV) of the
2s–2p3/2 transition relative to the present results. Solid squares,
Blundell; solid circles, RCI; open circles, RCI relaxed QED; open
triangles, St. Petersburg group. See Table IV for references.

calculations. Also shown are the two-loop QED energies
which are scaled from the available hydrogenic results of
the St. Petersburg group [13,14], and error estimates are
duly assigned. Here, Blundell’s QED energies [25] already
include estimates of two-loop Lamb-shift contributions, while
those of RCI [30,35] and the St. Petersburg group [14,31,33]
are screened one-loop results only. QED energies relative
to the present results are shown in Figs. 7 and 8 for the
2s–2p1/2 and 2s–2p3/2 transitions, respectively. We note
that QED calculations in RCI [30] are similar to this work
and start from the Kohn-Sham potential, but only at the
one-photon level as discussed in Sec. III, and lack two-photon
screening corrections as discussed in Sec. IV B. Blundell’s
QED calculations start from the core-Hartree potential and
include some screening corrections, but the vertex-exchange
terms �E2 and �E4 in Eqs. (30) and (32) are not calculated.
Because of these approximations, QED energies of Blundell
and RCI tend to deviate more and more from the present
results as Z increases. By contrast, QED energies from the
St. Petersburg group are in very good agreement with our
results along the isoelectronic sequence, as the screened
QED diagrams are calculated correctly in both works. It is
interesting to note that the relaxed QED energies from the RCI
calculations of Cheng et al. [35] are in very good agreement
with the present results at high Z. This method is relatively
simple in that relaxation corrections to the QED energies of the
2s–2p transitions are obtained by using different Kohn-Sham
potentials specific to the 2s, 2p1/2, and 2p3/2 states to calculate
the one-loop radiative corrections for the initial and final states.
While it appears to give very good screened QED results, it
is nevertheless an ad hoc method that may not be suitable for
systematic, high-precision calculations.

In Table V, total transition energies are compared between
theory and experiment. The present results are the sums of
the structure, recoil, and one- and two-loop QED energies
shown in Tables III and IV, with additional contributions
from the nuclear polarization [15] at Z = 90 and 92. Our
uncertainties are based on error estimates of these individual
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TABLE IV. The present screened one-loop and two-loop QED energies (eV) for the 2s–2p transitions of lithium-like ions are compared
with other theoretical results. Blundell’s energies are from [25], RCI and RCI-relax energies are from [30] and [35], respectively, and
St. Petersburg group’s results (StPete) are from [33] unless otherwise specified. While Blundell includes estimates of higher-order corrections,
others are screened one-loop results only.

2s–2p1/2 2s–2p3/2

Z 1-loop 2-loop Blundell RCI RCI-relax StPete 1-loop 2-loop Blundell RCI RCI-relax StPete

10 −0.014 0.000 −0.014 −0.014 −0.014 −0.014 0.000 −0.014 −0.014 −0.014
12 −0.029 0.000 −0.028 −0.028 0.000 −0.027
15 −0.066 0.000 −0.066 −0.067 −0.067 −0.063 0.000 −0.062 −0.063 −0.064
18 −0.129 0.000 −0.130 −0.131 −0.123 0.000 −0.122 −0.124
20 −0.190 0.000 −0.191 −0.192 −0.192 −0.180 0.000 −0.178 −0.181 −0.181
21 −0.228 0.000 −0.229 −0.214 0.000 −0.215
26 −0.491 0.001 −0.493 −0.492 −0.457 0.001 −0.458 −0.457
28 −0.639 0.001 −0.639 −0.592 0.001 −0.591
30 −0.816 0.002 −0.810 −0.815 −0.753 0.002 −0.743 −0.751
32 −1.024 0.002(1) −1.016 −1.025 −1.022a −0.941 0.002(1) −0.929 −0.942
36 −1.545 0.004(1) −1.543 −1.411 0.003(1) −1.409
40 −2.228 0.005(1) −2.220 −2.227 −2.023 0.005(1) −2.000 −2.022
42 −2.638 0.007(2) −2.630 −2.643 −2.390 0.006(2) −2.370 −2.400
47 −3.899 0.010(3) −3.897 −3.514 0.010(2) −3.512
50 −4.831 0.013(3) −4.810 −4.829 −4.344 0.012(3) −4.310 −4.342
52 −5.534 0.015(4) −5.533 −4.970 0.014(4) −4.968
54 −6.309 0.018(4) −6.290 −6.321 −6.308 −5.660 0.017(4) −5.620 −5.692 −5.658
60 −9.107 0.027(7) −9.080 −9.103 −8.157 0.025(6) −8.110 −8.152
64 −11.41 0.037(9) −11.43 −10.22 0.034(8) −10.30
66 −12.71 0.042(11) −12.72a −11.40 0.039(10)
70 −15.64 0.056(14) −15.61 −15.64a −14.06 0.051(13) −13.99
74 −19.05 0.073(18) −19.06 −19.05a −17.19 0.067(17) −17.33
79 −24.07 0.101(25) −24.05a −21.88 0.093(23)
80 −25.18 0.107(27) −25.12 −25.17a −22.94 0.099(25) −22.82
82 −27.51 0.121(30) −27.51 −27.51a −25.17 0.112(28) −25.40
83 −28.74 0.129(32) −28.74 −28.74a −26.36 0.120(30) −26.37 −26.33b

90 −38.54 0.197(49) −38.45 −38.50 −38.53 −38.55a −36.08 0.187(47) −35.87 −36.44 −36.09
92 −41.76 0.222(56) −41.68 −41.69 −41.73 −41.77b −39.38 0.212(53) −39.78 −39.39

aReference [31].
bReference [14].

terms. Uncertainties of other theories shown here are limited
to the significant ones at high Z only. Energies relative to the
present ones are shown in Figs. 9 and 10 for the 2s–2p1/2

and 2s–2p3/2 transitions, respectively. Empirical results at
low to mid-Z come from NIST’s online database of atomic
spectra [36], with beam-foil measurements at Z = 47, 50,
and 54 [37–39]. At high Z, available experimental results are
from EBIT measurements [5,41–44]. In general, our results
are in very good agreement with experiment, while those of
Blundell [25] and RCI [30] tend to deviate from our results
and from experiment at high Z. For the 2s–2p1/2 transition,
St. Petersburg group’s results differ from our results at high
Z for two reasons. First of all, most of their total transition
energies above Z = 60 are from their 2001 paper [31] and
do not include two-loop Lamb-shift corrections. This leads
to the sudden jump in their results from Z = 90 to 92, as
the latter is from their 2006 paper [14] and does include the
two-loop correction. Second, as we have pointed out earlier,
their structure energies are different from ours because of the
choices of nuclear radii. Should they use our nuclear radius at
Z = 92, their result would be lower by about 0.08 to 280.68 eV,

in much closer agreement with our result of 280.65 eV
and with the measured value of 280.645(15) eV [43]. As for
the 2s–2p3/2 transition, total transition energies from the St.
Petersburg group all include two-loop corrections. At Z = 83,
their result is in very good agreement with experiment, with
our energy lower by about 0.08 eV. In this case, if we use
their nuclear radius, our result will go up by about 0.04
eV to 2788.08 eV, in closer agreement with their result of
2788.12 eV and with the measured value of 2788.139(39) eV
[5]. Nevertheless, while we are not aware of any total 2s–2p3/2

transition energy at Z = 90 from the St. Petersburg group, their
structure energy is higher than ours by 0.7 eV as we have shown
in Table III and Fig. 6. That will surely make the transition
energy much higher than experiment and no other corrections
can come close to compensating for such a big difference.

It is interesting to note that in Fig. 10, the RCI-relax
energies [35] are seen to be in very good agreement with
experiment. This is due mainly to the changes in the QED
energies after the relaxation corrections are included, but that
is not the entire reason. As we have pointed out in Sec. IV A,
for the 2s–2p3/2 transition at high Z, QED corrections to the
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TABLE V. The 2s–2p transition energies (eV) of lithium-like ions. Blundell’s results are from [25]. Unless otherwise specified, RCI results
are from [30], St. Petersburg group’s results (StPete) are from [33], and experimental results are from the NIST Atomic Spectra Database [36].

2s–2p1/2 2s–2p3/2

Z Present Blundell RCI StPete Expt. Present Blundell RCI StPete Expt.

10 15.888(1) 15.889 15.889 15.888 15.88881 16.093(1) 16.093 16.093 16.093 16.09330
12 19.838(1) 19.839 19.8393 20.332(1) 20.332 20.3320
15 25.812(1) 25.812 25.813 25.811 25.8140 27.203(1) 27.205 27.205 27.203 27.206
18 31.868(1) 31.868 31.867 31.8672 35.037(1) 35.039 35.038 35.0383
20 35.962(1) 35.964 35.963 35.961 35.9625 41.024(1) 41.028 41.028 41.025 41.0286
21 38.031(1) 38.029 38.03 44.308(1) 44.309 44.31
26 48.599(1) 48.600 48.599 48.5997 64.562(1) 64.567 64.565 64.5656
28 52.951(1) 52.950 52.9503 74.955(1) 74.959 74.9574
30 57.382(1) 57.389 57.385 57.3843 87.023(1) 87.033 87.028 87.0272
32 61.904(1) 61.911 61.907 61.906a 61.9023 101.04 101.06 101.05 101.043
36 71.240(1) 71.245 71.2391 136.17 136.18 136.1711
40 81.025(2) 81.04 81.029 183.10 183.12 183.11
42 86.104(2) 86.12 86.110 86.1021 211.98 211.99 211.99 211.9706
47 99.414(3) 99.432 99.438(7)b 303.67 303.67 303.67(3)b

50 107.90 107.92 107.90 107.911(8)c 374.67 374.68 374.68
52 113.77 113.77 429.88 429.90
54 119.82 119.84 119.82 119.83 119.820(8)c 492.21 492.22 492.21 492.23 492.34(62)d

60 139.26(1) 139.29 139.28 729.19(1) 729.20 729.20
64 153.38(1) 153.35 937.39(1) 937.36
66 160.83(1) 160.74a 1059.56(1)
70 176.54(2) 176.56 176.44a 1345.57(2) 1345.56
74 193.44(3) 193.33 193.33a 1696.10(3) 1696.03 1697.34(1.03)e

79 216.22(3) 216.17a 2244.00(3)
80 220.97(4) 220.99 220.93a 2370.38(4) 2370.32
82 230.76(4) 230.70 230.68a 2642.17(4) 2641.98 2642.26(10)f

83 235.72(5) 235.62a 2788.04(5) 2788.10g 2788.12(7)h 2788.139(39)i

90 270.74(7)j 270.72(5) 270.67 270.60a 4025.25(7)j 4025.10(4) 4025.28g 4025.23(14)k

92 280.65(8)j 280.68(10)l 280.55 280.76(14)h 280.645(15)m 4459.46(8)j 4459.48g 4459.37(21)n

aReference [31].
bBeam-foil, Ref. [37].
cBeam-foil, Ref. [38].
dBeam-foil, Ref. [39].
eEBIT, Ref. [40].
fEBIT, Ref. [41].
gRCI with relaxed QED corrections, Ref. [35].
hReference [14].
iEBIT, Ref. [5].
jInclude nuclear polarization corrections of 0.02 eV for Z = 90 and 0.03 eV for Z = 92.
kEBIT, Ref. [42].
lWith corrected nuclear polarization corrections of 0.03 instead of 0.18 eV.
mEBIT, Ref. [43].
nEBIT, Ref. [44].

structure energies from the correct treatment of the ladder and
cross-ladder diagrams happen to be about the same size as the
two-loop Lamb shifts but in opposite signs. Thus, the good
agreement between RCI-relax and experiment is partly due to
cancellation of errors, as neither corrections are included in
those calculations.

There are other approaches that produce ionization and
transition energies for the n = 2 states of lithium-like ions.
Complete tabulations along the isoelectronic sequences are
available from Cheng et al. [45] and Kim et al. [46]. Both
are multiconfiguration Dirac-Fock (MCDF) calculations that
are not particularly accurate, though the latter does include

correlation corrections as derived from RMBPT energies [2].
As for the QED corrections, the treatments in these early works
are crude: Cheng et al. used estimated QED energies based on
Mohr’s Coulomb results [47], while Kim et al. employed the
ad hoc Welton’s method [48] for their calculations. Neither
of these tabulations are at the same level of accuracy as the
calculations mentioned here. A complete high-precision QED
treatment of the series is given here.

We have shown that theory and experiment have reached a
point where small corrections such as the two-loop Lamb shift
and nuclear recoil can now be studied. On a more practical side,
comparisons between theory and experiment on the transition
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FIG. 9. (Color online) The 2s–2p1/2 transition energies (eV)
relative to the present results. Solid squares, Blundell; solid circles,
RCI; open triangles, St. Petersburg group; crosses, experiment. See
Table V for references.

energies of high-Z lithium-like ions can also be used to check,
or even deduce the radii of heavy nuclei with high precision.
The next step for the lithium isoelectronic sequence will
be quite challenging, both theoretically and experimentally.
On the latter side, the achievement of sub-0.1 eV precision
requires extraordinary care, and issues of fitting resonance
curves and controlling systematics make getting another
order of magnitude problematical. The very high precision
achieved for copperlike tungsten [6], however, suggests that
this problem may be overcome. If so, the challenge to theory
is considerable. We have already shown that the treatment
of recoil involves approximations that will require basic
progress in bound-state quantum field theory to remove. In
addition, our treatment of the third- and higher-order photon
diagrams has been extremely crude, involving only MBPT with
Coulomb photons. If a QED approach is to be implemented,
the correlation diagrams that give this third-order contribution
should, in principle, be replaced with QED exchange diagrams

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

20 40 60 80 100

Z

E
 (e

V
)

Experimental error bar
at Z = 54 is ±1.0 eV

FIG. 10. (Color online) The 2s–2p3/2 transition energies (eV)
relative to the present results. Solid squares, Blundell; solid cir-
cles, RCI; open circles, RCI with relaxed QED; open triangles,
St. Petersburg group; crosses, experiment. See Table V for references.

involving three photons. In addition, the three-loop Lamb shift
would have to be treated, along with screening corrections to
the two-loop Lamb shift and two-photon screening corrections
to the one-loop Lamb shift. Finally, one must confront the
fact that nuclear polarization effects will start to become
important. As with many other situations in atomic physics,
an interesting blend of advanced QED bound-state theory,
advances in experimental technique, and nuclear structure
theory will be involved as the lithium isolectronic sequence
is studied in the future.
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Rev. A 81, 042513 (2010).

[34] I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).
[35] K. T. Cheng, M. H. Chen, and J. Sapirstein, Phys. Rev. A 62,

054501 (2000).
[36] NIST Atomic Spectra Database [http://physics.nist.gov/

PhysRefData/ASD].
[37] Ph. Bosselmann, U. Staude, D. Horn, K.-H. Schartner,

F. Folkmann, A. E. Livingston, and P. H. Mokler, Phys. Rev.
A 59, 1874 (1999).

[38] D. Feili, Ph. Bosselmann, K.-H. Schartner, F. Folkmann, A. E.
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