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The optimal control of unitary transformations is a fundamental problem in quantum control theory and
quantum information processing. The feasibility of performing such optimizations is determined by the
computational and control resources required, particularly for systems with large Hilbert spaces. Prior work
on unitary transformation control indicates that (i) for controllable systems, local extrema in the search landscape
for optimal control of quantum gates have null measure, facilitating the convergence of local search algorithms,
but (ii) the required time for convergence to optimal controls can scale exponentially with the Hilbert space
dimension. Depending on the control-system Hamiltonian, the landscape structure and scaling may vary. This
work introduces methods for quantifying Hamiltonian-dependent and kinematic effects on control optimization
dynamics in order to classify quantum systems according to the search effort and control resources required to
implement arbitrary unitary transformations.
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I. INTRODUCTION

The methodology of optimal control theory (OCT) has been
applied to achieve various dynamical objectives in quantum
systems by manipulating constructive quantum wave inter-
ference to maximize the likelihood of attaining desired target
states [1]. Three classes of problems—state control, observable
control, and unitary transformation or gate control [2]—have
received the most attention in the quantum control community
to date. The generation of targeted unitary transformations
is of fundamental interest and has direct applications to
quantum information sciences since the quantum logic gates
required to carry out quantum computation are represented
by unitary transformations [3]. Since U (N ) [and SU(N )]
are compact Lie groups, it is possible to generate any
U ∈ U (N ) through sequential application of elements of a
complete set of generators iH1, . . . ,iHk for U (N ), that is,
W = exp(iHktk) . . . exp(iH1t1). This strategy (uniform finite
generation) is now commonly applied in gate decomposition
strategies wherein the unitary gate W expressed in terms of
n qubits (i.e., with a corresponding 2n-dimensional Hilbert
space) is constructed through sequential application of various
Uj = exp(iHj tj ), which each act on only one to two qubits
[3,4]. However, provided the system is controllable, it is
also possible to generate any W by shaping time-dependent
control functions εj (t),j = 2, . . . ,k over a time interval [0,T ].
Each control function is coupled to a corresponding control
Hamiltonian iHj ,j = 2, . . . ,k, which are all simultaneously
applied in order to generate the desired W at time T . This is the
method of OCT. Typically, uniform finite generation requires
a greater total evolution time T than OCT methods based on
pulse shaping [4].

OCT has been applied to unitary transformation control for
the purposes of quantum computation in a variety of quantum
systems. Kosloff and co-workers studied the implementation
of quantum gates based on vibrational eigenstates of the
molecular sodium ion Na2

+ on the ground electronic surface
[5,6]. Similar studies were carried out in the acetylene
molecule using the asymmetric C-H stretching and bending

modes by Tesch and de Vivie-Riedle [7]. Gate control on spin-
system dynamics with optimally designed nuclear magnetic
resonance pulses has been performed by several groups [8–11].
Deutsch and co-workers implemented unitary maps on the
magnetic sublevels of the ground electronic state of cesium
[12]. The computational studies using OCT can be extended
to the laboratory by shaping ultrafast laser fields using optimal
control experiment (OCE) [13] to generate control functions
ε(t).

An important issue in determining the feasibility of
optimally constructing unitary transformations is how the
required search effort scales with the Hilbert space dimension
of the system under control. Whereas state control and
maximization of observable expectation values have met
with widespread success in experimental and computational
incarnations [2,14], with search effort generally invariant to
the Hilbert space dimension [15,16], the achievement of high-
fidelity unitary transformations has proved more challenging
[5,6,15], especially for large systems.

Recently, a series of fundamental studies has been carried
out on the underlying properties of quantum control land-
scapes, defined as the map between the external control field
and the objective fidelity [8,17–20]. These studies revealed
that under reasonable assumptions and in the absence of
auxiliary costs (e.g., on the field fluence) or constraints,
the control landscape contains no suboptimal extrema, or
“traps” that can hinder a gradient-based local algorithm
for finding an optimal control field. The importance of the
landscape topology to determining the feasibility of quantum
control is beginning to be more widely recognized [12]. The
topology of quantum control landscapes is dominated by
so-called kinematic extremals, which are determined by the
cost function alone and independent of the Hamiltonian used
[17,19,20]. Although the trap-free landscape topology ensures
convergence of unconstrained gradient-based algorithms given
sufficient effort, the topology does not specify the convergence
rate of such algorithms, which additionally depends on the
local landscape structure (e.g., slope and curvature). In this
paper we examine the effects of control landscape features on

012326-11050-2947/2011/83(1)/012326(15) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.012326


MOORE, CHAKRABARTI, RIVIELLO, AND RABITZ PHYSICAL REVIEW A 83, 012326 (2011)

the convergence rate of first-order algorithms for the optimal
generation of unitary transformations. The primary goals
are (i) to assign different Hamiltonians to classes exhibiting
exponential or subexponential scaling with the system size and
(ii) to quantify the effects of the local landscape structure on
the convergence rate.

The paper is organized as follows. In Sec. II, the theoretical
formulation of the control problem is presented, including a
summary of the associated landscape topology. Section III
provides a framework that unifies first-order OCT algorithms
for gate control, demonstrating that the convergence of all
these algorithms is governed by the same underlying landscape
topology. Section IV presents metrics for landscape slope and
curvature, including kinematic bounds, and dynamical metrics
that quantify the effect of the control-system Hamiltonian.
Section V defines the control systems and target propagators
used in the simulations. Section VI presents numerical results
on control optimization search effort and resource scaling with
respect to the Hilbert space dimension and identifies classes
of Hamiltonians exhibiting exponential and subexponential
scaling, while Sec. VII relates search effort and resource
scaling to local landscape structure. Finally, in Sec. VIII, we
draw conclusions from the findings.

II. OPTIMAL CONTROL THEORY

A. Dynamical formulation of the control objective

Consider an N -dimensional isolated quantum system
whose dynamics are governed by the time-dependent
Schrödinger equation,

ih̄
∂U (t)

∂t
= H (κ,t)U (t), U (0,0) ≡ I, (1)

where H (κ,t) is the time-dependent Hamiltonian whose
control variables are denoted as κ . In atomic units, the unitary
propagator at some final time T is

U (T ) = Texp

(
−i

∫ T

0
H (κ,t) dt

)
, (2)

where T is the time-ordering operator and U (T ) is implicitly
understood to be a function of κ , which in this work
is represented by an external control field κ → ε(t). We
consider an isolated quantum system satisfying the dipole
formulation H (κ,t) = H0 − µε(t), where H0 is the field-free
(drift) Hamiltonian and µ is the dipole or control Hamiltonian
operator.

This work concerns the class of control objective
functionals:

J (ε(·)) = F (U (T )). (3)

The end-point control objective F may be defined as guiding
the system’s unitary propagator U to match a prespecified
unitary matrix W . A convenient cost function is to minimize
the Hilbert-Schmidt distance F (U ) = ||W − U ||2,

F (U ) = ||W − U ||2
= Tr[(W − U )†(W − U )]

= 2N − 2ReTr(W †U ), (4)

where the desired minimum1 F = 0 is achieved when U = W ,
and the global maximum F = 4N corresponds to U = −W .
The quantum system is assumed to be controllable such that
any desired U can be generated by some choice of ε(t) at time
T (see Sec. IV E).

In this work, the objective F of Eq. (4) is optimized using
dynamical controls present in an external electric field ε(t).
We consider a controllable quantum system with N levels
|1〉, . . . ,|N〉 in H0. To determine an optimal control ε(t)
that maximizes or minimizes Eq. (3), it is useful to define
a Lagrangian functional J̄ that directly imposes the dynamical
constraint in Eq. (1):

J̄ = 2N − 2Re Tr[W †U (T )]

+
∫ T

0
Tr

[
φ†(t)

(
−i[H0 − µε(t)]U (t) − dU (t)

dt

)]
dt

= 2N − 2Re Tr[W †U (T )] − iTr[φ†(T )U (T )]

+ iTr[φ†(0)U (0)]

+
∫ T

0
H(U (t),φ(t),ε(t)) + Tr

(
dφ†(t)

dt
U (t)

)
dt, (5)

where φ(t) is a Lagrange multiplier matrix function and
φ(T ) = U (T )U †(t)φ(t). Denoting by 〈A,B〉 the Hilbert-
Schmidt inner product Tr(A†B), the first integrand term

H = −〈U †(T )φ(T ),iU †(t)H0U (t)〉
+ ε(t)〈U †(T )φ(T ),iU †(t)µU (t)〉

is the PMP (Pontryagin maximum principle) Hamiltonian
function [21,22]. A necessary condition for maximizing
or minimizing Eq. (3) subject to the dynamical constraint
is satisfaction of the first-order conditions (Euler-Lagrange
equations) for the Lagrangian J̄ [22]. The first Euler-Lagrange
equation is simply the Schrödinger equation (1). The second
Euler-Lagrange equation of (5) is

dφ(t)

dt
= −i[H0 − µε(t)]φ(t), (6)

where φ(T ) satisfies the boundary condition φ(T ) =
∇U (T )F (U (T )). For F (U ) given by Eq. (4), we have [23]

∇U (T )F (U (T ,0)) = U (T )W †U (T ) − W. (7)

The third Euler-Lagrange equation (critical condition) is
∂H

∂ε(t) = 0. For a control system satisfying Eq. (1),

∂H
∂ε(t)

= −iTr[U †(T )φ(T )U †(t)µU (t)]

= −iTr{[W †U (T ) − U †(T )W ]U †(t)µU (t)} = 0.

(8)

Consider the control-propagator map VT : ε(·) �→ U (T ) and
the composition of maps J̃ ≡ F ◦ VT . Then the functional
derivative δJ̃

δε(·) evaluated at time t is denoted as δJ̃
δε(t) = ∂H

∂ε(t) .
For simplicity of exposition, we use the symbols J,ε(t)
interchangeably with J̃ ,ε(·), respectively, and refer simply
to the derivative δJ

δε(t) . Control fields that satisfy Eqs. (1),

1The minimum of F corresponds to gate fidelity 1
N

ReTr(W †U ) = 1.
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(6), and (8) constitute the critical points of the control
landscape J (ε). Since the problem minε(t) J with J given
by (3) is underdetermined, these critical points lie on critical
submanifolds, each consisting of an infinite number of fields
which produce the same value of J .

B. Critical topology of J

The matrix −iU (T )U †(t)µU (t) which appears in Eq. (8)
is the functional derivative δU (T )

δε(t) . A simplifying condition that
facilitates extraction of the critical topology of J (e(·)) is that
the N2 × N2 Hermitian Gramian matrix

G =
∫ T

0
ν[U (T )µ(t)]νT [µ(t)U †(T )] dt (9)

is full rank [24]. Here, ν denotes the “vectorization”
of an N × N complex matrix into an N2-component
complex vector and µ(t) = −iU †(t)µU (t). Note Gij,kl =∫ T

0 〈i|U (T )µ(t)|j 〉〈k|µ(t)U †(T )|l〉dt . Satisfaction of the full-
rank condition ensures that (8), which may be writ-
ten 〈∇F (U (T )), δU (T )

δε(t) 〉 = 0, implies ∇F (U (T )) = 0 (see
Sec. IV B). The condition is verified numerically for diverse
classes of quantum control systems in Sec. VII.

When this condition is satisfied, the critical topology
(number of local optima and their optimality status) of the
control landscape J (ε(t)) is equivalent to that of F (U ) in
Eq. (4) [19,25]. The control-propagator map VT associates
with each critical submanifold of F (U ) a critical submanifold
of J (ε(·)) whose number of positive and negative Hessian
eigenvalues is identical, but which has an infinite-dimensional
null-space [20]. The topology may thus be analyzed by
considering the kinematic degrees of freedom, using for
example, the N2 matrix elements of U as controls. It has
been shown that there are N + 1 distinct critical values of
F = 2N − 2ReTr(W †Û ), F = 0,4,8, . . . ,4N corresponding
to critical points Û , where ∇F (Û ) = 0 [19,25]. The topology
of these critical points can be determined by considering the
Hessian operator H of F ,

Hij (W †Û ) = ∂2F

∂xi∂xj

, (10)

where the {xi} are a suitable set of local kinematic coordinates
around the critical point Û . Of interest is the number of the
positive, negative, and zero eigenvalues of the Hessian at Û ,
which correspond to the number of upward, downward, and
flat directions at that point.

The Hessian eigenvalue enumeration may be obtained from
the Hessian quadratic form (HQF) Q of F :

QA(W †Û ) = 4ReTr(A2W †Û ), (11)

where A is an infinitesimal Hermitian matrix [25]. At a critical
point, it may be shown [25] that

W †Û = R

N∑
k=1

δk|k〉〈k|R†, (12)

for some unitary R and where δi = ±1. Evaluating the HQF
explicitly at a critical point and writing the elements of A as
Aij ≡ αij + iβij yields N2 terms (N terms in the first sum and

N2 − N terms in the second sum) corresponding to the N2

eigenvalues of the Hessian [25],

QA(W †Û ) = 4

⎡
⎣ N∑

j=1

α2
jj δj +

∑
1�k<	�N

(
α2

kl + β2
k	

)
(δk + δ	)

⎤
⎦.

(13)

The sign of each term in Eq. (13) corresponds to the sign
of each Hessian eigenvalue. It has been shown [25,26] that
for a critical point with an objective value of F = 4m for
m = 0,1,2, . . . ,N , the number of positive (h+), negative (h−),
and zero (h0) type of eigenvalue is

h+ = (N − m)2; h− = m2; h0 = 2Nm − 2m2. (14)

For F = 0, m = 0, there are N2 positive eigenvalues,
indicating that the optimum is an isolated point. Similarly, for
F = 4N , where m = N , there are N2 negative eigenvalues.
For intermediate values of F , there are a mixture of positive,
negative, and zero eigenvalues, indicating that all intermediate
critical points have a saddle topology. For example, at F = 4,
m = 1, and h+ = (N − 4)2, h− = 1, and h0 = 2N − 2. As-
suming that minimization of F is desired, this saddle point may
be expected to pose a hindrance to search effort, as there is only
one direction out of N2 leading down to the global minimum.
The higher saddles contain more negative eigenvalues and thus
are expected to pose less of a hindrance in search effort. This
matter is examined in Sec. VI A.

III. OPTIMIZATION METHODS

For unitary transformation control, deterministic first-order
algorithms are typically used for control optimization. In
this section we compare these first-order algorithms and
demonstrate that they share a common fixed-point topology.
In Sec. IV we extend these results to demonstrate that the
algorithms share common bounds on their convergence rates
to identify optimal controls.

The simplest first-order algorithm is the gradient flow of
the objective function. Using the variable s to index the search
path, the gradient flow trajectory is the solution ε(s,t) to the
initial value problem,

∂ε(s,t)

∂s
= α(s)

δJ (ε)

δε(s,t)
, (15)

for a specified initial guess for the control ε(0,t), where
α(s) is an adaptive step size. Associated with the control
field trajectory ε(s,t) is a trajectory for U (s,T ) in U(N )
for the final dynamical propagator, which is induced by the
control-propagator map VT . In the numerical simulations in
this work, Eq. (15) will be solved using a variable-step-size
fourth-order Runge-Kutta integrator built into MATLAB [27].
A primary concern in this paper is the convergence rate of
such algorithms, whose fixed points include all ε(t) such that
U (T ) = Û in Eq. (12).

As s → ∞, ε(s,t) converges toward stable fixed points
ε̄(t) that are critical points of J . These points are neutrally
stable; that is, within any neighborhood N of ε̄(t) consisting
of controls ε(t) such that

||ε(t) − ε̄(t)|| � ε,
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there exists a subneighborhood N ′ ⊂ N such that if ε(0,t) ∈
N ′, ε(s,t) ∈ N for all s.

The neutrally stable ε̄(t) solutions are the global optima of
J , which can be seen from the corresponding trajectory U (s,T )
induced by the map VT . U (s,T ) converges to asymptotically
stable fixed points that are optima of F (U ) points Û such that

||U (0,T ) − Û || < δ ⇒ lim
s→∞U (s,T ) = Û

for some δ that is equal to the radius of the attracting region
of the fixed point. The latter are the critical points identified
in Eq. (12) with positive definite Hessian (13), and according
to (14), the only critical point satisfying this criterion is the
unique global optimum W . Due to the asymptotic stability of
Û = W , any ε(0,t) such that U (0,T ) = VT (ε(0,t)) is within
the attracting region of W will converge to a neutrally stable
fixed point ε̄(t) that lies on the global optimum submanifold
of J . The instability of fixed points ε̂(t) lying on other critical
submanifolds with J > 0 follows from the indefiniteness of
the HQF at Û 
= W .

Many unitary control studies use so-called PMP-iterative
algorithms [28], which can be formulated only in discrete
time. These algorithms iteratively integrate Eqs. (6) and
(1) at each step k, using control fields ε̃k(t) = αkεk−1(t) +
βk〈φk(t)|µ|Uk−1(t)〉, εk(t) = αkε̃k(t) + βk〈φk(t)|µ|Uk(t)〉, re-
spectively, where α,β are scalars. The fixed points of these
algorithms are points on the control landscape where εk − ε̃k =
0 or ε̃k − εk−1 = 0. In Appendix A we show that under
appropriate regularity conditions the only neutrally stable ε̄(t)
lie on the global optimum submanifold where U (T ) = W . A
third class of gate control optimization algorithms consists
of first-order tracking algorithms which follow a prescribed
path in the space of propagators to the target gate; these
have been shown to be capable of achieving gate fidelities
approaching machine precision [23]. In this work we focus
on the application of steepest descent algorithms (15), due to
the mathematical convenience of formulating convergence to
a stable fixed point for these continuous time algorithms, but
our conclusions on convergence efficiency are applicable to
PMP-iterative and tracking algorithms as well.

IV. LANDSCAPE STRUCTURE METRICS

The landscape topology summarized in Sec. IV B suggests
that an optimal field to achieve a desired unitary transformation
may be readily found because no suboptimal extrema exist
on the landscape. This attractive behavior does not preclude
the possibility that complicated landscape features, including
strong influence by saddle regions, may impede optimal
searches. Thus, an understanding of the effects of the local
landscape structure on optimal searches is necessary in order
to explain and predict the scaling of search effort with system
size N . We introduce landscape metrics and show that the same
landscape local structural features govern the convergence of
PMP-iterative and gradient-based algorithms.

A. First-order metrics

The local structure metrics of the landscape are based
on a Taylor expansion J (ε(s,t) + δε(s,t)) = J (ε(s,t)) +∫ T

0 ∇εJ (ε)δε(s,t) dt+ 1
2

∫ T

0

∫ T

0 H(t,t ′)δε(s,t)δε(s,t ′) dtdt ′ +

· · · of the cost functional J with respect to ε(s,t). The slope
metric Gm at a point sm on the landscape is defined as

Gm = ∇J |m · −→
um ≡ ||∇J |m|| =

[∫ T

0
dt

(
δJ

δε(sm,t)

)2
]1/2

,

(16)

where the unit gradient vector is −→
um ≡

−→∇ J |m
||∇J |m|| . The metric

Gm is thus equivalent to the magnitude of the gradient on the
landscape at the mth point. Beginning from the expression in
Eq. (16), Gm at any point m is bounded by

|∇J (ε(t))|

=
(∫ T

0
dt |Tr{(W †U (T ) − U (T )†W )µ(t)}|2

)1/2

�
(∫ T

0
dt[|〈W †U (T ),µ(t)〉 + 〈U †(T )W,µ(t)〉|]2

)1/2

�
(∫ T

0
dt[||W †U (T )||||µ(t)||+||U †(T )W ||||µ(t)||]2

)
1/2

= 2
√

NT ||µ||. (17)

In the preceding, the Cauchy-Schwarz inequality is used twice.
A greater value of Gm at m = 0,1,2, . . . results in a locally
faster descent.

We can also establish a bound on |εk(t) − ε̃k(t)| in PMP-
iterative algorithms (see Appendix A):

|〈φk(t)|µ|Uk−1(t)〉|
= |Tr{U †

k (T )[W − Uk−1(T )W †Uk−1(T )U †
k (T )],

×U
†
k−1(t)µUk(t)〉}|

� ||Uk(t)U †
k (T )WUk−1(t)||||µ||

+ ||Uk(t)U †
k (T )Uk−1(T )W †Uk−1(T )Uk−1(t)||||µ||

� 2
√

N ||µ|| .
Thus,

||ε(k)(t) − ε̄(k)(t)|| � 2
√

NT ||µ|| .
In PMP-iterative algorithms, the bound on the increment in the
field for infinitesimally small step length is equivalent to that
for steepest descent with a Mayer cost.

B. Second-order metrics

From the second variation of the objective functional J , we
may derive the Hessian kernel; the elements of the Hessian are
given by [23]

H(t,t ′) = Tr{W †U (T )µ(t)µ(t ′) + U †(T )Wµ(t ′)µ(t)

+ [W †U (T ) − U †(T )W ][µ(t),µ(t ′)]}. (18)

At a critical point, the last term of Eq. (18) drops out. The
relationship between the HQF expression (11) and (18) is
described in Appendix B.

In the steepest descent algorithms, according to the gradient
expression (8), δε(t) is composed of linear combinations of the
real and imaginary components of µij (t). The eigenvalues of
the Hessian (18) specify the rates at which new frequency
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modes required for optimal control [contained within the
eigenfunctions of H(t,t ′)] can be added to δε(t). Thus, several
bounds on the Hessian are given in what follows.

The Hessian trace or mean curvature is given by

TrH(t,t ′) =
∫ T

0
dtH(t,t). (19)

At a critical point,

TrH(t,t ′) =
∫ T

0
dtTr[W †U (T )U †(t)µU (t)U †(t)µU (t)

+U †(T )WU †(t)µU (t)U †(t)µU (t)]

=
∫ T

0
dtTr[W †U (T )U †(t)µ2U (t)

+U (T )W †U †(t)µ2U (t)]. (20)

At J = 0, W †U (T ) = IN , and Eq. (20) becomes

TrH(t,t ′)
∣∣
J=0 = 2

∫ T

0
dtTr[U †(t)µ2U (t)]

= 2
∫ T

0
dtTr[U †(t)U (t)µ2]

= 2T Trµ2, (21)

where the second step uses the cyclic permutation trace rule.
Similarly, at the maximum J = 4N , the trace is given by the
negative value of Eq. (21).

We can also calculate a bound on Hessian mean curvature
away from a critical point:

Tr[H(t,t ′)] =
∫ T

0
dtTr[W †U (T )U †(t)µ2U (t)

+U (T )W †U (t)µ2U (t)]

� =
∫ T

0
dt[||W †U (T )||||µ(t)2||

+ ||U †(T )W ||||µ(t)2||]
= 2

√
NT ||µ2||.

Finally, we consider the local curvature, or the projection
of the Hessian matrix on to the normalized gradient vector −→

um,

Cm = −→
um · H · −→

um
′. (22)

The curvature near the optimum may influence the required
search effort by determining the ease of convergence to the
optimum. Note that since the gradient and Hessian can be
expressed in terms of the same N2 basis functions of time,
only L2 inner products of components of the time-evolved
dipole operator contribute to the local curvature of the control
landscape.

C. Distance metrics

On a search trajectory, the field starts out at algorithmic
index s = 0 with ε(0,t) and progresses in steps s → s + ds

[i.e., ε(s,t) → ε(s + ds,t)] until the trajectory ends at an
optimal field, εopt = ε(sM,t) at s = sM . The complexity of
the search may be characterized by the ratio of the trajectory

path length ||�P ε(t)|| to the Euclidian distance between initial
and final control fields ||�Eε(t)||,

Rε = ||�P ε(t)||
||�Eε(t)|| =

∫ sM

0 ds
( ∫ T

0 dt
[

dε(s,t)
ds

]2 )1/2( ∫ T

0 dt [ε(sM,t) − ε(0,t)]2
)1/2 . (23)

The closer Rε is to unity, then the more direct is the
path, that is, the closer the path is to a straight line in search
space. This metric will be used to assess the complexity of the
search trajectories followed during optimizations.

Since the presence of saddle manifolds on the landscape
may influence the efficiency of an optimal search, the distance
of points on the search trajectory to the nearest saddle also
provides important structural information. This distance may
be measured by examining the eigenvalues of the matrix V =
W †U , since these eigenvalues are all ±1 at any saddle (all +1
at J = 0 and all −1 at J = 4N ). If Ei are the eigenvalues of
V , a convenient metric to express the distance to the nearest
saddle is

S = N
N∑

i=1

(1 − |ReEi |), (24)

where the normalization factor N is N = 2/J if J � 2N

and N = 2/(4N − J ) if J > 2N , which makes the maximal
allowed value of S equal to 1 for any J value. Finding that S is
close to zero near the saddle values (J = 4,8,12, . . .) indicates
that the search trajectory encounters the saddle manifold at this
J value. The effects of search trajectories approaching saddle
manifolds are examined in detail in Sec. VI A.

D. Gramian matrix

Unlike the Hessian, which depends on F (U ) as well as the
system Hamiltonian, the Gramian matrix Gε,T (9) provides
a means of characterizing purely dynamical effects on the
optimization trajectory. Consider the equation for the con-
trolled propagator U (s,T ) corresponding to the gradient flow
(15). Denoting by u(s,T ) the vectorization of the propagator
U (s,T ), we have [24]

∂u(s,T )

∂s
= Gεs,T ∇uF (u(s,T )), (25)

from which it can be seen that Gε,T is a linear map between
vectors in TUU (N ) and all system-dependent effects. The
eigenvectors of the Gramian are N2 orthogonal directions
in the tangent space to the unitary group TUU (N ). The
magnitudes of the eigenvalues of Gε,T represent the dynamical
contributions of the corresponding orthogonal directions in
TUU (N ) to the propagator variation δU (s,T ) induced by the
gradient flow control variation δε(s,t).

If the eigenvalues of Gε,T are always sufficiently far from
zero, corresponding to a well-conditioned matrix, then || δJ

δε(t) ||
can be infinitesimally small only near the global optimum
submanifold, irrespective of the direction of ∇UF (U (T )),
which facilitates convergence. This can be seen as follows:
The critical point condition ∇J = 0 implies〈

∇UF (U (T )),
δU (T )

δε(t)

〉
= 0,∀ t ;
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then if ∇UF (U ) 
= 0 at a critical point, then rankGε,T < N2.
Since the only neutrally stable fixed points of flow (15) lie on
the global optimum manifold, the claim holds.

More generally, control systems for which the expected
values of the condition number of Gε,T are low near the
global optima typically exhibit faster convergence, as shown in
Sec. VII. A special case is where Gε,T is degenerate; then, the
dynamical contribution of each eigenvector in TUU (N ) con-
tributes equally when the control variation is integrated over
time and convergence is governed by the kinematic gradient.2

E. Higher-order analysis

The preceding metrics and associated bounds characterize
the local properties of the control landscape. Properties of the
global solution to the gate control problem can be analyzed
using the Dyson series expansion for the controlled unitary
propagator in the interaction picture [29]:

UI (T ) = IN + i

∫ T

0
V †(t1)µV (t1)ε(t1) dt1

+
∫ T

0
V †(t1)µV (t1)ε(t1)

×
∫ t1

0
V †(t2)µV (t2)ε(t2) dt2dt1 + · · · , (26)

where V (t) = exp(−iH0t). The nth term in the Dyson expan-
sion corresponds physically to the set of possible n-photon
transition pathways between eigenstates over time [0,T ].
Note that each successive term in (26) contains higher-order
products of exp(iH0t)µ exp(−iH0t) and ε(t) than the previous
terms. For any bounded field fluence

∫ T

0 ε2(t) dt and tolerance
c, the series converges to UI (T ) at some finite order [29].

The matrices H0 and µ, which define the control system,
also fully determine the minimal order in series (26) required
to produce any given W . Let L{H0,µ} denote the dynamical
Lie algebra of the quantum control system, that is, the Lie
algebra spanned by repeated commutators of H0 and µ:

L{H0,µ} = span{Hik , . . . ,{Hi2 ,Hi1}},Hi ∈ {H0,µ}.
Beyond some critical k (called the depth of L), which depends
on the control system, the dynamical Lie algebra saturates [4].
For bilinear quantum control systems, a sufficient condition
for full controllability, that is, the existence of a control
field ε(t) such that the corresponding U (T ) induced by
the Schrödinger equation can be any unitary matrix, is that
rankL{H0,µ} = N2 [4,30].

Higher-order terms in series (26) correspond to higher-order
commutators and hence generally require higher field fluences
(higher amplitudes of the corresponding Fourier modes). If

2In prior work on gate control optimization, the target gate W was
sometimes chosen to reside in a subspace of the dynamical Hilbert
space [5,6]. In this case, operators on the Hilbert subspace need not be
unitary (rather, they belong to the class of Kraus operators or positive
trace-preserving maps), and Hamiltonian-dependent contributions to
optimization efficiency are governed primarily by the eigenvalues of
the Gramian matrix (9) on that subspace rather than the entire Hilbert
space.

these amplitudes in ε(t) are below certain minimal values
required for the corresponding Dyson series terms to be
non-negligible, it is not possible for the field to be a solution
to the gate control problem. In general, systems with control
Hamiltonian (dipole) operators µ that systematically exclude
distant transitions require higher-order terms in the Dyson
series to reach any arbitrary gate W , which increases the
nonlinearity of the optimization problem for these control
systems with greater Lie algebra depth k. This results in
the optimal controls ε̄(t) containing more frequency modes,
corresponding to more complex control mechanisms [29]. In
Secs. VI and VII, we demonstrate that optimizing with control
Hamiltonians with weak or forbidden transitions between
distant quantum states yields higher-fluence and more complex
optimal controls ε̄(t), which require a greater algorithmic
search effort to find.

Equation (26) also determines when the Gramian matrix (9)
may be nonsingular. Only for controls ε(t) where all the terms
in the Dyson series required for full controllability of a given
H0 and µ have become populated can the Gramian matrix be
well conditioned. This is quantified by the relation3

rankGε,T � rankL{H0,µ}.
In Sec. VII, the effects of control-system Hamiltonians on
Gramian condition number are studied numerically.

V. CONTROL SYSTEMS

An exhaustive sampling of system structures for the drift
Hamiltonian H0 and the control Hamiltonian µ is impractical.
Here we choose two H0 and four µ structures motivated by
common propagator control systems, which differ qualitatively
in their Lie algebra depth, as described in Sec. IV E. The
goal is to provide an overview of search behavior that might
be expected without making any specific predictions for the
behavior of any particular quantum system. In order to delimit
the space of drift and control Hamiltonians studied, only
diagonal H0 structures are considered, with structural variation
restricted to the control Hamiltonians µ. Although control
systems requiring multiple fields to ensure controllability
(e.g., coupled spin systems) may be used to realize quantum
computation [11], we consider only systems controllable by
a single field here so that the search behavior across different
systems can be directly compared.

We consider an N -level quantum system in arbitrary
dimensionless units. Two model systems with H0 in its
diagonal basis are considered. The first is that of a rigid rotor,

H0 =
N−1∑
j=0

1

2
j (j + 1) |j 〉〈j |, (27)

and the second is that of an anharmonic oscillator,

H0 =
N−1∑
j=0

[
ω(j + 1/2) − ω2

D (j + 1/2)2

]
|j 〉〈j |, (28)

with ω = 20 and D = 2000.

3We prove this result, as well as other necessary conditions for
nonsingularity of the Gramian, in a separate work [31].
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Four physically relevant real matrix control Hamiltonian
structures µ will be considered, paired with one of the two
preceding H0 structures. Control Hamiltonians of different
matrix distributions of off-diagonal elements were chosen
because of their different Lie algebra depths and optimal
control mechanisms, as discussed in Sec. IV E. All of the
control Hamiltonian structures used here have nonzero trace
in order to make the systems controllable on U (N ) and not
only on SU(N ). For many physical systems the coupling
between states decreases as the difference between the quan-
tum numbers of the states increases, and the first choice
of µ takes this property into account, with the following
structure:

µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 1 D D2 . . . DN−2

1 α 1 D . . . DN−3

D 1 α 1 . . . DN−4

D2 D 1 α . . . DN−5

...
...

...
...

. . .
...

DN−2 DN−3 DN−4 DN−5 . . . α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(29)

where α > 0, D ∈ [0,1] is the coupling parameter, and all
elements of µ have a random phase of ±1 with the restriction
that µ remains symmetric. This “D” structure qualitatively
corresponds to diatomic molecules and other anharmonic
vibrational systems. The second control Hamiltonian structure
examined is the related “banded” structure where a fixed
number of rows nearest to the diagonal have elements of
±1 with the remaining rows having elements of zero; the
extreme of having only one row with allowed transitions
qualitatively corresponds to a harmonic oscillator or rigid
rotor. Third, we consider a “sparse” structure with 50% of
the off-diagonal elements randomly chosen as ±1 and the
remaining 50% of the off-diagonal elements being zero, while
maintaining µ as symmetric. Sparse control Hamiltonians
with fewer than 50% allowed couplings are examined as
well in Sec. VI C. Control Hamiltonian structures containing
some allowed and some forbidden transitions qualitatively
correspond to coupled-spin system qubit structures commonly
used in quantum computation, although only certain specified
distributions of couplings are allowed for qubit systems. In
order to investigate the search effort for systems with such
control operators, we consider a “tensor product” control
Hamiltonian on n qubits,

µ =
n∑

j=1

σ j
x + αI, (30)

where the diagonal matrix is added to make the system
controllable on U (N ) and σ

j
x is

σ j
x = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗ σx ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j

.

We consider pairings of this µ with the diagonal H0 operators
given earlier.4

As we demonstrate in Secs. VI and VII, the distribution of
couplings between states is important for assessing the scaling
of effort with N . With this in mind, comparing the sparse and
tensor product structures µ reveals some important differences,
for example at N = 8:

µtensor =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 1 1 0 1 0 0 0
1 α 0 1 0 1 0 0
1 0 α 1 0 0 1 0
0 1 1 α 0 0 0 1
1 0 0 0 α 1 1 0
0 1 0 0 1 α 0 1
0 0 1 0 1 0 α 1
0 0 0 1 0 1 1 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

µsparse =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 1 0 0 1 1 0 1
1 α 1 1 1 0 0 1
0 1 α 0 1 0 0 0
0 1 0 α 0 1 1 1
1 1 1 0 α 0 1 0
1 0 0 1 0 α 0 1
0 0 0 1 1 0 α 0
1 1 0 1 0 1 0 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

While each operator has an equal number of allowed transi-
tions, the tensor product structure allows no transitions more
than four states apart (note the zeros in the upper-right and
lower-left corners of the matrix). The sparse µ example shown,
in contrast, allows transitions between states |1〉 and |8〉, as well
as some other transitions five or more states apart. Structural
differences in coupling distributions are even more evident
at N = 16 and N = 32. We thus define two distinct classes
of control Hamiltonians: those that allow distant transitions,
including the D = 1.0 and sparse structures, and those
that forbid or have very weak distant transitions, including
D < 1.0, banded, and tensor product structures. The differ-
ences in coupling distributions between these two classes
influence the required search effort, as is shown in Secs. VI
and VII.

The simulations consider both random Haar-distributed
unitary W matrices [32] and the Fourier transform quantum
gate,

WFT,n(j,k) = 1

2n
exp

(
2πi · j ∗ k

2n

)
, (32)

where j and k denote the matrix elements and run from 1 to
N = 2n.

The initial field at s = 0 is chosen as

ε(0,t) = f exp

[
−8π

T 2

(
t − T

2

)2
]

×
K∑

k=1

sin (ωkt + φk) , t ∈ [0, T ], (33)

4Systems with multiple control fields, each associated with a
different Pauli operator (required for full controllability of coupled
spins), are considered in a separate work.
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where {ωk} are the K Fourier components of the field, which
are selected randomly and bounded by the frequency of the
|1〉 → |N〉 transition in H0, φ is a random phase on [0,2π ],
and f 2 is the field fluence. Prior to multiplication by f , the
field is normalized to have unit fluence.

VI. CONTROL SEARCH COMPLEXITY

The search effort required to find an optimal field ε(t)
has important implications for determining the feasibility of
controlling the dynamics of complex systems. In Sec. VI A, the
influence of the saddle-point topology of the control landscape
is assessed. In Sec. VI B, we examine the search effort as a
function of N for a broad range of choices of H0, µ, initial
field strength f , and W . Further exploration of the control
Hamiltonian structure’s effect on search effort in Sec. VI C
identifies control Hamiltonian properties that result in the most
efficient searches. Details of the numerical parameters in the
simulations are given in Appendix C.

A. Influence of landscape saddle-point topology

The simulations in this section address how the landscape
topology, which is primarily determined by the kinematic
cost function F , influences the behavior of gradient-based
optimizations for systems of dimension up to N = 8. In
particular, we examine the extent to which the saddle manifolds
influence the search trajectory and whether the saddle effects
are dependent on the choice of W or the initial control field.
The Hamiltonian H0 is given by Eq. (27) and µ given by
Eq. (29) with D = 1.0, 0.9, or 0.6.

The trajectories of three searches for N = 4 are shown in
Fig. 1. Comparison of the saddle metric S [cf. Eq. (24)] in
the right panel with the optimization trajectories in the left
panel shows that interaction with saddles retards convergence
to the optimum. Examination of the trajectory of the Hessian
eigenvalues during the search confirms interaction with a
saddle manifold. The Hessian eigenvalues of the search
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FIG. 1. Sample search trajectories for N = 4. (Left panel) J value
versus iteration. The solid-line trajectory goes directly from the initial
J value to J = 0, while the dashed and dotted trajectories slow down
at J = 4 and J = 8, respectively, suggesting interaction with the
corresponding saddles. (Right panel) Saddle metric versus J for the
same searches.
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FIG. 2. Hessian eigenvalues versus J value for the dashed-line
trajectory of Fig. 1. This search encountered the J = 4 saddle, shown
by the 9 positive Hessian eigenvalues (labeled by large circles) and
one negative eigenvalue (labeled by a square). At the optimum, there
are 16 positive Hessian eigenvalues (small circles). All values are
unitless.

interacting with the J = 4 saddle are shown versus J in
Fig. 2. At J = 4 (dotted vertical line), there are nine positive
eigenvalues (marked by circles) and one negative eigenvalue
(marked by a square), in agreement with the Hessian spectrum
derived in Eq. (14). Furthermore, at the optimum J = 0,
there are 16 positive Hessian eigenvalues (marked by small
circles), in agreement with the maximally allowed N2 positive
eigenvalues. The remaining Hessian eigenvalues are null, as
predicted [19,25].

Table I presents statistics on optimizations using a variety
of conditions. One thousand searches starting from different
initial fields were used to generate the statistics. Shown are the
required search effort (defined as the number of algorithmic
iterations to reach J < 10−6 × Jmax), as well as the fraction
of searches that interact with saddles. Three degrees of saddle
interaction are examined: S < 0.1, S < 0.05, and S < 0.01.
The probability of saddle interaction decreases with rising
Hilbert space dimension N , such that by N = 8, negligibly few
searches have strong interactions with saddles. The decrease
in saddle interactions as N rises is favorable to performing
large-scale unitary transformation optimizations.

B. Scaling of effort with N

Simulations were performed for N = 2, 4, 8, 16, and 32
with a statistical sample size of 20 (with the exception for some
cases of N = 32, where a single optimization was performed)
and a convergence criterion of J < 10−3 × Jmax. The mean
search effort with statistical error is shown in Table II for
all optimizations. The effort is plotted versus N for D = 1.0,
0.9, sparse, and tensor product structures µ with rotor H0 in
Fig. 3. The observed scaling of effort for a fixed µ structure is
similar for both the rotor [Eq. (27)] and oscillator [Eq. (28)] H0

structures, as seen in Table II. The search effort scaling was
found to be strongly dependent on the control Hamiltonian
structure. For D = 1.0 or sparse µ, that is, the class that allows
distant transitions between states, the effort scales slowly with
N . In contrast, for the D < 1.0 and tensor product structure
[Eq. (30)], that is, the class that forbids or has weak distant
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TABLE I. Search effort mean and standard deviation and probability of encountering saddles. For the column labeled W , IN denotes the
N -dimensional identity matrix and FT denotes the quantum Fourier transform gate. f denotes the initial field strength. Effort is the number of
iterations required to achieve J < 10−6 × Jmax. The last three columns show the fraction of searches to encounter saddle manifolds to within
S values of 0.1, 0.05, and 0.01; the numbers in parentheses denote the mean search effort for searches that encountered these saddles.

N D W f Effort S < 0.1 S < 0.05 S < 0.01

2 1.0 IN 10 31.3 ± 16.1 0.193(36.5) 0.102(40.6) 0.030(50.7)
0.1 32.6 ± 2.2 0

Random 10 36.8 ± 15.7 0.180(38.5) 0.108(39.5) 0.026(42.5)
0.1 28.5 ± 2.8 0.244(29.9) 0.135(30.4) 0.038(31.8)

FT 10 39.7 ± 16.6 0.198(40.6) 0.108(42.4) 0.031(47.3)
0.1 23.9 ± 3.4 0.110(27.7) 0.028(29.0) 0

4 1.0 IN 10 43.9 ± 15.6 0.081(52.6) 0.027(53.4) 0.003(43)
0.1 47.2 ± 8.2 0.076(63.6) 0.036(78.6) 0.002(86)

Random 10 40.6 ± 10.1 0.078(46.4) 0.028(50.5) 0.002(52)
0.1 38.7 ± 6.9 0.032(43.4) 0.013(46.7) 0

FT 10 47.5 ± 19.3 0.085(52.6) 0.039(53) 0.003(59)
0.1 45.9 ± 13.8 0.277(46.5) 0.059(48.2) 0

0.6 FT 10 51.1 ± 13.5 0.043(58.5) 0.012(58.6) 0.001(61)
0.1 45.1 ± 8.9 0.044(50.1) 0.016(53.4) 0.003(62)

Random 10 41.9 ± 11.8 0.043(58.5) 0.012(58.6) 0.001(61)
0.1 37.7 ± 7.0 0.033(43) 0.019(43.5) 0.001(35)

8 1.0 IN 10 49.9 ± 6.7 0.027(55.2) 0.009(57.4) 0
0.1 74.9 ± 13.8 0.010(84.4) 0.005(83.2) 0

Random 10 46.8 ± 5.6 0.022(54.2) 0.006(53) 0
0.1 57.9 ± 5.3 0.005(64.2) 0.001(61) 0

FT 10 48.1 ± 5.9 0.027(53.7) 0.008(53.1) 0
0.1 59.9 ± 6.4 0.109(63.3) 0.016(66.3) 0

transitions, the effort scales exponentially with N , as shown
by the least-squares-fit lines on the semilog plot for D = 0.9
and tensor product µ structures in Fig. 3.

The fluence of the initial field has some effect on the
absolute search effort, but not on its scaling with N (columns
4 and 5 of Table II). Increasing the fluence cannot overcome
exponential scaling for the class of control Hamiltonians that
forbids distant transitions. The effort can be reduced to some
extent by allowing T to scale with N (Table II), in agreement
with the conclusion that longer control times are needed for
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FIG. 3. Mean search effort (algorithmic iterations) with left and
right standard deviation versus N for rotor H0 with µ structures
D = 1.0 (squares), D = 0.9 (circles), sparse (up triangles), and tensor
product (right triangles).

systems that have few accessible control pathways [33], but
the effort still scales exponentially with N . The choice of W

(i.e., random unitary or FT gate) does not greatly affect the
search effort, as shown by comparing the effort to find the FT
gate or a random W using the sparse µ structure.

C. Control Hamiltonian structure and search effort

Of all the search parameters explored earlier, only the
control Hamiltonian structure has a systematic effect on the
scaling of the search effort with N . In order to determine
the effects of the structure of µ for fixed N (here N = 8),
we compared control Hamiltonians with D = 1.0, 0.9, 0.75,
and 0.6, randomly generated sparse structures with 14, 10, or 8
allowed transitions, and banded control Hamiltonian structures
where 2, 3, or 4 rows nearest to the diagonal contain allowed
transitions. The resulting search effort is plotted versus the
norm ||µ|| in Fig. 4, which clearly shows that ||µ|| does
not determine search effort. Rather, the distribution of strong
couplings between states is important.

For a given value of ||µ||, the banded structure has the great-
est search effort, followed by the D structure, and the sparse
structure has the smallest search effort. For approximately the
same value of ||µ|| � 5, the search effort varies by over a
factor of 10, from 70 iterations for the sparse structure (14
transitions), through 100 iterations for the D = 0.75 structure,
to 1200 iterations for the banded structure with two rows
of allowed transitions (13 transitions). This indicates that
systematic exclusion or suppression of transitions between
distant states while allowing only transitions between near
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TABLE II. Scaling of search effort with N for different choices of H0, µ structure, initial field strength f , time T , and target W .

N µ H0 Effort, f = 10 Effort, f = 10−4 Effort, f = 103 H0 Effort, f = 10

2 D = 1.0 Rotor 24.3 ± 6.3 15.4 ± 2.5 106 ± 65 Oscillator 16.4 ± 2.5
4 D = 1.0 Rotor 26.8 ± 4.5 31.4 ± 5.8 182 ± 120 Oscillator 24.1 ± 2.8
8 D = 1.0 Rotor 30.8 ± 3.3 38.4 ± 4.4 54.4 ± 9.5 Oscillator 23.9 ± 2.5
16 D = 1.0 Rotor 36.9 ± 3.5 45.1 ± 2.6 35.8 ± 3.1 Oscillator 26.7 ± 2.7
32 D = 1.0 Rotor 45.1 ± 4.9 Oscillator 53.9 ± 3.3
4 D = 0.9 Rotor 27.6 ± 5.2 28.1 ± 4.6 80.1 ± 48.1 Oscillator 25.6 ± 4.8
8 D = 0.9 Rotor 36.2 ± 3.6 41.1 ± 5.5 56.8 ± 8.9 Oscillator 29.7 ± 2.7
16 D = 0.9 Rotor 56.9 ± 4.4 64.2 ± 4.7 58.7 ± 6.8 Oscillator 40.3 ± 4.1
32 D = 0.9 Rotor 182 Oscillator 358
4 D = 0.6 Rotor 37.0 ± 6.9 32.8 ± 6.5 66.9 ± 18.1 Oscillator 34.5 ± 6.9
8 D = 0.6 Rotor 90.4 ± 17.3 94.2 ± 14.3 116 ± 29 Oscillator 90.9 ± 7.7
16 D = 0.6 Rotor 2169 1040 Oscillator 651 ± 134
4 Sparse Rotor 35.6 ± 7.7 140 ± 73 120 ± 52 Oscillator 31.3 ± 5.9
8 Sparse Rotor 42.3 ± 4.6 58.6 ± 6.9 60.8 ± 9.3 Oscillator 42.9 ± 4.6
16 Sparse Rotor 50.8 ± 4.6 70.1 ± 4.8 45.9 ± 3.2 Oscillator 41.9 ± 2.8
32 Sparse Rotor 60.2 ± 3.9 Oscillator 77.2 ± 1.9

N µ H0 Effort, f = 10 H0 Effort, f = 10

4 Tensor product Rotor 33.7 ± 6.2 Oscillator 27.5 ± 4.8
8 Tensor product Rotor 50.4 ± 5.3 Oscillator 61.2 ± 9.4
16 Tensor product Rotor 109.8 ± 10.8 Oscillator 143.6 ± 15.5
32 Tensor product Rotor 327 Oscillator 916

N µ H0 Effort, f = 10 Comment

2 D = 1.0 Rotor 27.5 ± 7.7 FT gate
4 Sparse Rotor 30.8 ± 7.9 FT gate
8 Sparse Rotor 49.7 ± 4.7 FT gate
16 Sparse Rotor 50.5 ± 4.7 FT gate
32 Sparse Rotor 61.9 ± 3.6 FT gate
4 D = 0.6 Rotor 20.8 ± 2.7 T = 28
8 D = 0.6 Rotor 39.0 ± 6.7 T = 56
16 D = 0.6 Rotor 234 ± 30 T = 112

states raises the search effort, compared to having an equal
number of allowed transitions that include some distant
transitions. Thus, the control Hamiltonian class that allows
distant transitions is expected to have a lower search effort than
the class that forbids distant transitions. This observation is
consistent with the observed exponential scaling of the search
effort with N for D < 1 and tensor product structures. The
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FIG. 4. Mean search effort versus norm ||µ|| for N = 8 with
control Hamiltonian structures D [cf. Eq. (29), squares], sparse
(triangles), and banded (circles).

reasons behind the dependence of the search effort on the
control Hamiltonian structure will be explored in Sec. VII.

VII. SEARCH EFFORT AND LANDSCAPE GEOMETRY

Here we assess the local landscape features in terms of
the metrics in Sec. IV for unitary propagator control. We first
consider the structure of the landscape in terms of the local
metrics in Sec. VII A. The effects of the landscape structure
on the search trajectories, as defined by the directness metric
Rε and the Gramian matrix, are examined in Sec. VII B.

A. Local landscape structure

The bound on the slope metric G derived in Sec. IV was
found to be conservative. The recorded maximal slope metric
G was always significantly below this bound (not shown). The
analytically derived Hessian trace at J = 0 [cf. Eq. (20)] was
found to hold; the deviation at the optimum was always less
than 0.001% when the convergence criterion J � 1e − 6Jmax

was used. The Hessian trace does not predict search effort
regardless of where it is measured, since it is only dependent
on ||µ|| or ||µ2||, and the effort can vary widely for different
µ structures with similar values of ||µ|| (cf. Fig. 4).

The slope metric G and the local curvature C were found
to correlate with search effort. The statistical distribution of
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FIG. 5. (a) Mean value of the maximal slope metric Gmax versus
N for D = 1.0 (squares), tensor product (circles), D = 0.6 (up
triangles), and sparse µ structure (right triangles). (b) Mean curvature
C at the optimum versus N . The rotor H0 structure is used for all
searches. All values are unitless.

the maximal slope metric Gmax over the search samples is
plotted versus N in Fig. 5(a). For D = 1.0, the maximal slope
rises linearly with N , but the growth with N is slower for
D < 1.0 and tensor product control Hamiltonians. Since the
maximal slope metric for any search is often recorded at or
near the initial field [depending on the exact choice of ε(0,t)],
an estimate of search effort scaling with N for any µ structure
can be made simply by measuring the gradient at random
initial fields for systems of different N with the same type of
control Hamiltonian structure: A linearly increasing Gmax with
N indicates minimal scaling with N , while sublinear increase
of Gmax indicates exponential scaling with N . A more accurate
prediction of the search effort can be made by measuring
the G near, but not at, the optimum. Figure 6 shows the
absolute search effort for searches using different D structures
plotted versus the measured value of G at J = 2 and J = 0.01.
Even at J = 2, the gradient provides a good estimate of the
absolute effort. The local curvature C at the optimum is also
an indicator of search effort scaling, as shown in Fig. 5(b).
For control Hamiltonians that allow distant transitions and
have subexponential scaling of effort with N (D = 1.0 and
sparse structures), the curvature is flat as N increases from 4
to 16. For control Hamiltonians that forbid distant transitions
and have exponential scaling (D < 1.0 and the tensor product
structures), the curvature decreases with N according to a
power law (note the log-log plot). Under all circumstances, a
smaller value of C near the optimum indicates a greater search
effort.

To understand the effects of Hessian local curvature on
convergence efficiency, note that near a stable fixed point
ε̄(t) of J on the global optimum submanifold [i.e., for
||ε(t) − ε̄(t)|| � ε], the objective function is approximately
quadratic in ε(t), and we can linearize the differential equation
(15) around ε̄(t) as

∂ε(s,t)

∂s
= −

∫ T

0

δ2J

δε(s,t)δε(s,t ′)
[ε(s,t ′) − ε̄(t ′)] dt ′. (34)

To facilitate the convergence analysis, we assume that J (ε) →
J (ε) + λ

∫ T

0 L(ε(t))dt . In the limit λ → 0, the cost functional
is Mayer. For sufficiently small nonzero λ, that is, λ � 1, the
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FIG. 6. Search effort versus slope metric measured at J = 0.01
and J = 2. The effort scales with slope metric according to a power
law, as seen by the least-squares lines on the log-log plot. All values
are unitless.

cost functional is Bolza and the optimal control problem has
a unique solution ε̄(t). Then the Hessian δ2J

δε(t)δε(t ′) is positive
definite and by the Hartman-Grobman theorem for hyperbolic
fixed points [34], locally near the optimum, ε(s,t) converges
exponentially to ε̄(t) at a rate that is bounded by the smallest
eigenvalue of the Hessian of the linearized system:

||ε(s,t) − ε̄(t)||

=
∣∣∣∣
∣∣∣∣
∫ T

0
exp

[
− δ2J

δε(s,t)δε(s,t ′)
s

]
[ε(0,t ′) − ε̄(t ′)] dt ′

∣∣∣∣
∣∣∣∣

� exp[−λmins] ||ε(0,t) − ε̄(t)|| .
Since this eigenvalue λmin increases with local landscape
curvature, higher curvature near the optimum facilitates con-
vergence, for both the perturbed and the original optimization
problems.

B. Complexity of search trajectories

The ratio Rε measures the degree to which the search
trajectory deviates from a direct path between the initial and
final control fields. A statistical examination of Rε for the
optimizations performed in Sec. VI B shows that an increase
in search effort with N correlates with an increase in Rε with N

(not shown). Nevertheless, the ratio is always small (Rε < 3),
indicating that while a linear trajectory from initial to final
field cannot be followed, the trajectories followed are relatively
direct.

Further insight into the effect of the search trajectory on
the required effort can be gained by examining the evolution
of Rε over the search trajectory (i.e., with respect to the
value of J ). Three cases at N = 8 starting from the same
initial field (fluence f = 1 with 10 evenly spaced frequency
components) illustrate the difference in the complexity of the
search trajectories. With the rotor H0 structure, the control
Hamiltonians used are (a) fully coupled (called “flat” here),
(b) sparse with 50% allowed transitions, and (c) banded with
two off-diagonal bands. The trajectories of the ratio Rε are
plotted in Fig. 7. These results show that the optimization with
the flat structure takes a direct path from initial to final field,
while the optimizations with sparse and banded structures must
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FIG. 7. Ratio Rε as a function of J value for searches beginning
from the same initial field with flat, sparse, and banded µ structures.
The inset shows the path length for these searches as a function of J

value.

change direction to optimize below J = 1. In the vicinity of
the optimum below J = 0.1, the sparse µ optimization again
can follow a direct path, while the trajectory for the banded µ

continues to change direction.
Examination of the Fourier spectra of the fields along

the search trajectories reveals how field modes required
for propagator control are progressively generated by local
optimization. The spectra of the initial field, field at J = 1, and
optimal field for the three searches above are shown in Fig. 8.
At J = 1, the fields have higher fluence and enhanced specific
frequencies, particularly with low-frequency components for
the banded structure since only near transitions are allowed.
For the banded structure, many new frequencies are added or
greatly enhanced when going from J = 1 to the optimum. In
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FIG. 8. Fourier spectra of initial field (dotted line), field at J = 1
(thick line), and optimal field (thin line) for banded structure (left),
sparse structure (bottom right), and flat structure (top right). The
ordinate is of the same scale for all plots. All values are unitless.
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FIG. 9. Gramian matrix condition number versus J value for
searches beginning from the same initial field at f = 1 (left) and
f = 10 (right) for the flat, banded, and sparse µ structures.

contrast, all necessary frequencies are present at J = 1 for
searches with the sparse and flat µ structures.

The origin of the more complicated search trajectories and
optimal fields for the banded µ structure can be explained by
examining the condition number of the Gramian matrix (9)
along the search trajectory. Consistent with the analysis in
Sec. IV D, motion in certain directions on U(N ) —such
as those necessary to reach W—is achieved more slowly
for poorly conditioned Gramian matrices than for well-
conditioned Gramian matrices. The trajectories of the Gramian
matrix condition number for the three preceding searches
are shown in Fig. 9(a). For comparison, the trajectories
using an initial field of f = 10 with the same frequencies
is shown in Fig. 9(b). The condition number remains orders
of magnitude higher for the banded µ than for the sparse
and flat µ throughout the search. Furthermore, the condition
number levels off at a value under 100 for the sparse and
flat µ structures, but remains well above 1000 for the banded
structure, and displays more oscillations at J < 1.

As discussed in Sec. IV D, the Gramian matrix is typically
more well-conditioned for controls ε(t) where all the terms in
the Dyson series required for full controllability have become
populated. Compared to the sparse µ, the banded µ requires
higher-order terms in the Dyson series to produce the desired
W , and hence more frequency components in the optimal field.
The flat µ structure requires the fewest Dyson terms, and thus
shows the smallest difference between the fields at J = 1 and
the optimum. For a given distance ||ε(s,t) − ε̄(t)|| from the
global optimum, the accuracy of the linear approximation (34)
is greater for control systems with lower dynamical Lie algebra
depth, due to lower-order nonlinearity of the optimization
problem. Away from critical points (outside the quadratic
region), all terms in the Dyson series (26) required to reach
W must be optimized, by the successive addition of new
linear combinations of the real and imaginary components
of 〈i|µ(t)|j 〉 at each step.
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VIII. CONCLUSION

We have provided a unifying picture of the convergence
efficiency of first-order algorithms for unitary transformation
control in terms of critical landscape topology and gradient
flow dynamics. The roles of kinematic and system-dependent
factors have been assessed. The results show that under-
standing the landscape topology is insufficient for predicting
the required search effort to find an optimal field. Thus, in
this work we have defined local landscape structure metrics
based on a series expansion of the cost function variation
with respect to the control and have demonstrated that the
first-order gradient-based metrics can qualitatively predict
the required search effort. A central conclusion is that for
control systems with low dynamical Lie algebra depth, the
convergence efficiency is kinematically driven and any of the
common first-order control optimization approaches based
on unconstrained fields and a Mayer-type cost functional
can be effective. In these cases, local gradient-based search
algorithms can efficiently navigate the landscape for control
of arbitrary unitary transformations, assuming that the system
is controllable. In contrast, first-order algorithms are inefficient
for systems of high Lie algebra depth. Future work should be
aimed at quantitative classification of common gate control
systems in terms of Lie algebra depth and identification of
alternate search methods for systems of high Lie algebra depth.

The numerical results demonstrate that the control Hamil-
tonian structure determines the scaling of the required search
effort with the Hilbert space dimension N for optimization of
arbitrary unitary transformations. In particular, control Hamil-
tonians µ that permit transitions between distant quantum
states (e.g., the D = 1 and sparse structures studied here)
exhibit weak scaling of effort with N . For these systems, the
first-order landscape structure metrics either grow linearly with
N (maximal gradient norm) or are invariant to N (gradient
norm near optimum), and second-order landscape structure
metrics are invariant to N . The gradient flow was shown to be
kinematically driven based on the Gramian matrix being well-
conditioned throughout the search trajectory. Such systems
have a low dynamical Lie algebra depth and are amenable to
efficient first-order control optimization. In contrast, systems
where transitions between distant states are weak or forbidden
(e.g., D < 1.0, banded, and tensor product structures) require
an exponentially increasing search effort with N . The land-
scape structure metrics exhibit corresponding behavior, with
the maximal gradient norm scaling sublinearly with N and
the gradient norm near the optimum and second-order metrics
decreasing exponentially with N . Such systems have a greater
dynamical Lie algebra depth, requiring higher-order terms
in the Dyson expansion and exhibiting less well-conditioned
Gramian matrices. Optimizations with these systems deviate
from expected kinematic behavior, indicating that dynamical
effects drive the gradient flow.

The results here suggest that for optimally controlling
quantum gates, it is necessary to consider features of the
control system other than controllability when engineering the
time-independent Hamiltonian. In particular, the observation
of exponential scaling with Hilbert space dimension for the
D and tensor product structures suggests that Lie algebra
depth of H0 and µ should be considered, with the engineering

goal being to make transitions between distant quantum states
allowed. Such Hamiltonian design efforts may be facilitated
by the methods of Hamiltonian morphing [35], which allow
the control Hamiltonian to be continuously deformed while
holding the gate fidelity and the control field fixed.

Although the control of arbitrary unitary propagators is of
fundamental importance, the primary focus of OCT studies
of propagator control is for specific applications to quan-
tum information sciences. Systems for which the landscape
search complexity and resource scaling are favorable may
be particularly useful for directly implementing multiqubit
operations rather than decomposing them into sequences of
one- and two-qubit universal gates. Search complexity for
optimal control of multiqubit gates may thus be mitigated
by choosing quantum information processing implementations
where the control Hamiltonian can be tuned by design, with
the goal being to produce control Hamiltonians that allow
transitions between distant states. An example is quantum
computation with polar molecule arrays in a magneto-optical
trap [36], where photoassociation techniques can be used to
assemble novel atomic (e.g., homonuclear and heteronuclear
alkali metal) dimers with differing permanent dipole moments.
In such implementations the static electric field gradient that
renders the molecules individually addressable can be used
to orient the molecules so that the dipole-dipole coupling
can be tuned, and qubits can be encoded on either ground
or excited rovibrational states. Investigation of the scope of
possible multiqubit control Hamiltonian structures accessible
using such methods, and the application of OCT to these
systems, is motivated by the present work.
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APPENDIX A: STABLE FIXED-POINT TOPOLOGY OF
PMP-ITERATIVE PROPAGATOR CONTROL

ALGORITHMS

The first-order algorithms that follow can only be formu-
lated in discrete algorithmic time [37]. A basic PMP-iterative
algorithm proceeds via the following steps:

i
d

dt
φk(t) = [H0 − µ · ε̃k(t)]φk(t),φk(T ) = ∇F (Uk−1(T )),

i
d

dt
Uk(t) = [H0 − µ · ε̃k(t)]Uk(t),Uk(0) = U0(0),

where the costate equation is propagated backward in
time, with

ε̃k(t) = αkεk−1(t) + βk〈φk(t)|µ|Uk−1(t)〉 = αkεk−1(t)

−βkTr[iU †
k (T )∇F (Uk−1(T ))U †

k (t)µUk−1(t)],

εk(t) = αkε̃k(t) + βk〈φk(t)|µ|Uk(t)〉. (A1)

The constants, αk ∈ [0,1] and βk < 0 (for minimization of
J ), can in principle be chosen to be different in the ε̃k(t),εk(t)
updates [37]. The assignments of the constants α,β determine
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which type of cost functional J is optimized by the algorithm.
In particular, the following values of α are of interest5:

(i) αk = 0,βk < 0 minimizes Bolza cost J = F (U (T )) +
1
2

∫ T

0 ε2(t) dt ;
(ii) αk = 1,βk < 0 minimizes Mayer cost (3).
Iterative algorithms of type 2 have been applied [5,6,38] to

the problem of optimal gate control.6

Prior work has demonstrated that PMP-iterative algorithms
for quantum control converge monotonically (i.e., δJk,k−1 � 0
at each step). However, neither convergence to a global versus
local optimum nor the rate of convergence were studied. The
fixed points of type 2 discrete-time PMP-iterative algorithms
are points on the control landscape, where εk − ε̃k = 0 or
ε̃k − εk−1 = 0 (〈φk(t)|µ|Uk(t)〉 = 0 or 〈φk(t)|µ|Uk−1(t)〉 =
0). In order for all such points to lie on the critical manifolds
identified in Sec. II B, we must require that the Gramian
matrices∫ T

0
ν[Uk(T )U †

k (t)µUk−1(t)]νT [U †
k−1(t)µUk(t)U †

k (T )] dt,∫ T

0
ν[Uk(T )µk(t)]νT [µk(t)U †

k (T )] dt

are nonsingular at successive steps of the algorithm. Then
the only fixed points of the discrete time dynamical system
correspond to points Uk , where ∇UF (U (T )) = 0. Thus, if
the HQF in Sec. II B is positive definite at Uk(T ) = Û , then
limk→∞Uk(T ) = Û , for some ε that is equal to the radius of the
attracting region of the critical point Û . As shown in Sec. III,
the only critical point of F (U ) that satisfies this criterion for
asymptotic convergence is Û = W and the associated neutrally
stable controls ε̄(t) lie on the global minimum submanifold of
J (ε(·)).

APPENDIX B: HESSIAN QUADRATIC FORM AND RANK

The explicit form of the matrix A2 in the HQF expression
(11) can be obtained from the second variation in the Taylor
expansion of J (ε + δε); we find

A2 =
∫ T

0

∫ T

0
δε(t) · µ(t)µ(t ′) · δε(t ′) dt dt ′.

Assuming that the Gramian (9) is nonsingular, that is, that
the real and imaginary components of the elements of µ(t) are
linearly independent functions of time, A can be any Hermitian
matrix with associated direction U (T )A in the tangent space
TUU(N ) to the unitary group.7

5Other choices for αk,βk—or modifications to Eq. (A1)—can be
used to optimize either Bolza or Mayer costs and are often required to
ensure monotonic convergence of the algorithm, as discussed in [37].
In particular, if αk,βk are selected outside of the intervals mentioned
earlier, their values may not be independent.

6Unlike homotopy algorithms, neither type of iterative algorithm
introduced thus far can minimize field fluence while reaching high
gate fidelity.

7Note the third term in Eq. (18) does not contribute to the second-
order variation and hence does not have a corresponding term in the
HQF; this is consistent with the fact that the second-order variation is

The range of H is spanned by eigenfunctions of
the Hessian kernel: These eigenfunctions fν(t), which
satisfy

∫ T

0 H(t,t ′)fν(t ′) dt ′ = λνfν(t), are linear combina-
tions of products of the real and imaginary components
Re〈i|µ(t)|j 〉,Im〈i|µ(t)|j 〉 of the time-evolved dipole operator;
that is,

H(t,t ′) =
⎛
⎝∑

j�i

aij Re〈i|µ(t)|j 〉 + a′
ij Im〈i|µ(t)|j 〉

⎞
⎠

×
(∑

l�k

aklRe〈k|µ(t ′)|l〉 + a′
klIm〈k|µ(t ′)|l〉

)
,

(B1)

where the expansion coefficients can be computed from
Eq. (18). This immediately implies that H(t,t ′) is a finite
rank kernel, with rankH(t,t ′) � N2, even away from critical
points where the HQF in Sec. II cannot be used to assess
rank.

APPENDIX C: NUMERICAL DETAILS

The control field ε(t) was discretized on a time interval
t ∈ [0,T ] in arbitrary dimensionless units into a sufficient
number of time points to resolve the |1〉 → |N〉 transition
frequency in H0. For the rotor Hamiltonian (27) with T = 14,
512 points were used for N � 8, 2048 points for N = 16, and
4096 points for N = 32. For the oscillator Hamiltonian (28),
512 points were used for N � 8, 1024 points for N = 16,
and 2048 points for N = 32 were used. When T > 14, 4096
points were used. For the simulations in Secs. VI, the initial
control field ε(0,t) contained K = 20 Fourier components
randomly chosen from a uniform distribution on an inter-
val [0,ω1N ], where ω1N denotes the |1〉 → |N〉 transition
frequency.

Reported search effort is the number of RK4 algorithm
iterations required to attain a J value below the convergence
criterion. This was J � 10−6 × Jmax for all simulations except
those in Sec. VI B, where the criterion was J � 10−3 × Jmax.
The sample size to generate the reported statistics was 1000
for the simulations in Sec. VI A and 20 for the simulations
in Secs. VI B, VI C, and VII. In Tables I and II, the
mean effort and standard deviation are reported. For the
particularly difficult optimizations shown in Table II reporting
no standard deviation, only one search was performed. In
Figs. 3 and 4, the error bars report the left and right standard
deviations.

The metrics in Sec. IV were calculated by approximating
the integrals as sums over the discretized time points.

a quadratic form only at critical points and cannot be used to assess
the definiteness of the Hessian away from such points.
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