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Fock-space relativistic coupled-cluster calculations of two-valence atoms
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We have developed an all-particle Fock-space relativistic coupled-cluster method for two-valence atomic
systems. We then describe a scheme to employ the coupled-cluster wave function to calculate atomic properties.
Based on these developments we calculate the excitation energies, magnetic hyperfine structure constants, and
electric dipole matrix elements of Sr, Ba, and Yb. Furthermore, we calculate the electric quadrupole hyperfine
structure constants and the electric dipole matrix elements of Sr+, Ba+, and Yb+. For these we use the one-valence
coupled-cluster wave functions obtained as an intermediate in the two-valence calculations. We also calculate
the magnetic dipole hyperfine structure constants of Yb+.
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I. INTRODUCTION

Coupled-cluster theory (CCT), first developed in nuclear
many-body physics [1,2], is considered one of the best
many-body theories. In recent times, it has been used with
great success in nuclear [3], atomic [4,5], molecular [6],
and condensed matter [7] calculations. A recent review [8]
provides a detailed overview of the theory and variations
suitable to different classes of many-body systems. An earlier
review provides an overview on the application of coupled-
cluster theory to various areas of physics [9]. In atoms it
is equivalent to incorporating electron correlation effects to
all order. It has been used extensively in precision atomic
structure and properties calculations. These include atomic
electric dipole moments [4,10], parity nonconservation [11],
hyperfine structure (HFS) constants [5,12], and electromag-
netic transition properties [13,14].

In this paper we report the development and results of
relativistic coupled-cluster (CC) atomic calculations for two-
valence atoms. For this we employ the Fock-space open-shell
CCT [15,16], which is also referred to as valence universal.
Based on which the two-valence CC wave operators are
calculated using the closed and one-valence wave operators.
The necessary developments of these intermediate stages of
calculations were reported in our previous works [17,18].
We emphasize that in Ref. [18] we proposed a scheme to
calculate properties with CC wave functions to all order.
In the present work we implement two-valence Fock-space
relativistic CCT with an all-particle valence space. A similar
approach was adopted in a previous work on relativistic
coupled-cluster calculations of two-valence systems [19]. This
is general enough for the precise wave function and properties
calculations of the low-lying levels of two-valence systems like
the alkaline-earth metal atoms, Yb and Hg. In these systems,
the low-lying levels arise from the ns2, ns(n − 1)d and nsnp

configurations. We show selecting a model space consisting
of these configurations is incomplete but quasicomplete. The
advantage of a quasicomplete model space is that it has all
the virtues of a complete model space but one can circumvent
the divergence associated with intruder states [20] in open-
shell CCT. The calculations presented in this work are based on
coupled-cluster singles and doubles (CCSD) approximation.
It was initially formulated for molecular calculations [21] and
used in atomic structure calculations to study the excitation

energies of Li [22]. Later, the relativistic version was imple-
mented to calculate structure and properties of high Z atoms
and ions [5,23,24].

In the present work we apply the method we have developed
to calculate the wave functions of alkaline-earth-metal atoms
Sr and Ba, and lanthanide atom Yb. All of these atoms
are candidates of extremely precise experiments either for
application-oriented investigations or to probe fundamental
laws of nature. Atomic Sr, which was recently cooled to
quantum degeneracy [25], is a strong contender of future
optical clocks [26,27]. Experiments on Bose-Einstein
statistics violations have used Ba as the target atom [28]
and it is an ideal proxy, both for experimental [29] and
theoretical [30] studies, of atomic Ra. It is an atom with large
parity and time-reversal violation effects [31], and promising
candidate for future experiments. Recently, parity violation
was detected in Yb [32] and ongoing experiments could lead
to unambiguous detection of nuclear anapole [33]. An exotic
parity violating nuclear moment, which can be detected only
through atomic experiments. There are also proposals to
measure atomic electric dipole moment, a signature of parity
and time violations, with novel techniques [34,35]. It must
be mentioned that several isotopes of Yb have been cooled
to degeneracy [36] and could be employed in future precision
measurements. Furthermore, atomic Yb in an optical lattice is
a candidate of frequency standard [37].

As mentioned before, to obtain the two-valence wave
operator, we compute the closed-shell and one-valence wave
operators in the intermediate steps. We take advantage of
this and use the one-valence wave operator to compute the
hyperfine constants of Sr+, Ba+, and Yb+. For the first two
ions, we reported the magnetic hyperfine structure constants
in our previous paper [18], so we compute only the electric
quadrupole HFS constants, whereas for Yb+ we compute both
the magnetic dipole and electric quadrupole HFS constants. In
addition, we also compute the electric dipole transitions matrix
elements. Like the neutral atoms, all the ions are under experi-
mental investigations for various precision measurements. For
example, a single trapped 87Sr+ is a suitable frequency stan-
dard [38]. There are similar experiments with Yb+ [39] as an
alternative frequency standard. And it is one of the frequency
standards in the laboratory measurement of temporal variation
of fine structure constant [40]. These are application oriented
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precision experiments. The other fascinating prospect is the
observation of parity nonconservation in a single 137Ba+ [41].

The paper is divided into seven sections. In Sec. II we give
a brief description of many-body perturbation theory (MBPT)
for two-valence systems. It provides the minimal description
of concepts pertinent to development of two-valence coupled-
cluster theory. Section III is a short writeup on closed-shell and
one-valence CCT followed by derivation of the two-valence
CCT in some detail. These are in the context of complete
model space. Incomplete model space CCT is explained in
Sec. IV and atomic Yb is discussed as an example. Calculation
of properties, HFS constants, and electric dipole transition,
with CC wave functions is the topic of Sec. V. In Sec. VI,
the important details of implementing two-valence CCT is
explained, however, with emphasis on physics. Finally, results
and discussions are reported in Sec. VII. In the paper, all the
calculations and mathematical expressions are in atomic units
(e = h̄ = me = 4πε0 = 1).

II. MBPT FOR TWO-VALENCE ATOMS

Relativistic effects are the key to obtain accurate results
in the structure and properties calculations of high Z atoms
with zα ∼ 1. The Dirac-Coulomb Hamiltonian H DC is an
approximate but an appropriate Hamiltonian to describe the
properties of such atoms. For an atom with N electrons,

H DC =
N∑

i=1

[cαi · pi + (β − 1)c2 − VN (ri)] +
∑
i<j

1

rij

, (1)

where αi and β are the Dirac matrices, p is the linear
momentum, VN (r) is the nuclear Coulomb potential, and
the last term is the electron-electron Coulomb interactions.
It satisfies, in the case of two-valence atoms, the eigenvalue
equation,

H DC|�vw〉 = Evw|�vw〉, (2)

where indexes v and w represent the valence orbitals, |�vw〉
is the exact wave function, and Evw is the exact energy of the
two-valence atomic system. In MBPT, the total Hamiltonian, in
Eq. (1), is separated into two parts: H0 = ∑

i[cαi · pi + (βi −
1)c2 − VNri + u(ri)], the unperturbed or exactly solvable
part, and V = ∑N

i<j
1

rij
− ∑

i u(ri), the perturbation, referred
to as the residual Coulomb interaction. The unperturbed
eigenfunctions |�vw〉 are the solution of the Dirac-Fock
equation,

H0|�vw〉 = E(0)
vw|�vw〉, (3)

where |�vw〉 are the antysymmetrized many-electron wave
functions. Formally, in operator notations, these are gener-
ated from the closed-shell reference state |�0〉 as |�vw〉 =
a†

va
†
w|�0〉, and the eigenvalue E(0)

vw is the sum of the single
electron energies. These are the basic starting points common
to atomic MBPT and coupled-cluster theory. The two theories
share a common thread until the generalized Bloch equation
[42], discussed in the next section, but is significantly different
from there on.

A. Generalized Bloch equation

In this section, and others as well, we provide the basic
equations and necessary definitions essential to a lucid descrip-
tion of the method we have developed and used. For detailed
descriptions appropriate references are provided. In MBPT, the
Hilbert space of the eigenfunctions |�vw〉 is separated into two
submanifolds: model space (P ), comprising the eigenfunctions
which are the best approximation to the exact eigenfunctions
of interest and the remaining spans the orthogonal space (Q).
In the single reference theory, the exact state |�vw〉 and model
state |�vw〉 are related as

|�vw〉 = �|�vw〉, (4)

where, � is the wave operator and is the solution of the
generalized Bloch equation,

[�,H0]P = (V � − �PV �)P. (5)

Detailed exposition of the equation and relevant derivations
are given Refs. [42,43]. Here, intermediate normalization,

|�vw〉 = P�|�vw〉, (6)

is a necessary condition to obtain the generalized Bloch
equation. In singles and doubles approximation, an often
used and well-tested method in atomic calculations, the wave
operator is

� = 1 + xp
a a†

paa + xp
v a†

pav + 1
2x

pq

ab a†
pa†

qabaa

+ xpq
av a†

pa†
qavaa + 1

2xpq
vwa†

pa†
qawav, (7)

where ab · · · (pq · · · ) denote core (virtual) orbitals and x ···
···

are the excitation amplitudes. This definition is crucial to
our later discussions on the Fock space coupled cluster in
complete model space (CMS). Unlike the closed-shell atoms,
the model wave functions are not known in the case of
open-shell systems. These are obtained by diagonalizing the
effective Hamiltonian (Heff) matrix, calculated within the P

submanifold. Once the model wave function is obtained, the
exact energy is the expectation value of Heff , as it satisfies the
eigenvalue equation,

Heff|�vw〉 = Evw|�vw〉. (8)

The effective Hamiltonian, in Eq. (8), is expressed as

Heff = PH0P + PV �P, (9)

where H0 and V , as defined earlier, are the zeroth-order Hamil-
tonian and the residual Coulomb interaction, respectively. The
first term in Eq. (9) is the leading contribution, E(0)

vw, to the total
energy Evw. And the second term, with the wave operator �,
is the correction to E(0)

vw referred to as correlation energy.

B. First- and second-order effective Hamiltonians

From Eq. (8), the first-order correction to energy is the
expectation value of the first-order effective Hamiltonian,

H
(1)
eff = PV P = P (V0 + V1 + V2)P, (10)

where V0 is the contribution from the closed-shell part and
represented by the closed diagrams with no free lines at the
vertexes. We exclude this term while calculating the excitation
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energies as it is common to all the diagonal elements of the
Heff matrix. It effectively shifts all the energy levels equally
and does not account for the energy level splitting. The one-
and two-body terms, V1 and V2, have contributions from the
open-shell part only. The contributing diagrams are the closed
diagrams with free valence lines at the vertices. The one-body
term V1 also contributes to the diagonal elements only and
hence does not contribute to the energy level splitting. From
Eq. (10), H

(1)
eff is reduced to the form,

H
(1)
eff = PV2P. (11)

This term contributes through a closed diagram with one pair
of valence lines at each vertex shown in Fig. 2(a).

From Eq. (9), the second-order effective Hamiltonian,

H
(2)
eff = PV �(1)P = P (V1 + V2)

(
�

(1)
1 + �

(1)
2

)
P, (12)

where the superscript in the wave operator represents the order
of the perturbation. Contributing diagrams are closed diagrams
with valence orbitals as free lines at the vertexes. Detailed
description of the relativistic second MBPT of two-valence
systems is given in Ref. [44]. The terms involving V1 are
zero if Dirac-Fock orbitals are used in the calculations. The
expression of H

(2)
eff is

H
(2)
eff = PV2�

(1)
2 P, (13)

where {A · · · B} represents contraction between two operators
A and B.

The diagrams of H
(2)
eff , in Eq. (13), are separated into two

categories. The diagrams with one pair of free lines as the
valence orbitals, shown in Fig. 1, constitute the one-body
effective operator. And the diagrams with two pair of free lines
as the valence orbitals, shown in Fig. 2, form the two-body
effective operator. It must be mentioned that a previous work
reported the third-ordered relativistic MBPT calculations of
two-valence systems beryllium and magnesium iso-electronic
sequences [45].

C. Heff matrix elements with j j coupled states

In our scheme of calculations, we first evaluate the diagrams
arising from Eqs. (11) and (13), Figs. 1 and 2, using uncoupled
states. And we then store these as the effective one- and
two-body operators. Later we use these effective operators
to generate the matrix elements with respect to the jj

coupled states. For two nonequivalent electrons the jj coupled

(a) (b) (c) (d)

FIG. 1. One-body diagrams arising from the second-order effec-
tive Hamiltonian H

(2)
eff .

(a) (b) (c) (d)

(e) (f) (g)

FIG. 2. The two-body diagram (a) arises from the first-order
effective Hamiltonian H

(1)
eff . The remaining two-body diagrams, from

(b)–(g), contribute to the second-order effective Hamiltonian H
(2)
eff .

antysymmetrized state may be expressed, in terms of the total
angular momentum J state, as

|{γvjvmvγwjwmw}JM〉
= 1√

2
[|(γvjvmvγwjwmw)JM〉

+ (−1)jv+jw+J |(γwjwmwγvjvmv)JM〉], (14)

where jv and jw are the total angular momenta of the single
electron states |φv〉 and |φw〉, respectively, γv and γw are ad-
ditional quantum numbers to specify the states uniquely. And
mv and mw are the corresponding magnetic quantum numbers.
Similarly, J and M are the total angular momentum of the
coupled state and magnetic quantum number, respectively. The
matrix element of a two-body operator then consists of four
terms, two direct and two exchange, with the normalization
factor 1/2.

To evaluate the two-body matrix element, for example,
the coulomb interaction shown Fig. 2(a). The direct matrix
element is of the form,

〈(γvjvmvγwjwmw)JM| 1

r12
|(γxjxmxγyjymy)J ′M ′〉

=
∑

k

(−1)jx+jw+J+kδ(J,J ′)δ(M,M ′)
{

jx jx k

jy jw J

}

×〈γvjv||Ck||γxjx〉〈γwjw||Ck||γyjy〉Rk, (15)

where x and y represent valence orbitals, Rk is the radial
integral, and Ck is the spherical tensor operator. For matrix
elements in Eq. (15) to be nonzero the states should have
the same parity and J . The relation in Eq. (15) holds true
for the matrix elements of the other two-body diagrams
[Figs. 2(b)–2(g)]. In this case the multipole k and the radial
integral arise from the combination of two orders of residual
Coulomb interactions.

Similarly, the matrix element of the one-body operator of
rank k, with respect to the jj coupled state is

〈(γvjvγwjw)JM|Fk(1)|(γxjxγyjy)J ′M ′〉
= δ(γw,γy)δ(jw,jy)(−1)J−M (−1)jv+jy+J ′+k[J,J ′]1/2,

×
(

J k J ′

−M 0 M

) {
jv jx k

J ′ J jw

}
〈γvjv||fk||γxjx〉. (16)
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This is a very general expression and applicable to one-body
operator of any rank k. In our calculations, however, we use
k = 0 as the one-body effective operator is scalar.

III. FOCK-SPACE CCT: COMPLETE MODEL SPACE

A model space is complete if it consists of all the configura-
tions formed by accommodating the valence electrons among
the valence shells in all possible combinations. A remarkable
consequence of choosing CMS in Fock-space coupled cluster
is that the excitation operators x ···

··· are common to all the
determinants in the model space. Furthermore, x ···

··· uniquely
separates into internal and external sectors. The external
excitations contribute to � and projects a model function to the
complementary space, whereas, internal excitations connect
one model function to another model function and occur in
the definition of Heff . As we shall explore later, in the context
of incomplete model space (IMS), such a neat separation is
specific to CMS and another class of model space referred
to as quasicomplete [43]. Validity of linked cluster theorem,
one basic condition for any legitimate many-body theory, is
assured in CMS.

The CMS, though endowed with several desirable prop-
erties, has one serious shortcoming for systems with two
or more valence electrons. It inevitably encounters intruder
states [20] and the outcome is severe convergence problems.
This is the manifestation of model states with high energies
that lies within the energy domain of the orthogonal space.
In other words, in CMS when all possible configurations are
considered, the model and complementary space are no longer
energetically well separated. The occurrence of vanishing
energy denominators is then a distinct possibility. Indeed,
we invariably encounter intruder states in all our two-valence
calculations with CMS. Its presence is the rule rather than the
exception.

For a better description of the CMS and intruder states
let us consider a specific example, the low-lying levels of
Yb atom. Configurations and terms of the ground and first
few excited states important in precision spectroscopy are
6s2(1S0), 6s6p(3PJ ), 5d6s(3DJ ), and 6s6p(1P1). The 6s, 6p,
and 5d are then the obvious choice of valence shells. CMS
of the system then consists of the configurations: 6s2, 6s6p,
5d6s, 5d6p, 6p2, and 5d2 and all the other configurations
are in the complementary space. As shown in Fig. 3, the
levels from the orthogonal space 6p7p(3PJ ), 6s7s(3S1), and
6s7s(1S0) lie within the model space. With several orthogonal
functions within the energy domain of model functions,
CMS-based CCT calculations of Yb are likely to face with
intruder-state-related divergences. Indeed, we do encounter
divergences which, on careful analysis, can be attributed to
the intruder states.

In this work, we proceed to the relativistic two-valence
coupled-cluster theory via the closed-shell [17] and one-
valence coupled-cluster [18] theories reported in our previous
works. We implement this within the framework of Fock-space
or valence universal CCT [46,47]. The theory can be extended
to systems with both particles and holes, however, for our
present study an all-particle implementation is sufficient.
Accordingly, the valence electrons are treated as particles [48]
and each sector—closed-shell, one- and two-valence—are

P-space

6s2 1S0

3P0

3P1

3P2
{

6s6p

3D1

3D2

{
5d6s

1P16s6p

3D3

1D2

{
5d6s

3P0

3P1

3P2
{

6p2

Q-space

3S1

1S0

}
6s7s

3P0

3P1

3P2
}

6p7p

E
n
er

gy
le

ve
ls

FIG. 3. Low-lying energy levels of atomic Yb.

separate Hilbert spaces. Technical advantage of Fock-space
CCT with CMS is the sector-wise clean separation of cluster
operators [49]. However, the Hilbert spaces of two-valence
subsumes the one-valence after a direct product with a
spectator valence state and similarly, the closed-shell after
direct product with two-valence states. The state universal
[50] is another flavor of open-shell CCT, where the wave
operator is calculated in a single Hilbert space consisting
of all the valence electrons. The wave operator is then state
dependent and there is a lack of generality in the cluster
equations. Furthermore, it requires complicated bookkeeping.
These reasons have motivated us to choose the Fock-space
CCT. Detailed discussions on Fock-space CCT and subtle
issues related to the choice of model spaces are given in the
review of Lindgren and Mukherjee [51].

A. Closed-shell and one-valence CCT

Coupled-cluster theory is a nonperturbative many-body
theory. It is equivalent to selecting linked terms in the Bloch
equation, Eq. (5), to all orders and combining terms of the
same level of excitation (LOE). The elegance and perhaps all
the attendant difficulties of CCT is the exponential nature of the
wave operator. We provide a brief reprise of the closed-shell
[17] and one-valence CCT [18]; these form the initial steps
of the two-valence coupled-cluster theory. Indeed, a large
fraction of the cluster amplitudes in the two-valence theory
arise from the closed shell. The exact atomic wave function of
a one-valence system in the coupled-cluster theory is

|�v〉 = e(T +S) = eT (1 + S)|�v〉, (17)

where |�v〉 is the one-valence Dirac-Fock reference state,
and T and S are the closed- and open-shell cluster operators,
respectively. As evident from the equation, all the higher order
terms (nonlinear) of T are calculated but S is restricted to
linear terms only. The latter is on account of the single-valence
electron. The diagrammatic representations of these operators
are shown in Fig. 4. The closed-shell operator T in the
coupled-cluster singles and doubles [21] approximation is

T = T1 + T2, (18)
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T1 T2 S
(1)
1 S

(1)
2 S

(2)
2

FIG. 4. Representation of the closed-shell and open-shell cluster
operators.

where T1 and T2 are the single and double excitation operator,
respectively. The closed-shell exact state in CCT is

|�0〉 = eT |�0〉, (19)

and the cluster amplitudes are solutions of the nonlinear
coupled equations, 〈

�
p
a

∣∣H̄N|�0〉 = 0, (20)〈
�

pq

ab

∣∣H̄N|�0〉 = 0, (21)

where H̄N = e−T HNeT is the similarity transformed or dressed
Hamiltonian. |�0〉, the Dirac-Fock reference state for the
closed-shell part, is the eigenvalue of the central potential
Hamiltonian H0. And |�p

a 〉 and |�pq

ab 〉 are, respectively, the
singly and doubly excited determinants. For details of the
derivation, readers are referred to Ref. [17]. The open-shell
cluster operator S is

S = S(1) + S(2), (22)

where S(1) and S(2) are the one-valence and two-valence
cluster operators, respectively. Similar to T , the open-shell
one-valence cluster operator S(1), in CCSD approximation, is
of the form S(1) = S

(1)
1 + S

(1)
2 . And these are solutions of the

coupled linear equations,〈
�

p
v

∣∣H̄N +{H̄NS(1)}|�v〉 = Eatt
v

〈
�

p
v

∣∣S(1)
1 |�v〉, (23)〈

�
pq
va

∣∣H̄N + {H̄NS(1)}|�v〉 = Eatt
v

〈
�

pq
va

∣∣S(1)
2 |�v〉. (24)

In these equations Eatt
v is the attachment energy of an electron

to the v shell. It is defined as

Eatt
v = Ev − E0, (25)

where Ev = 〈�v|H̄N + {H̄NS(1)}|�v〉 and E0 = 〈�0|H̄ |�0〉
are the exact energy of |�v〉 and |�0〉, respectively. The excited
determinants, |�p

v 〉 and |�pq
va 〉, are obtained by exciting an

electron from valence orbitals to the virtuals. For detailed
description of the derivation and interpretations, one may see
Ref. [18].

Nonzero renormalization, right-hand side in
Eqs. (23) and (24), is the predominant departure of open-shell
CC from closed-shell CC. In the language of many-body
diagrams, folded diagrams embody the renormalization terms.
These, the folded diagrams, are topologically very different

from the diagrams of H̄N or H̄NS(1). To illustrate the
difference, folded diagrams from the two-valence CC
are shown in Fig. 5. Strictly speaking, the distortion in
these diagrams are introduced to obtain correct energy
denominators with the diagrammatic evaluation in MBPT. CC
being nonperturbative, there is no reason to be concerned about
correct denominators. However, we retain the nomenclature

(a) (b) (c)

FIG. 5. Folded diagrams from the renormalization term
in the generalized Bloch equation of two-valence sys-
tems. In two-valence coupled-cluster theory these diagrams
arise from (a) Eatt

vw〈�pq
vw|S(1)

2 |�vw〉, (b)Eatt
vw〈�pq

vw|S(1)
1 |�vw〉, and

(c)Eatt
vw〈�pq

vw|S(2)
2 |�vw〉.

and structure, in the diagrammatic analysis of CC equations,
to identify the diagrams uniquely.

B. Two-valence CCT

In the two-valence sector, the cluster operator S(2) = S
(2)
2

is a natural outcome of treating the single-valence excitations
as a one-valence problem in Fock-space CCT. The exact two-
valence state in CCT is

|�vw〉 = eT
[
1 + S

(1)
1 + 1

2S
(1)
1

2 + S
(1)
2 + S

(2)
2

]|�vw〉. (26)

Here, for the valence part we have used exp(S) = 1 + S
(1)
1 +

(1/2)S(1)
1

2 + S
(1)
2 + S

(2)
2 . Notice that, although (1/2)S(1)

1

2
does

not contribute to the one-valence CC equations, it does
contribute to the two-valence CC equations. Using this in
Eq. (2) and projecting on e−T , we get

H̄
[
1 + S

(1)
1 + 1

2S
(1)
1

2 + S
(1)
2 + S

(2)
2

]|�vw〉
= Evw

[
1 + S

(1)
1 + 1

2S
(1)
1

2 + S
(1)
2 + S

(2)
2

]|�vw〉. (27)

Hereafter for simplicity of representation we use exp(S) = 1 +
S + (1/2)S2 with the definition, restricted to the two-valence

sector only, S2 = S
(1)
1

2
. Using the normal-ordered form the

Hamiltonian, H = HN + EDF
vw , we can write

H̄N
[
1 + S + 1

2S2
]|�vw〉 = �Ecorr

vw

[
1 + S + 1

2S2
]|�vw〉,

(28)

where �Ecorr
vw = Evw − EDF

vw is the correlation energy of the
two-valence atoms and, as defined earlier [Eq. (22)], S =
S(1) + S(2). Projecting the previous equation with 〈�vw|, we
get the following expression for the correlation energy:

〈�vw|H̄N
[
1 + S + 1

2S2
]|�vw〉 = �Ecorr

vw . (29)

On the right-hand side we have used the relations
〈�vw|S|�vw〉 = 0 and 〈�vw|S2|�vw〉 = 0, as the operation
of S on the state |�vw〉 transforms it to an excited determinant
orthogonal to 〈�vw|.

To obtain the two-valence cluster equations, we project
Eq. (28) on the doubly excited determinants,

〈
�

pq
vw

∣∣H̄N
[
1+S+ 1

2S2
]|�vw〉 = �Ecorr

vw

〈
�

pq
vw

∣∣S + 1
2S2|�vw〉,

(30)
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where we have used 〈�pq
vw|�vw〉 = 0. This equation can further

be simplified, using Wick’s theorem, as〈
�pq

vw

∣∣H̄N + {H̄NS} + 1
2 {H̄NS2}|�vw〉

= Eatt
vw

〈
�pq

vw

∣∣S + 1
2S2|�vw〉, (31)

where Eatt
vw is the difference between the exact energy of the

closed-shell and two-valence states. It has the expression,

Eatt
vw = εv + εw + �Eatt

vw, (32)

where εv and εw are the Dirac-Fock energy of the valence
orbitals |φv〉 and |φw〉, respectively. And �Eatt

vw = �Ecorr
vw −

�Ecorr
0 is the difference of the correlation energy of closed-

shell and two-valence states. Diagrammatically, �Eatt
vw in

Eq. (32) is equivalent to the closed diagrams with free lines
representing the valence states at the vertexes. Like in the
second-order MBPT, one can separate the �Eatt

vw diagrams to
one- and two-body types. The one-body diagrams are similar
to the ones in Fig. 1 with the bottom interaction (dotted
line) replaced by cluster amplitude (solid line). Similarly, the
two-body diagrams are similar to those of Figs. 2(b)–2(g) with
the bottom interaction replaced by the cluster amplitude.

C. CC equation from Bloch equation

The CC equations discussed so far are derived from
the eigenvalue equation of the Dirac-Coulomb Hamiltonian.
Another approach is based on the generalized Bloch equation
given in Eq. (5). This is more transparent to implement and
convenient to analyze the working equations of CC with
incomplete model space. In Eq. (5), the second term on the
right-hand side, renormalization term, is often defined as

W = PV �P = (V �)close. (33)

Here, close indicates the operator connects states within the
model space. Diagrammatically, the representation of the
operator has no free lines in the closed-shell sector and only
valence orbitals as free lines in the open-shell sector. Using
Eq. (33), we can write

[�,H0]P = (V � − �W )P. (34)

Operating on the two-valence atomic reference state, |�vw〉,
and projecting with the doubly excited determinant 〈�pq

vw|, we
get〈

�pq
vw

∣∣[eT +S,H0]|�vw〉 = 〈
�pq

vw

∣∣[V eT
(
1 + S + 1

2S2
)

− eT
(
1 + S + 1

2S2
)
W

]|�vw〉.
(35)

From Wick’s theorem further simplification follows after con-
tracting the operators. There are connected and disconnected
terms, however, only the connected terms remain [16] on both
sides of Eq. (35). We get

〈�pq
vw|{H0S} − {SH0}|�vw〉
= −〈

�pq
vw

∣∣[V eT
(
1 + S + 1

2S2
)

− eT
(
1 + S + 1

2S2
)
W

]
conn|�vw〉, (36)

where the subscript “conn” refers to connected terms. To arrive
at the equation we have used 〈�pq

vw|[T ,H0]|�vw〉 = 0, as T

being the closed-shell cluster operator, it does not operate in
the valence space. To examine the equation in further detail,
consider the terms on the right-hand side. Expanding the
exponential in the term V eT ,

(V eT )conn = V + {V T } + 1

2!
{V T T } + 1

3!
{V T T T }

+ 1

4!
{V T T T T } = V̄ , (37)

where V̄ is the dressed operator. Similarly, for the other terms,

(V eT S)conn = {V̄ S}, (38)

(eT SW )conn = {SW }, (39)

(eT W )conn = 0, (40)

as no contraction can occur between T , the closed-shell cluster
operator, and open-shell operator S to obtain connected term.
The same is true of T and the effective interaction W . The
reason is, T operates on the closed-shell sector, whereas
W operates in the valence sector. Though it is not shown
explicitly, there are similar relations for (1/2)S2 as well. From
the definition of the normal Hamiltonian H̄N = V̄ + H̄0 we
can combine two of the terms as

H̄0S + V̄ S = H̄NS. (41)

Using Eqs. (37)–(40) in Eq. (36) we get the CC equation in
the form,

〈
�pq

vw

∣∣H̄N + {H̄NS} + 1
2 {H̄NSS} − SHeff

− 1
2 {SHeff}|�vw〉 = 0, (42)

where Heff = H0 + W is the effective Hamiltonian. The form
of the effective Hamiltonian Heff is close—no free lines or only
valence lines as free lines—therefore Eq. (42) can be written
as

〈
�pq

vw

∣∣H̄N + {H̄NS} + 1
2 {H̄NS2}|�vw〉

= Heff
〈
�pq

vw

∣∣S + 1
2S2|�vw〉. (43)

This is identical to Eq. (31), which is obtained from the
eigenvalue equation of the Dirac-Coulomb Hamiltonian with
the exponential ansatz.

D. Diagonalization of Heff

In the single reference calculations the mapping from
reference state to exact state is simple and straightforward.
The exact state, as given in Eq. (4), is the transformation of
reference state |�vw〉 with �. It is not so simple with multiref-
erence model spaces. The model space then encompasses a set
of determinantal states {|�vαwβ

〉} ∈ P , however, each state by
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itself is not the reference state. The CC equation in Eq. (43) is
then modified to〈

�pq
vαwβ

∣∣H̄N + {H̄NS} + 1

2
{H̄NSS}|�vαwβ

〉

−
∑
γ,δ

〈
�pq

vαwβ

∣∣S + 1

2
S2|�vγ wδ

〉〈�vγ wδ
|W |�vαwβ

〉 = 0,

(44)

where, the sum over δ and γ spans all the determinantal states
within P . This is the working equation of multireference
two-valence CCT with CMS. The last term requires careful
consideration while implementing and as we mentioned
earlier, folded diagrams arise from this term.

The wave operator � is defined once the CC equations are
solved, but the model functions are not yet defined. Next step
of the calculation is then to evaluate the matrix elements of the
effective Hamiltonian,

Heff(v,w; x,y) = 〈�vw|H0 + V �|�xy〉. (45)

The Heff matrix is nonsymmetric as � operates on the ket
state and after diagonalization, one gets a biorthogonal set
of eigenstates |�0

i 〉. These are the model functions of the
multireference CC, the exact state is then

|�i〉 = �
∣∣�0

i

〉
, (46)

and the eigenvalue equation is

Heff

∣∣�0
i

〉 = Ei

∣∣�0
i

〉
. (47)

The eigenstates in general are of the form,∣∣�0
i

〉 =
∑
αβ

ci
αβ |�vαwβ

〉, (48)

where ci
αβ are the coefficients of the linear combination or

eigenvector elements of Heff .

IV. INCOMPLETE MODEL SPACE

Incomplete model space (IMS) consists of a restricted
number of configurations from the CMS. Remaining config-
urations are part of the orthogonal space. The outcome of
such a model space is that the clean separation of internal
and external cluster amplitudes is no longer true. Furthermore,
the subsystem embedding condition is violated. For example,
cluster operators which are external in one-valence Hilbert
space may no longer be so in the two-valence Hilbert space.
The intermediate normalization Eq. (6) is then, in general, not
applicable: ∣∣�0

i

〉 �= P�
∣∣�0

i

〉
. (49)

Following that the Heff is not guaranteed to be operational only
within the model space, it may as well connect a state in P to
a state in Q, whereas the obvious advantage of defining Heff is
to work within the model space and incorporate the effects of
orthogonal space in an effective way. Restoring the operational
space of Heff to P requires a set of constraint equations [49],
and a previous work reported the implementation of particle-
hole sectors [52] in relativistic CC calculations. However, all
the good virtues of CMS, in the context of Fock-space CCT,

Two-valence6s2 6s6p 5d6s

One-valence6s 6p 5d

Closed-shell0

S
u
b
d
u
ct

io
n

FIG. 6. Incomplete model space of Yb two-valence calculations.
Arrows indicate the subduction to lower valence sectors and respec-
tive model spaces.

are applicable when the model space is quasicomplete. For a
lucid description of what constitutes a quasicomplete model
space refer to Refs. [43,51].

Like in CMS, as a specific example consider the low-lying
states of Yb. An ideal incomplete model space would consist
of the configurations 6s2, 6s6p, and 5d6s. Model space would
then encompass all the levels important to ongoing precision
experiments: 6s2(1S0), 6s6p(3PJ ), 5d6s(3DJ ), and 6s6p(1P1).
An obvious advantage in such a selection of model space is
isolation, as evident in Fig. 3, from the potential intruder states
6p7p(3PJ ), 6s7s(3S1), and 6s7s(1S0). Here, we can apply the
subduction process to check if the model space considered is
quasicomplete (shown in Fig. 6).

The initial stage is the two-valence model space consisting
of 6s2, 6s6p, and 5d6s. Removal of one electron from
each of the configurations leads to a configuration in one-
valence model space (6s,6p, and 5d). Finally, removal of
another electron gives the closed-shell model space. All the
configurations obtained in the subduction are part of respective
model spaces. This is a requirement of quasicomplete model
space and necessary condition for separation of internal and
external excitations.

V. PROPERTIES CALCULATIONS

A. Hyperfine structure constants

The HFS constants of an atom are the parameters which
measure further splitting of fine structure levels. It arises from
the interaction of electromagnetic moments of the nucleus
with the electromagnetic field of the atomic electrons [53].
The general form of the hyperfine interaction Hamiltonian is

Hhfs =
∑

i

∑
k,q

(−1)q tkq (r̂i)T
k
−q, (50)

where t kq (r) and T k
q are irreducible tensor operators of rank k

effective in the electron and nuclear spaces, respectively. For
the magnetic dipole interaction (k = 1), the explicit form of
the tensor operators are

t1
q (r) = −i

√
2[α · C1(r̂)]q

cr2
,

(51)
T 1

q = µq.

Here, C1(r̂) is a rank one tensor operator in electron space
and µq is a component of µ, the nuclear magnetic moment
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operator. The HFS constants are the expectation value of Hhfs

and the magnetic dipole HFS constant is then

a = 〈�i |Hhfs|�i〉
〈�i |�i〉 , (52)

where |�i〉 is the exact wave function expressed in Eq. (17),
using coupled-cluster theory. The denominator 〈�i |�i〉 is
the normalization factor and it is not to be confused with
intermediate normalization Eq. (6). The later defines the
relation between the reference state and the exact state. And it
does not determine the normalization of the exact state.

B. HFS constant in one-valence sector

Once the CC equations and cluster amplitudes are known,
the atomic properties are calculated with the exact atomic
states so obtained. It is the expectation for dynamical variables
and the matrix element for transition amplitudes. From the
CC wave function of one-valence systems in Eq. (17), the
expectation of Hhfs is

〈�v|Hhfs|�v〉 = 〈�v|H̃hfs + 2S†H̃hfs + S†H̃hfsS|�v〉, (53)

where H̃hfs = eT †
Hhfse

T is the dressed operator. The factor of
two in the second term on the right-hand side accounts for
H̃hfsS as S†H̃hfs = H̃hfsS. An expansion of H̃hfs ideal for an
order-wise calculation is

H̃hfs = Hhfse
T +

∞∑
n=1

1

n!
(T †)nHhfse

T . (54)

The normalization factor, denominator in Eq. (52), in terms of
the coupled-cluster wave function is

〈�v|�v〉 = 〈�v|(1 + S†)eT †
eT (1 + S) |�v〉. (55)

Note that the dressed operator H̃hfs and eT †
eT in the nor-

malization factor are nonterminating series. In a recent work,
we demonstrated a scheme to include a class of diagrams
to all order in T iteratively for properties calculations. With
the method we calculated the magnetic dipole HFS constant
of the singly ionized alkaline-earth metals [18]. Based on the
extensive calculations reported in Ref. [18], we conclude terms
higher than quadratic in T contribute less than 0.1% to the HFS
constants. So there are no compromises on important physics
when H̃hfs, Eq. (57), is truncated after the second order in T .
However, there are enormous gains in computing resources
and simplification of the procedure with the iterative scheme.
Here, we shall not dwell on the iterative scheme; interested
readers may refer to Ref. [18] for more details.

C. HFS constant in two-valence systems

From the CC wave functions of two-valence systems
defined in Eq. (26), we get

〈�i |Hhfs|�i〉 =
∑
j,k

ci
j

∗
ci
k

[
〈�j |H̃hfs + H̃hfs

(
S + 1

2
S2

)

+
(

S + 1

2
S2

)†
H̃hfs +

(
S + 1

2
S2

)†
,

× H̃hfs

(
S + 1

2
S2

)
|�k〉

]
, (56)

(a) (b) (c) (d) (e)

FIG. 7. Representation of effective one- and two-body dressed
properties operators.

where to shorten the notations we have replaced the valence
indexes in the two-valence states vαwβ (vδwγ ) with j (k).
This is the CC expression to calculate the HFS constants of
two-valence electron atoms. The operator H̃hfs is, as defined
earlier, the dressed HFS interaction Hamiltonian. As discussed
in the one-valence case, comprehensive inclusion of all order
of T is beyond the scope of current theories and computational
resources. Hence, for the two-valence sector we consider up
to quadratic terms of T in H̃hfs, approximately

H̃hfs ≈ Hhfs + HhfsT + T †Hhfs + T †HhfsT . (57)

To compute H̃hfs of the two-valence sector, we borrow the
concept of effective one- and two-body operators from our
previous work in Ref. [18]. Diagrammatic representation of
the effective operators are as shown in Fig. 7. It is important to
note that the two-body effective operator, shown in Fig. 7(e),
arises from the last term in Eq. (57). And, since it has two orders
of T , the actual hyperfine diagrams obtained after contraction
with S may have negligible contributions. For this reason we
shall not elaborate on the HFS diagrams arising from the
dressed two-body effective properties operator. However, we
do incorporate these diagrams in the calculations and mention
the contributions in the results.

The diagrams of the HFS constant in the two-valence sector
are grouped into different categories—first based on the cluster
operators in the expression and later, in terms of the number of
core, valence, and virtual orbitals. Specific terms and groups
of diagrams are discussed in this work.

1. Effective one-body operator

There are four diagrams from H̃hfs which has nonzero
contribution. These are the two-valence diagrams from

T
†
2T2 with the bare hyperfine interaction hhfs inserted to all

the possible orbital lines. Contributions from these diagrams
is expected to be very small as S are not a part of the diagrams.

Diagrammatically, H̃hfsS
(1) and S(1)†H̃hfs each have one

diagram and these arise when S(1) is contracted with the
one-body effective operators: S

(1)
2 with diagram in Fig. 7(d),

and S
(1)
2

†
with diagram in Fig. 7(c). The diagram arising from

S
(1)
2

†
H̃hfs is as shown in Fig. 8(a). The time-reversed version

of the same diagram corresponds to H̃hfsS
(1)
2 , however, this

is not shown in the figure. The contributions from H̃hfsS
(1)

and S(1)†H̃hfs are large as these are only first order in S.
Furthermore, Hhfs is a one-body interaction and hence, one-
body effective interactions are dominant.

The terms H̃hfsS
(2) and S(2)†H̃hfs each have one diagram

and these arise from the contraction of S
(2)
2 with the one-

body effective operator of H̃hfs shown in diagram Fig. 7(a).
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Hyperfine diagrams contributing to the terms, S
(1)
2

†
H̃hfs

(a), S(2)†H̃hfs (b), S
(1)
2

†
H̃hfsS

(2) [(c)–(e)], and S(2)†H̃hfsS
(2) (f).

The diagram from S(2)†H̃hfs is shown in Fig. 8(b). Like in the
previous case, the time-reversed diagram arises from H̃hfsS

(2)

and is not shown in the figure. One can expect these terms to
constitute the leading order as these are the lowest order terms
with S

(2)
2 . Rationale for such an anticipation is, in general, that

the magnitudes of S
(2)
2 are larger than the S

(1)
2 and T operators.

2. S†
˜Hhfs S

The leading term in Eq. (56) which is quadratic in S is

S†H̃hfsS = S(1)†H̃hfsS
(1) + [S(2)†H̃hfsS

(1) + c.c.]

+ S(2)†H̃hfsS
(2), (58)

where c.c. represents complex conjugation. We now discuss
the diagrams arising from each of these terms. There are 16
diagrams arising from S(1)†H̃hfsS

(1) and topologically, these
are the effective one-body diagrams Figs. 7(a) and 7(b)
sandwiched between S(1)† and S(1). To examine the diagrams in
more detail, all the diagrams (four in all) from the contraction

S
(1)
2

†
S

(1)
2 are shown in Fig. 9. To each of the diagrams in Fig. 9

the effective one-body operator can be inserted in four ways.
As an example, consider the diagram in Fig. 9(b); all the four
diagrams after inserting the effective one-body operator are
shown in Fig. 10.

There are five diagrams from S(1)†H̃hfsS
(2). These arise from

the contraction of S(1)† with S(2) through one-body operators

in Figs. 7(a) and 7(c). The diagrams from S
(1)
2

†
H̃hfsS

(2) are as

shown in Figs. 8(c)–8(e). However, the diagrams from S
(1)
1

†

are not shown. An identical number of diagrams arise from
S(2)†H̃hfsS

(1). The effective diagram in this case are Figs. 7(a)
and 7(d).

Finally, only one diagram arises from the last term,
S(2)†H̃hfsS

(2). This diagram is shown in Fig. 8(f). Only Fig. 7(a)

(a) (b) (c) (d)

FIG. 9. Diagrams arising from contraction of S
(1)
2

†
with S

(1)
2 .

(a) (b) (c) (d)

FIG. 10. Hyperfine diagrams obtained after inserting the hyper-
fine interaction operator in diagram (b) of Fig. 9.

is the allowed effective one-body operator which contributes
to this term.

D. Electric dipole transition amplitudes

Electric dipole is the most dominant electromagnetic
multipole in the radiative transition of atoms. In a majority
of the cases, depending on the decay channels, it defines the
lifetime of an excited state. Theoretically, the relevant quantity
is the reduced matrix element of the dipole operator D between
the initial and final states |�i〉 and |�f 〉, respectively. The two
states are opposite in parity as D is an odd parity operator. The
expression of the reduced matrix element is

Dif = 〈�f ||D||�i〉√〈�f |�f 〉〈�i |�i〉
. (59)

Once the reduced matrix elements are evaluated, the actual
matrix elements of the specific states are calculated from
the Wigner-Eckert theorem. Here, we need to make a finer
distinction of the wave operator in the valence universal or
Fock-space CCT. As H DC commutes with parity, so does the
wave operator � and we can consider � as

� = �+ + �−, (60)

where �+ and �− operates on the even and odd parity
reference states within the model space. The separation of these
two components follows naturally from the parity selection
rules imposed on the cluster amplitudes. However, this ought to
be handled with care as complications arise in the calculations
of perturbed cluster amplitudes where there is a second
perturbation, besides the residual Coulomb interaction, which
is parity odd. We may rewrite Eq. (59) more precisely as

Dif =
〈
�0

f

∣∣∣∣�∓†
D�±∣∣∣∣�0

i

〉
√〈�f |�f 〉〈�i |�i〉

. (61)

In the one-valence sector, the reduced matrix element of D is

〈�w||D||�v〉 = 〈�v||D̃ + S†D̃ + D̃S + S†D̃S||�v〉, (62)

where |�v〉 and |�w〉 are the initial and final states in terms
of the valence states. Though the expressions are similar to
Eq. (53), there are two important differences. Unlike the HFS
energy splitting expression S†D̃ �= D̃S, this is because the
initial and final states are different. The same set of properties
diagrams in HFS calculations, after modifications to account
for the two key differences, is then adopted to compute reduced
D matrix elements with CC wave functions.
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After a similar modification, like in Eq. (56), for the two-
valence systems,

〈�f ||D||�i〉 =
∑
j,k

c
f

j

∗
ci
k

[
〈�j |D̃ + D̃

(
S + 1

2
S2

)

+
(

S + 1

2
S2

)†
D̃ +

(
S + 1

2
S2

)†
,

× D̃

(
S + 1

2
S2

)
|�k〉

]
, (63)

where the notations and terms are the same as in the
two-valence HFS case. However, the two key differences
mentioned earlier still hold true. Like in HFS,

D̃ ≈ D + DT + T †D + T †DT. (64)

We then proceed like in HFS and calculate the effective
diagrams, both one and two body. These are then contracted
with the cluster operators and we evaluate the transition matrix.

VI. NUMERICAL DETAILS

Coupled-cluster theory, though powerful, is computation-
ally intensive and implementation is nontrivial. The large
number of unknowns and equations demand special attention
to all aspects of computations—right from the initial stage
of identifying and calculating the cluster diagrams, to the
final stages of solving the CC equations and computing
properties from the CC wave functions. Here, we give a
concise description of what we consider absolutely essential,
theoretical, and computational aspects for atomic coupled-
cluster calculations. This choice is entirely based on our
experience of developing and implementing CCT spanning
closed-shell, one-, and two-valence systems. Besides the CC
wave-function calculations, we have also proposed, developed,
and implemented methods to compute properties from CC
wave functions. The selected issues addressed are provided
with the anticipation that interested researchers shall find
these details valuable and facilitate adopting CCT for atomic
many-body computations with minimal effort.

A. Orbitals and basis functions

Results presented in this paper are based on the Dirac-
Coulomb Hamiltonian H DC given in Eq. (1). It incorporates
relativity at the single-particle level accurately and, as the name
indicates, the Coulomb interactions between the electrons. For
the nuclear potential VN (r), we consider the finite size Fermi
density distribution,

ρnuc(r) = ρ0

1 + e(r−c)/a
, (65)

here, a = t4 ln 3. The parameter c is the half-charge radius, that
is, ρnuc(c) = ρ0/2 and t is the skin thickness. At the single-
particle level, the spin orbitals are of the form,

ψnκm(r) = 1

r

(
Pnκ (r)χκm(r/r)

iQnκ (r)χ−κm(r/r)

)
, (66)

where Pnκ (r) and Qnκ (r) are the large and small component
radial wave functions, κ is the relativistic total angular momen-
tum quantum number, and χκm(r/r) are the spin or spherical

harmonics. One representation of the radial components is to
define these as a linear combination of Gaussian-like functions
and are referred to as Gaussian-type orbitals (GTOs). Then,
the large and small components [54,55] are

Pnκ (r) =
∑

p

CL
κpgL

κp(r),

(67)
Qnκ (r) =

∑
p

CS
κpgS

κp(r).

The index p varies over the number of the basis functions. For
the large component we choose

gL
κp(r) = CL

κir
nκ e−αpr2

, (68)

where nκ is an integer. Similarly, the small component is
derived from the large components using kinetic balance
condition [56]. The exponents in the previous expression
follow the general relation,

αp = α0β
p−1. (69)

The parameters α0 and β are optimized for each of the ions or
neutral atoms to provide a good description of the properties.
In our case the optimization criteria are to reproduce the
numerical result of the self-consistent field (SCF) energy and
orbital energies.

From Eq. (66) the reduced matrix element of the magnetic
hyperfine operator between two spin orbitals, v′ and v, is

〈v′||t1||v〉 = −(κv + κv′)〈−κv′ ||C1||κv〉
×

∫ ∞

0

dr

r2
(Pnv′κv′ Qnvκv

+ Qnv′κv′ Pnvκv
). (70)

A detailed derivation is given in Ref. [57].
For the alkaline-earth-metal atoms Sr and Ba as well as Yb,

we use V N−2 orbitals for the calculations. This is equivalent to
calculating the spin orbitals from the single-particle eigenvalue
equations of the doubly ionized atoms, namely Sr2+, Ba2+, and
Yb2+. The single-particle basis sets then have few bound states
and the rest are continuum. The basis set is optimized such that
single-particle energies of the core and valence orbitals are in
good agreement with the numerical results. For this we use
GRASP92 [58] to generate the numerical results.

B. Orbital subsets

Orbitals, the single electron wave functions, in closed-shell
systems are separated into two distinct subsets: core (occupied)
and virtual (unoccupied). The former are shells which are
completely filled in the ground-state determinantal state and
later are empty. Distinction is not so straightforward in open-
shell systems. The classification of the orbitals for the Yb atom
in our current calculations is shown in Fig. 11. The valence
orbitals are partially filled in the model functions and are like
core orbitals; electrons can be excited from the valence shells.

This is particularly true when considering the valence as
particles. Consequently, as discussed in the next subsection,
the closed-shell diagrams can be modified to the open-shell
ones. On the other hand, valence shells can also accommodate
excitations from the core shells, a property typical of shells
in the virtual space. Hence, in the cluster amplitudes the
excited states incorporate the valence orbitals as well. The
dual character of the valence orbitals can be adapted for
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1s

4p

4d

5s

5p

Core

6s

6p
5d

Valence

4f
7s
7p
6d Virtual

FIG. 11. Classification of orbitals into core, valence, and virtual
subsets. Few orbitals are members of more than one subset.

faster diagram evaluations with appropriate rearrangement
of the summation sequence. For example, there is enormous
computational advantage in considering the free orbital lines,
in the cluster diagrams, as the outermost summation. The
example given and many other features we have developed
are more computational in nature and less of physics. We shall
elaborate on these matters in future publications devoted to the
computational aspects of our work.

C. CC equations

In Fock-space CCT, as mentioned earlier, the cluster
operators are generated sector-wise in sequence. First, the
closed-shell cluster amplitudes are computed from Eqs. (20)
and (21), where the dressed operator H̄N in the closed-shell
CC equations, like in Eq. (37), is

H̄N = HN + {HNT } + 1

2!
{HNT T } + 1

3!
{HNT T T }

+ 1

4!
{HNT T T T }. (71)

The closed-shell CC equations as evident from the expression
of H̄N are nonlinear equations. In CCSD approximation, we
have second- and fourth-order nonlinearities in T2 and T1,
respectively. However, the working equations can be written
in linear form as

A11(T )T1 + A12(T )T2 = B1, (72)

A21(T )T1 + A22(T )T2 = B2. (73)

Since the original equations are nonlinear equations, the
coefficients Aij (T ) are functions of cluster amplitudes T . On
the right side B are the matrix elements of HN. The equations
are then solved iteratively until convergence.

To set up the equations, we evaluate the terms based on
diagrammatic analysis. There are several diagrams and, for
example, those arising from linear terms are given in Ref. [16].
The total number of equations scale as N2

v N2
o , where Nv and No

are number of virtual and occupied orbitals, respectively. For
the calculations discussed in this paper Nv ≈ 130 or more and
No ≈ 20. The coefficient matrix A is nonsymmetric and dense,
so the number of matrix elements scales as ∼N4

v N4
o , which is

(a) (b) (c)

FIG. 12. Conversion from closed-shell cluster operator T dia-
grams to open-shell operators S, (a) closed-shell cluster diagram,
(b) one-valence cluster diagram, and (c) two-valence cluster diagram.

∼4.6 × 1013 for typical examples in the present computations.
It is an extremely large matrix and impractical to store. In
addition, the elements are functions of T and not static. For
these reasons, the elements of A are calculated on the fly, as and
when needed. Another complication is the operations required
to generate each element of A in the equations scale as N4

v N2
o ,

all together, combining the number of matrix elements and
number of operations, number of binary arithmetic operation
in each iteration is O(N8

v N6
o ), which is indeed a very large

number for high-Z atoms.
Diagrammatically, to generate the closed-shell equations,

we identify all the diagrams in the closed-shell CC equations
and evaluate the angular integrations based on angular momen-
tum diagrams [16]. An example diagram is shown in Fig. 12(a),
and it is the double contraction of V with T2 and contributes
to the T2 equation. To set up the one-valence and two-valence
cluster equations we avoid diagrammatic evaluation. Instead,
the closed-shell diagrams are topologically transformed into
one-valence diagrams. As shown in Fig. 12(b), one of the core
orbital lines is rotated and transformed into a valence line.
Diagrams so obtained are very different from Fig. 12(a) in
terms of possible contractions. However, the results from the
angular integration remain unchanged. A similar procedure is
adopted for the two-valence equations as well. With this, a
careful analysis and evaluation of closed-shell CC equations
is the only requirement to set up the one- and two-valence
CC equations. The coupled nonlinear and linear equations are
solved iteratively. We employ direct inversion in the iterated
subspace (DIIS) [59] for convergence acceleration.

VII. RESULTS

A. Excitation energies

Excitation energies of the one-valence ions Sr+ and Ba+
were reported in our previous paper [18]. Here, we report
the results of the calculations in the two-valence sector, the
excitation energy of a state nln′l′ (2S+1)LJ , from Eq. (47), is

�Enln′l′ (2S+1)LJ
= Enln′l′ (2S+1)LJ

− Ens2 1S0 , (74)

where Ens2 1S0 and Enln′l′ (2S+1)LJ
are the ground and excited state

eigenvalues of Heff in Eq. (47). Vaeck, Godfroid, and Hansen
[60] had calculated the excitation energies and investigated in
detail the configuration mixing of atomic Sr with multicon-
figuration Hartree-Fock theory with special attention on the
singlet states 1L. In particular, the states with configurations
of the form 5snp 1P ◦, 5snd 1D, and 5snf 1F ◦, including the
Rydeberg states. Improved experimental data and prospects of
cooling and trapping had spurred further theoretical studies
on properties of Sr. Important recent theoretical work are
by Porsev and collaborators [61], and Savukov and Johnson
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TABLE I. Two-electron removal energy and the excitation energies calculated using relativistic coupled-cluster theory. All values are in
atomic units.

State Our result Other work Expt. result Ref. [63].

Evw EE EE EE

Atomic 87Sr; [Kr]5s2

5s2 1S0 −0.61939 0.0 0.0 0.0
5s5p 3P0 −0.55169 0.06771 0.06566a 0.06524
5s5p 3P1 −0.55170 0.06768 0.06651,a 0.06871b 0.06609
5s5p 3P2 −0.55203 0.06736 0.06833a 0.06788
5s4d 3D1 −0.53551 0.08388 0.08230a 0.08274
5s4d 3D2 −0.53478 0.08461 0.08260a 0.08301
5s4d 3D3 −0.53397 0.08542 0.08312a 0.08347
5s4d 1D2 −0.52594 0.09345 0.09210,a 0.11477c 0.09181
5s4d 1P1 −0.51283 0.10656 0.09851,a 0.10015,b 0.10730c 0.09887

Atomic 137Ba; [Xe]6s2

6s2 1S0 −0.56439 0.0 0.0 0.0
6s5d 3D1 −0.52303 0.04136 0.04211,d 0.04106,e 0.04119f 0.04116
6s5d 3D2 −0.52170 0.04269 0.04296,d 0.04193,e 0.04200f 0.04199
6s5d 3D3 −0.51960 0.04479 0.04473,d 0.04375,e 0.04366f 0.04375
6s5d 1D2 −0.51030 0.05409 0.05395,d 0.05197,e 0.05298f 0.05192
6s6p 3P0 −0.50667 0.05772 0.05697,d 0.05575,e 0.05591f 0.05589
6s6p 3P1 −0.50540 0.05899 0.05869,d 0.05742,e 0.05758f 0.05758
6s6p 3P2 −0.50311 0.06128 0.06284,d 0.06147,e 0.06159f 0.06158
6s6p 1P1 −0.47291 0.09148 0.08409,d 0.08256e, 0.08125f 0.08229

Atomic 173Yb; [Xe]4f 146s2

6s2 1S0 −0.68083 0.0 0.0 0.0
6s6p 3P0 −0.59944 0.08140 0.07909,g 0.07874,h 0.07877i 0.07877
6s6p 3P1 −0.59645 0.08439 0.08242,g 0.08200,h 0.08200i 0.08198
6s6p 3P2 −0.58914 0.09170 0.09038,g 0.08999,h 0.09002i 0.08981
6s5d 3D1 −0.56110 0.11973 0.11362,g 0.11425,h 0.11158i 0.11158
6s5d 3D2 −0.55975 0.12109 0.11473,g 0.11136,h 0.11274i 0.11278
6s5d 3D3 −0.55602 0.12481 0.11699,g 0.11503,h 0.11517i 0.11514
6s6p 1P1 −0.55301 0.12782 0.12426,g 0.11253,h 0.11669i 0.11422
6s5d 1D2 −0.54667 0.13416 0.13025,g 0.12595,h 0.12672i 0.12611

aReference [61].
bReference [62].
cReference [60].
dReference [64].
eReference [66].
fReference [30].
gReference [19].
hReference [67].
iReference [68].

[62]. Previous works of Eliav, Kaldor, and Ishikawa [19,64]
reported the excited energy calculations of atomic Ba and
Yb using the Fock-space-based coupled-cluster theory. The
other widely used atomic many-body method employed is
configuration-interaction MBPT (CI-MBPT) [65], based on
Dzuba and Ginges [30] calculated the excitation energies
of Ba. Same method was used by Porsev and collaborators
to calculate the excitation energies and HFS constants of
Yb [67].

One reason for choosing the three atoms in our calculations
is the significant difference in the sequences of ns(n −
1)d 3DJ , ns(n − 1)d 1D2, nsnp 3PJ , and nsnp 1P1 levels. As
evident from Table I, in Sr the 5s4d 2S+1DJ levels lie between
5s5p 3PJ and 5s5p 1P1, whereas the 6s5d 2S+1DJ levels are

below the 6s6p 2S+1PJ levels in Ba. The difference in the level
structure can be attributed to the presence of an additional
diffuse shell 4d. The sequence gets more complicated in Yb,

TABLE II. The nuclear spin I, the magnetic moment µ (in nuclear
magneton), and the electric quadrupole moment Q (in barn), used in
the paper.

Ion I µ Q

87Sr 9/2 −1.0936(13) +0.305
137Ba 3/2 +0.93737(2) +0.246(2)
173Yb 5/2 −0.648(3) +2.80(4)
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TABLE III. The magnetic dipole HFS constant for 173Yb+ and the electric quadrupole HFS constant for 87Sr+, 137Ba+, and 173Yb+ ions.
All the values are in MHz.

Ion State This work Other works Experiment

Magnetic dipole HFS constant A

173Yb+ 6s1/2 −3529.660 −3507a −3497.5(6)a, −3508(9)c

6p1/2 −612.362 −638a −518.2(4)a, −600c

6p3/2 −88.973 −107a −
5d3/2 −104.479 −110.31b −
5d5/2 22.078 3.47b −

Electric quadrupole HFS constant B
87Sr+ 5p3/2 84.806 82.655,d 83.662e 88.5(5.4)g

4d3/2 33.961 35.075,d 36.051,e 39.60b −
4d5/2 48.055 48.800,d 51.698,e 56.451b 49.166f 49.11(6)h

137Ba+ 6p3/2 98.954 92.275i 92.5(0.2)j

5d3/2 45.765 51.32,b 47.3,k 46.82i 44.541(17)k

5d5/2 62.685 68.16,b 63.2,k 62.27i 59.533(43),k 60.7(10),l 62.5(40)m

173Yb+ 6p3/2 1839.779 1780a 1460(50)n

5d3/2 902.301 951.4b −
5d5/2 1165.046 1190.4b −

aReference [71].
bReference [72].
cReference [73].
dReference [74].
eReference [75].
fReference [76].
gReference [77].
hReference [38].
iReference [78].
jReference [79].
kReference [80].
lReference [81].
mReference [82].
nReference [83].

6s6p 3PJ levels are below 6s5d 3DJ , however, the 6s6p 1P1

lies between 6s5d 3D2 and 6s5d 3D3. It is to be noted that the
difference between Ba and Yb configurations is the presence
of 4f in the Yb core and is the cause for the change in the
level sequence.

The excitation energies obtained from our calculations are
reasonably close to the other theoretical results for Sr and
Ba. However, there is a lack of clear trend in the differences.
For the excitation energies of Sr, our results are consistently
better than the MCHF results [60], and our result of 5s5p 3P2 is
closest to the experimental value. One observation is, although
Porsev and collaborators [61], and Savukov and Johnson [62]
used the same method CI-MBPT, the results from the former
are consistently better than the latter. A possible reason could
be the single-particle basis set. The former used a combination
of V N , V N−1, and V N−2 orbitals for the core and valence,
and virtuals are generated through a recurrent procedure. In
the later work, the orbital sets are B splines. As described
earlier, we use numerical Gaussian-type orbitals for our
calculations.

A comparison of excitation energies of Ba presents an
interesting case. Some of our results are better than the
previous CC results of Eliav and collaborators [64]. The

results provide a numerical validation of our approach. On
the other hand, the results of Dzuba and collaborators [65]
and Safronova and collaborators [66] use similar basis sets
but different many-body methods. The former used CI-MBPT,
whereas the latter used the recently developed CI plus all order
method [66]. The results from the latter are consistently better
than the former.

The Yb excitation energy calculations presents a serious
challenge. Earlier CC calculations of Yb excitation energies
[19] could not reproduce the experimental sequence and we
also encounter the same issue. In particular, the 6s6p 1P1

is above the 6s5d 3DJ levels, whereas experimentally it lies
between 6s5d 3D2 and 6s5d 3D3. Sequence in our results is
similar and individual values are consistently higher than
the previous CC calculations. The sequence, however, is
correctly reproduced in another calculation with the CI-MBPT
method [67], where the basis set used is a combination of
Dirac-Fock orbitals for the core and valence, and virtuals are
generated through recurrent procedure. The comparison of the
different results indicate a wide variation in the many-body
methods and single-particle states. In fact, none of the works
listed and referred have a common many-body theory and
basis sets. Perhaps, this is an indication of the issues which
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TABLE IV. Magnetic dipole and electric quadrupole HFS constants contributions from different terms.

Coupled-cluster terms

Ion State DF H̃hfs-DF S†H̃hfs + c.c. S
†
2H̃hfsS1 + c.c. S

†
1H̃hfsS1 S

†
2H̃hfsS2 Other terms Norm

HFS constant A
173Yb+ 6s1/2 −2582.096 130.175 −998.855 −31.463 −48.566 −60.815 14.667 1.013

6p1/2 −408.696 15.693 −197.323 −7.054 −10.972 −6.151 −4.378 1.011
6p3/2 −48.278 1.798 −32.418 −1.817 −1.234 −7.445 −0.591 1.011
5d3/2 −75.876 0.192 −19.903 −0.870 −1.289 −8.127 −0.122 1.015
5d5/2 −28.899 −0.536 52.927 4.081 −0.424 −4.903 0.082 1.011

HFS constant B/Q
87Sr+ 6p3/2 166.993 −2.509 109.511 4.024 2.565 7.769 −2.302 1.001

5d3/2 80.939 7.879 26.888 −.573 1.073 −3.540 −0.791 1.005
5d5/2 110.863 15.702 34.180 −.848 1.377 −1.911 −1.081 1.005

137Ba+ 6p3/2 229.303 −5.962 170.985 7.425 5.364 −1.153 −3.097 1.002
5d3/2 135.098 12.635 46.886 .211 1.305 −7.849 −1.213 1.006
5d5/2 172.975 25.621 63.015 .333 1.627 −5.898 −1.508 1.005

173Yb+ 6p3/2 372.894 −16.855 274.025 11.547 9.994 −0.212 6.441 1.001
5d3/2 199.032 11.143 112.382 1.292 3.058 −4.128 0.975 1.005
5d5/2 234.438 21.220 152.106 2.217 3.080 4.774 −0.041 1.004

require consistent efforts to resolve the difficulties of precision
calculations of two-valence systems.

B. Hyperfine structure constants

Hyperfine constants are appropriate atomic properties
to inspect the accuracy of atomic wave functions in the
small radial distances—within and close to the nucleus.
For the calculations we use the nuclear moments given in
the compilation of Stone [69] and the values are given
Table II.

1. Hyperfine constant A of Yb+

The magnetic dipole HFS constant of 173Yb+ and the
electric quadrupole HFS constants of 87Sr+, 137Ba+, and
173Yb+ from our calculations are given in Table III. For
comparison, the results from other theoretical studies and
experimental data are also given. Contributions from the
specific terms in the CC properties expression of HFS are listed
in Table IV. Previous theoretical study by Martensson [71]
on the magnetic dipole HFS constant of 173Yb+ is based on
the CCT and basis set is obtained from discrete spectrum
method [70]. In this work, the HFS constant a of 6s1/2, 6p1/2,
and 6p3/2 are calculated. Our result of 6s1/2 is slightly higher
than both the theoretical and experimental values. However,
for 6p1/2 our result is lower than the previous theoretical
result of Martensson [71] and closer to the experimental
data [71]. Similarly, our result of 6p3/2 is lower than the
value of Martensson [71]. Although, the many-body methods
employed in the two calculations are the same; HFS constants
of p in our results are lower. Coming to the 5d states, the
previous calculations of Itano is based on multiconfiguration
Dirac-Fock (MCDF) [58]. The 5d3/2 results are close to our
value, however, for the 5d5/2 state our results are much larger.
At this stage it is difficult to pinpoint the reason for the
large discrepancy between the two results. One observation
from the component-wise contribution in Table IV is the

large cancellation between the Dirac-Fock (leading order)
and the next to leading order (S†H̃hfs + c.c.). Similar pattern
is observed in the HFS constant of nd5/2 state of all the
alkaline-earth-metal ions reported in our previous work [18].
A comparison shows the cancellation is larger in Yb+. Another
notable difference in Yb+ is that the (S†

2H̃S1 + c.c.) is large
and almost cancels with S

†
2H̃S2.

2. Hyperfine structure constant b of p3/2 states

Leading terms, listed in Table IV, are the Dirac-Fock
and (S†H̃hfs + c.c.). The later subsumes the core-polarization
effects. For all the ions, Sr+, Ba+, and YB+, the contributions
from these two terms are almost equal. This is a significant
deviation from the observed pattern in the magnetic dipole
HFS constant [18], which noticeable for Yb+ in Table IV.
Among all the theoretical calculations our results for Sr+
is in better agreement with the experimental data. For Ba+,
no previous theoretical works and experimental data are
available. Ours is the first study on the electric quadrupole
HFS constant of the 6p3/2 state. Our result of Yb+ is higher
than the previous theoretical results of Martensson-Pendrill
and collaborators [71] as well as the experimental results of
Berends and Maleki [83].

3. Hyperfine structure constant B of d states

The HFS constant Bd of Sr+ has been studied in several
theoretical works. Our results of B are systematically lower
than the other theoretical values, which is evident from
Table III. The previous calculations of Martensson [74] used
the same many-body method like ours, relativistic coupled
cluster, but a different type of single-particle basis set. The
calculations of Sahoo [76], in terms of theoretical methods, are
closest to ours. They have used the relativistic coupled-cluster
and Gaussian-type basis set like we have done. However,
Sahoo calculated only for the 4d5/2 state and his result is
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TABLE V. Magnetic dipole HFS constant for the atomic systems 87Sr, 137Ba, and 173Yb, using relativistic coupled-cluster theory. All
values are in atomic units.

Coupled-cluster terms

State DF H̃hfs-DF One-body H̃hfs Two-body H̃hfs Total value Other work Expt. result

Atomic 87Sr; [Kr]5s2

5s5p 3P1 −178.983 −0.120 −49.121 0.002 −228.222 − −260.765(1)j

5s5p 3P2 −200.670 0.106 −47.045 0.002 −247.607 − −212.085(5)j

5s4d 3D1 145.335 0.098 6.348 0.001 151.586 − −
5s4d 3D2 −56.824 0.076 7.095 0.001 −49.654 − −
5s4d 3D3 −133.930 −0.040 0.194 0.002 −133.778 − −
5s4d 1D2 17.441 0.062 9.643 0.001 27.145 − −
5s4d 1P1 11.802 −0.225 4.366 −0.002 15.941 − −
Atomic 137Ba; [Xe]6s2

6s5d 3D1 −588.432 0.344 −19.420 −0.004 −607.512 −547a −521c

6s5d 3D2 397.451 −0.588 9.067 −0.009 405.921 405a 416c

6s5d 3D3 543.921 0.189 4.843 −0.008 548.945 443a 457c

6s5d 1D2 −148.545 −0.459 −54.967 −0.006 −203.977 −102a −82d

6s6p 3P1 736.066 −0.310 221.943 −0.004 957.695 1160a 1151e

6s6p 3P2 806.032 −0.152 204.186 −0.010 1010.056 845a −
6s6p 1P1 −181.658 −0.074 −38.353 0.009 −220.094 −107a −109f

Atomic 173Yb; [Xe]4f 146s2

6s6p 3P1 −708.922 −0.223 −197.665 0.004 −906.806 −1094b −1094.2(6)g

6s6p 3P2 −681.732 −0.292 −181.832 0.003 −863.853 −745b −738h

6s5d 3D1 550.679 0.035 64.941 0.002 615.657 596b 563(1)i

6s5d 3D2 −456.152 −0.064 −40.287 0.003 −496.500 −351b −362(2)i

6s5d 3D3 −454.431 −0.027 −22.482 0.002 −476.938 −420b −430(1)i

6s6p 1P1 239.530 0.499 65.911 −0.002 305.938 191b 60h

6s5d 1D2 197.218 −0.011 71.840 0.002 269.049 131b 100(18)i

aReference [84].
bReference [67].
cReference [85].
dReference [86].
eReference [87].
fReference [88].
gReference [89].
hReference [90].
iReference [91].
jReference [92].

closest to the experimental data. Ours on the other hand is
≈2.3% lower than his result. Similarly, for the same reasons
for the HFS constants B of Ba+, the previous calculations
of Sahoo [78] is closest to ours. However, our result of
5d3/2 is closer to the experimental data. For 5d5/2 state our
value is ≈0.6% lower than the theoretical value of Sahoo
and ≈5.3% higher than the experimental value. Considering
that for the Sr+ and Ba+ calculations, the many-body method
and type of single-particle basis we have used are the same
as in Refs. [76] and [78], respectively. The difference in
the results could be on account of minor differences in the
exponents used in the basis set generation or the truncation of
the coupled-cluster properties expression. There are striking
changes, when compared with the p3/2, in the component-wise
contribution. Dirac-Fock contributions in both Sr+ and Ba+
are approximately three times larger than (S†H̃hfs + c.c.. In
addition, the contribution from the H̃hfs-DF, which essentially
arises from the closed-shell part, is relatively large. This could

be due to the diffuse electron density of the d orbitals and
hence stronger interaction with the core electrons.

Unlike the other two ions, Yb+ has not been studied in fine
detail. The previous theoretical work of Itano [72] is based
on the MCDF method. And there are no experimental data
available for the 173Yb+ isotope. Our results are lower but
close to the values from Itano [72]. A closer inspection of the
results from Itano’s calculations for the other ions (Sr+ and
Ba+) reveals that his results are consistently higher than the
other theoretical and experimental data. One possible reason
could be the contracted nature of the virtual orbitals, referred
to as correlation orbitals, in MCDF calculations. Hence, we
can expect a similar trend in Yb+ as well and it is possible that
our results are closer to the actual values. Compared to Sr+
and Ba+, there is one remarkable change in the component-
wise contribution. There is large contribution from (S†H̃hfs +
c.c.), which implies that their core-polarization effect is very
important. It is on par with the Dirac-Fock term.
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TABLE VI. Magnitude of the electric dipole transition amplitude for 87Sr+, 137Ba+,
and 173Yb+ ions.

Ion Transition This work Other works

87Sr+ 5p1/2 −→ 5s1/2 3.2180 3.060a

5p3/2 −→ 5s1/2 4.9223 4.325a

5p1/2 −→ 4d3/2 3.4315 3.052a

5p3/2 −→ 4d3/2 1.4217 1.355a

5p3/2 −→ 4d5/2 4.5942 4.109a

137Ba+ 6p1/2 −→ 6s1/2 3.1974 3.300,a 3.36(1),b 3.272c

6p3/2 −→ 6s1/2 5.0330 4.658,a 4.73(3),b 4.614c

6p1/2 −→ 5d3/2 3.0898 3.009,a 3.11(3),b 3.008c

6p3/2 −→ 5d3/2 1.2448 1.312,a 1.34(2),b 1.313c

6p3/2 −→ 5d5/2 4.1347 4.057,a 4.02(7),b 4.054c

173Yb+ 6p1/2 −→ 6s1/2 2.9069 2.731d

6p3/2 −→ 6s1/2 4.5256 3.845d

6p1/2 −→ 5d3/2 3.6317 3.782d

6p3/2 −→ 5d3/2 1.4918 1.546d

6p3/2 −→ 5d5/2 4.8500 4.769d

aReference [93].
bReference [12].
cReference [94].
dReference [95].

4. HFS of two-valence systems

There are few theoretical and experimental works on the
HFS constants of the neutral alkaline-earth-metal atoms and
Yb. However, the importance of such investigations is likely
to grow in the near future as these, in particular Sr and Yb,
are candidates of precision experiments and have been cooled
to quantum degeneracy. In our work we make an effort to
understand the systematics to initiate a deeper analysis on
the role of the electron correlation effects to properties like
hyperfine. The previous theoretical calculations of 137Ba [84]
and 173Yb [67] are based on the CI-MBPT method and basis

with different central potentials. For this reason it is nontrivial
to comment on the role of the correlation effects in a precise
manner through a comparative study. The results from our
calculations, along with the leading order contributions, are
listed in Table V. From the table it is clear that, in most of the
cases, our theoretical results are not in very good agreement
with the experimental data. Origin of the discrepancy could
be the nature of the single-particle basis we have used, the
V N−2 orbitals. On account of the doubly ionized charged state
of the core, the orbitals are highly contracted and interact
rather strongly with the nucleus. Such orbitals are suitable for

TABLE VII. The electric dipole transition amplitude, contributions from different terms in the coupled-cluster theory.

Coupled-cluster terms

Ion Transition DF D̃-DF S†D̃ + c.c. S
†
2D̃S1 + c.c. S

†
1D̃S1 S

†
2D̃S2 Other terms Norm

87Sr+ 5p1/2 −→ 5s1/2 3.4869 0.0008 −0.2715 −0.0043 0.0129 0.0233 −0.0004 0.9909
5p3/2 −→ 5s1/2 4.9246 0.0019 −0.0072 −0.0003.1 0.0187 0.0034 −0.0047 0.9902
5p1/2 −→ 4d3/2 3.7226 0.0024 0.2902 −0.0062 0.0178 0.0234 0.0031 0.9889
5p3/2 −→ 4d3/2 1.6543 0.0001 −0.2332 −0.0028 0.0080 0.0122 0.0002 0.9882
5p3/2 −→ 4d5/2 −4.9937 −0.0005 0.3967 0.0085 −0.0238 −0.0334 −0.0006 0.9887

137Ba+ 6p1/2 −→ 6s1/2 3.8911 0.0019 −0.7618 −0.0097 0.0442 0.0715 −0.0009 0.9880
6p3/2 −→ 6s1/2 −5.4778 −0.0046 0.5275 0.0134 −0.0609 −0.0973 0.0014 0.9872
6p1/2 −→ 5d3/2 −3.7450 −0.0080 0.7220 −0.0001 −0.0392 −0.0685 0.0008 0.9846
6p3/2 −→ 5d3/2 1.6352 0.0119 −0.4240 0.0005 0.0161 0.0363 0.0000 0.9838
6p3/2 −→ 5d5/2 5.0005 0.0102 −0.9544 0.0011 0.0485 0.0930 −0.0001 0.9847

173Yb+ 6p1/2 −→ 6s1/2 3.2422 0.0011 −0.3387 −0.0071 0.0181 0.0247 0.0043 0.9872
6p3/2 −→ 6s1/2 −4.5426 −0.0032 0.0282 −0.0001 −0.0231 −0.0430 −0.0021 0.9868
6p1/2 −→ 5d3/2 −3.8611 −0.0024 0.2336 0.0095 −0.0286 −0.0366 0.0055 0.9869
6p3/2 −→ 5d3/2 .6970 0.0002 −0.2551 −0.0039 0.0114 0.0165 −0.0022 0.9865
6p3/2 −→ 5d5/2 −5.2002 0.0008 0.3448 0.0117 −0.0325 −0.0443 0.0113 0.9881
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TABLE VIII. E1 transition amplitudes for the atomic system 87Sr, using relativistic coupled-cluster theory. All values are in atomic units.

Coupled-cluster terms

Transition DF H̃hfs-DF One-body H̃hfs Two-body H̃hfs Total value Other work

3P1 −→ 1S0 −0.3759 −0.0001 0.8257 0.00001 0.4497 0.16,a 0.162b

1P1 −→ 1S0 −4.2442 0.0000 0.5283 −0.00002 −3.7159 5.28,a 5.238,b 1.9539c

3P0 −→ 3D1 2.6323 −0.0002 −0.3131 0.00000 2.3190
3P1 −→ 3D1 2.2652 0.0013 0.1116 0.00000 2.3781
3P2 −→ 3D1 0.5849 0.0009 0.3772 −0.00001 0.9630
1P1 −→ 3D1 0.2255 −0.0005 −0.2496 −0.00001 −0.0247
3P1 −→ 3D2 3.9538 0.0012 −0.5437 −0.00001 3.4114
3P2 −→ 3D2 2.2646 0.0006 0.0700 0.00001 2.3352
1P1 −→ 3D2 0.7531 −0.0004 −0.1054 0.00001 0.6473
3P2 −→ 3D3 −5.3938 −0.0001 0.3111 0.00001 −5.0828
3P1 −→ 1D2 −0.8822 0.0012 0.0387 0.00000 −0.8423 0.19a

3P2 −→ 1D2 −0.2854 0.0002 −0.3597 −0.00001 −0.6448 0.10a

1P1 −→ 1D2 −4.5484 −0.0008 0.3860 −0.00001 −4.1632 1.92a

aReference [61].
bReference [62].
cReference [60].

properties calculations of singly ionized states but not ideal
for the neutral atoms.

A very important aspect of our present work is the observed
trend in the contributions from various terms. It is evident from
Table V the DF contribution is significantly dominant; it is far
larger than the next to leading order contribution from what
we refer to as the one-body terms. The details of the one-body
terms are discussed in Sec. V C 1. To quantify the relative
contributions, define

� = one-body terms

DF
, (75)

essentially the ratio between the leading and next to leading
order contributions. The dominance of DF is particularly true
in the case of the ns(n − 1)d 3DJ states, among these states
highest � is ≈0.12 (5s4d 3D2 state of 87Sr). For the nsnp 3PJ

states, the contribution from the one-body terms is small but not

negligible. Largest and smallest value of � for these states are
≈0.3 for the 6s6p 3P1 state of Ba and ≈0.23 for the 5s5p 3P2

state of Sr, respectively. Other states have � close to 0.25.
For the singlet states nsnp 1P1 and ns(n − 1)d 1D2, the

deviations from the experimental data are very large. A similar
trend was also observed in the case of the excitation energy of
these states as well.

C. E1 transition amplitude

We calculate the reduced matrix element of the dipole
operator D from the expression given in Eq. (59). Once again,
like in the HFS constants, we calculate the reduced matrix
elements of the Sr+, Ba+, and Yb+ ions from the intermediate
one-valence wave functions. In the present work, we do not
attempt to quantify the error or accuracy of the results. This is a
work in progress and we shall report in our future publications

TABLE IX. E1 transition amplitudes for the atomic system 137Ba, using relativistic coupled-cluster theory. All values are in atomic units.

Coupled-cluster terms

Transition DF H̃hfs-DF One-body H̃hfs Two-body H̃hfs Total value Other work

3P1 −→ 1S0 0.3888 −0.0003 −0.8090 0.00000 0.4205 0.4537a

1P1 −→ 1S0 −4.6768 −0.0002 0.6730 0.00000 4.0040 5.236a

3P0 −→ 3D1 2.6203 0.0004 −0.2585 0.00000 2.3622 2.3121a

3P1 −→ 3D1 2.2405 −0.0023 −0.0195 0.00000 2.2187 2.0108a

3P2 −→ 3D1 −0.5715 0.0019 −0.4782 0.00000 1.0478 0.5275a

1P1 −→ 3D1 −0.3364 −0.0002 0.3546 0.00000 0.0180 0.1047a

3P1 −→ 3D2 3.8886 −0.0022 −0.1585 0.00001 3.7279 3.4425a

3P2 −→ 3D2 −2.2265 0.0013 0.1007 −0.00001 2.1245 2.024a

1P1 −→ 3D2 −0.3874 −0.0005 0.0833 −0.00000 0.3046 0.4827a

3P2 −→ 3D3 5.3410 −0.0004 −0.3409 −0.00001 4.9997 4.777a

3P1 −→ 1D2 −1.1039 −0.0018 0.1178 0.00000 0.9879 0.1610a

3P2 −→ 1D2 0.4458 0.0005 0.5219 0.00001 0.9682 0.1573a

1P1 −→ 1D2 4.4933 −0.0011 −0.0773 0.00000 4.4149 1.047a

aReference [30].
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TABLE X. E1 transition amplitudes for the atomic system 173Yb, using relativistic coupled-cluster theory. All values are in atomic units.

Coupled-cluster terms

Transition DF H̃hfs-DF One-body H̃hfs Two-body H̃hfs Total value Other work

3P1 −→ 1S0 0.1445 −0.0003 −0.5320 0.00000 −0.3878 0.54(8),a 0.44,b 0.587c

1P1 −→ 1S0 −3.8641 −0.0001 0.5999 −0.00001 −3.2643 4.40(80),a 4.44,b 4.89,d 4.825c

3P0 −→ 3D1 2.7296 0.0001 −0.3209 0.00000 2.4088 2.61(10),a 2.911c

3P1 −→ 3D1 2.3473 −0.0005 0.1811 0.00003 2.5279 2.26(10)a

3P2 −→ 3D1 −0.5997 0.0000 −0.2343 0.000002 −0.8340 0.60(12)a

1P1 −→ 3D1 −0.4503 −0.0002 0.1702 0.00000 −0.2803 0.27(10),a 0.24b

3P1 −→ 3D2 3.9875 −0.0005 −0.6480 0.00002 3.3390 4.03(16)a

3P2 −→ 3D2 −2.2940 −0.0002 −0.1010 −0.00003 −2.3952 2.39(1)a

1P1 −→ 3D2 0.0716 −0.0003 0.0660 0.00000 0.1373 0.32(6),a 0.60b

3P2 −→ 3D3 5.6130 0.0000 −0.3215 −0.00001 5.2915 6.12(30)a

3P1 −→ 1D2 −1.1920 −0.0006 0.0995 0.00000 −1.0931 0.54(10)a

3P2 −→ 1D2 0.5946 0.0002 0.3601 0.00000 0.9549 0.38(8)a

1P1 −→ 1D2 4.7006 −0.0002 −0.5209 0.00000 4.1795 3.60(70)a

aReference [96].
bReference [97].
cReference [68].
dReference [98].

with a careful examination of the different types of basis
functions, and calculate the dipole matrix elements in different
gauges.

1. One-valence

Results from our calculations are listed in Table VI and
component-wise contributions are given in Table VII. One
of the early works on the dipole matrix elements of singly
ionized alkaline-earth-metal ions is by Guet and Johnson
[93]. The many-body methods they used are MBPT and
random-phase approximation (RPA), and numerical basis
set. At the DF level the values of Guet and Johnson [93]
are in good agreement, for both Sr+ and Ba+, with our
results; this is evident from the values listed in Table VII.
Their work is the only one in the literature on the electric
dipole matrix elements of Sr+ and our results are higher.
The difference could be largely attributed to the higher order
core-polarization effects associated with the random-phase
approximation. The RPA effects are incorporated in the
coupled cluster but not to higher order as in an iterative RPA
calculation.

For Ba+ there are several theoretical calculations of
the electric dipole matrix elements. A careful study on
the electric dipole transition is desirable as it a promising
candidate for a novel parity nonconservation experiment [41].
In terms of the many-body method and single-particle basis
set, the calculations of Sahoo and collaborators [12] are
closest to our approach. They estimate the upper bound
on the error in the reduced dipole matrix element as
1.7%, which implies that our results have errors larger than
this.

For Yb+, the work of Safronova and Safronova [95] is the
only previous study on the electric dipole matrix elements.
Their calculations are based on the third-order relativistic
MBPT and the excellent matching between the length and
velocity gauge results indicates the results are quite accurate.

Our results are close to their results, however, at this stage we
do not attempt to estimate the accuracy of our results.

2. Two-valence

Our results of the dipole matrix elements of Sr, Ba, and
Yb are listed in Tables VIII–X. There are very few theoretical
studies on the dipole matrix elements of Sr and those are
not in very good agreement with ours. In the case of Ba,
the previous theoretical calculations were done by Dzuba
and Ginges [30]. Our results, listed in Table IX, are in good
agreement with Ref. [30] for the 〈6s6p 3D1||D||6s2 1S0〉 and
〈6s6p 3DJ ||D||6s5d 3DJ 〉. However, there are large deviations
for the matrix elements involving the 6s6p 1P1 and 6s5d 1D2

states. For Yb, the 〈6s6p 1P1||D||6s5d 3D2〉 is significantly
different from the previous results. However, there is a
large difference between the previous results of Porsev
and collaborators [96], and Migdalek and Baylis [97] as
well. Large relative deviations, compared to results of Ref.
[96], are also observed for the 〈6s6p 3P1||D||6s5d 1D2〉 and
〈6s6p 3P2||D||6s5d 1D2〉.

VIII. CONCLUSIONS

In this paper we describe in detail the Fock-space relativistic
coupled-cluster method for the two-valence systems. It is based
on an all-particle treatment and we demonstrate the excitation
energies of Ba and Yb are on par with those of the previous
relativistic CC calculations. The key point is that we have
implemented the Fock-space CCT with an incomplete but
quasicomplete model space comprising the ns2, ns(n − 1)d,
and nsnp configurations. This choice of model space is optimal
to study the low-lying states of the alkaline-earth-metal
atoms and other two-valence atoms like Yb and Hg. Most
importantly, with this model space one may avoid divergences
arising from the intruder states. This ought to be highlighted
as the literature on iterative studies of two-valence systems,
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replete with accounts of intruder-state-induced divergences.
We emphasize that there are few detailed relativistic many-
body calculations of two-valence excitation energies and even
less on properties calculations. Not surprisingly, among the
published results there is a wide variation of the many-body
methods and basis sets used in the studies. Considering
the growing importance of alkaline-earth-metal atoms in
precision experiments and possible applications, a detailed
investigations on the two-valence systems is timely.

We have also developed a method based on CCT to compute
properties from the CC wave functions of two-valence systems.
This is perhaps an initial step toward systematic investigation
of the structure and properties of two-valence systems with
CCT, which has not been attempted before. Based on our
scheme, the computational cost of two-valence CC calcula-
tions is marginally higher than the one-valence calculations.
And the additional cost is in solving the S(2) cluster amplitude
equations, the total number of which is far less than the
closed-shell and one-valence cluster amplitudes T and S(1),
respectively. So in terms of computational implementations,
there is no reason why two-valence CCT should not be the
preferred method as in one-valence systems. The important
and essential details of our schemes and implementations are
provided to highlight important physics issues in the two-
valence Fock-space CCT. Brief descriptions of the method and
extensive references are provided to aid interested researchers
to implement CCT of two-valence systems.

From the many-body theory perspective, CCT-based struc-
ture and properties calculations is certainly an attractive
choice, the prime reason being that the topologically connected
nature of the CC operators and the exponential form of the
wave operator ensures the condition of size extensivity, a basic
requirement of a legitimate many-body theory. Furthermore,
the nonperturbative character of the CC wave operator makes
it an ideal choice. It must be emphasized that all of these
considerations are at the level of the many-body theory.
However, the accuracy of the results also depends on other
factors like single-particle basis set considered.

In the method we have developed, the one-valence coupled-
cluster wave functions occur as an intermediate step. Using
this we calculate the electric quadrupole HFS constant B of
Sr+, Ba+, and Yb+. The HFS constant B of the 5p3/2

2P3/2 and
5d3/2

2D3/2 states of 87Sr+ and 137Ba+, respectively, are closer
to the experimental data than the other theoretical results.
For all the ions studied, the np3/2

2P3/2 state has very large
contributions from the core polarization effects, which is part
of (S†H̃hfs + c.c.) in the CC properties calculations. Similaraly,
for 5dj

2Dj states of Yb+, there is a large contribution from
the core-polarization effects. A careful accounting of the
core-polarization effects is crucial for all the ions to obtain

accurate values of B and this is particularly true for Yb+. We
also calculate the magnetic dipole HFS constant A of Yb+;
except for the 5d5/2 state the results are in agreement with
the other theoretical and experimental data. Similarly, we get
reliable results of the dipole matrix elements of these ions.

The results of the excitation energies of the two-valence
sector calculations are in agreement with the previous CC
results. For properties calculations with CC wave functions,
our results show deviations from the previous works. However,
it must be mentioned that there have been very few attempts
at theoretical properties calculations of two-valence systems.
And the previous works are based on MCDF or using a collage
of single-particle wave functions. The latter may require finer
analysis for precision studies as the linked-cluster theorem,
which forms the basis of many-body theory, is based on
a uniform separation of the total Hamiltonian into zeroth
order and perturbation. This is not the case when orbitals
with different central potentials are used in the calculations.
With the MCDF method, a large-scale structure and properties
calculations of neutral atoms with high Z is plagued with
convergence issues. Among all the states, the singlet states
nsnp 1P1 and ns(n − 1)d 1D2 require further attention as the
properties involving these states exhibit the largest deviations
from other theoretical results. A similar pattern is observed in
the other theoretical results as well. Based on our studies and
careful analysis, the observed deviations of the two-valence
properties may be attributed to the basis, V N−2 potential, we
have used. We expect calculations with V N−1 potential basis
could improve the results.

In conclusion, relativistic Fock-space coupled-cluster the-
ory has theoretical and computational advantages for structure
and properties calculations of two-valence systems. In this
article we report the development of an all-particle two-
valence relativistic Fock-space coupled-cluster theory and
have demonstrated a scheme for properties calculations with
the CC wave functions.
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