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Effect of perturbations on information transfer in spin chains
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Spin chains have been proposed as a reliable and convenient way of transferring information and entanglement
in a quantum computational context. Nonetheless, it has to be expected that any physical implementation of these
systems will be subject to several perturbative factors which could potentially diminish the transfer quality. In
this paper, we investigate a number of possible fabrication defects in the spin chains themselves as well as the
effect of nonsynchronous or imperfect input operations, with a focus on the case of multiple excitation and qubit
transfer. We consider both entangled and unentangled states and, in particular, the transfer of an entangled pair
of adjacent spins at one end of a chain under the mirroring rule and also the creation of entanglement resulting
from injection at both end spins.
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I. INTRODUCTION

A crucial ingredient in quantum-information processing
based on solid state systems is the transfer of quantum
information. Assuming that there are quantum registers for
computing and storing information, the ability to transfer
this information reliably and efficiently from one register
to another is vital for the construction of larger, distributed
and networked systems. A solution to this challenge has
been proposed through the use of spin chains [1,2]. The
mathematical framework underpinning spin chains can be
applied to various physical devices; these could be made of
any components whose states can be mapped onto spin- 1

2
particles interacting with their neighbors. Electrons or excitons
trapped in nanostructures form explicit examples [3–5], as do
nanometer-scale magnetic particles [6] or a string of fullerenes
[7]. Another representation is the encoding into a soliton-like
packet of excitations [8].

Within spin chains, a single-site excitation is defined as an
“up” spin in a system that is otherwise prepared to have all
spins “down.” A discussion about unmodulated spin chains
has been given in [9,10], whereas in [11] the couplings were
chosen to be unequal. There has also been research on wirelike
chains with controlled coupling strength at either end [12] and
transfer through parallel spin chains [13], to name but a few
closely related areas. Here we only consider linear spin chains
whose coupling strength Ji,i+1 between two neighboring sites
i and i + 1 has been pre-engineered to ensure perfect state
transfer (PST) along the chain [5,14]. For a chain of length
N with characteristic coupling constant J0, the PST coupling
strength sequence is defined as [14]

Ji,i+1 = J0

√
i(N − i). (1)

For devices based on excitons in self-assembled quantum dots,
J0 is mainly governed by Förster coupling [3], which in turn
depends on the distance between the dots as well as the overlap
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between the electron and hole wave functions in each dot.
In gate-defined quantum dots, however, J0 will depend on
tunneling and thus on parameters such as the width and height
of the barriers which separate the different dots, as well as on
the overlap of electronic wave functions centered in different
dots. For chains of fullerenes or actual atoms J0 will represent
some “hopping” parameter describing the propensity of the
excitation to transfer from one site to the other. The natural
dynamics of a spin chain can then be described by a time-
independent Hamiltonian as follows:

H =
N∑

i=1

εi |1〉〈1|i +
N−1∑

i=1

Ji,i+1[|1〉〈0|i ⊗ |0〉〈1|i+1

+ |0〉〈1|i ⊗ |1〉〈0|i+1]. (2)

In a perfect system (to which perturbations will then be
applied) we will assume the single excitation energies εi to
be independent of the site i, and therefore only concentrate
on the second term of Eq. (2). In some physical systems such
as quantum dot strings, εi could naturally differ according
to position, but may be tuned to be the same at all sites via
application of local fields [3]. The fidelity F , corresponding
to mapping the initial state |ψin〉 over a time t into the
desired state |ψfin〉 by means of the chain natural dynamics, is
given by

F = |〈ψfin|e−iHt/h̄|ψin〉|2, (3)

and PST is realized when the evolution is arranged to achieve
F = 1. We use the fidelity of state vectors to determine
the transfer quality of information for unentangled states,
as detailed, for example, in Ref. [3]. For entangled states,
we measure instead the entanglement of formation (EOF) as
defined in Ref. [15].

The time evolution of a system is dependent on its
characteristic coupling constant J0. In particular, the time scale
for PST from one end of a chain to the other, also known
as mirroring time, is tM = πh̄/2J0 so that the periodicity
of the system evolution is given by tS = πh̄/J0. As the
Hamiltonian (2) preserves the excitation number, the evolution
of the initial state will remain within the original excitation
subspace.

012325-11050-2947/2011/83(1)/012325(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.012325


R. RONKE, T. P. SPILLER, AND I. D’AMICO PHYSICAL REVIEW A 83, 012325 (2011)

II. EFFECT OF FABRICATION DEFECTS

We will now consider the influence of general fabrication
defects on linear spin chains with multiple excitations.

(a) Random noise. We model the effect of fabrication errors
(random, but fixed in time) for the energies and couplings in
the system by adding to all nonzero entries in the Hamiltonian
matrix a random energy ηdl,mJ0 for 1 � l,m � number of
basis states. The scale is fixed by η which we set to 0.1 and
for each l � m the different random number dl,m is generated
with a flat distribution between zero and unity. For the other
side of the diagonal with m < l, dl,m = dm,l , preserving the
hermiticity of the Hamiltonian. This method of including
fabrication defects means that we could observe effects of
a reasonable magnitude although clearly other distributions
could also be modeled; for specific tests, the weight of the
noise would have to be determined according to the individual
experiment being simulated.

(b) Site-dependent “single-particle” energies. As a further
possible fabrication defect, we consider the effect of the first
term of Eq. (2) that we previously dismissed under ideal
conditions:

H1 =
N∑

i=1

εi |1〉〈1|i . (4)

H1 may represent external perturbations, such as local mag-
netic fields, or additional single-site fabrication imperfections.
We thus assume here that εi is not independent of the site i any
more.

(c) Excitation-excitation interactions. In spin chains with
multiple excitations, we also consider the perturbation term

H2 =
N−1∑

i=1

γ J0|1〉〈1|i ⊗ |1〉〈1|i+1, (5)

which represents the interaction between excitations in nearby
sites. For example, this may correspond to a biexcitonic
interaction in quantum dot-based chains [16,17].

(d) Next-nearest-neighbor interactions. Finally, we also
investigate the effect of unwanted longer range interactions,
which could be an issue when considering pseudospins based
on charge degrees of freedom. For this we add to Eq. (2) the
perturbative term

H3 =
N−2∑

i=1

Ji,i+2[|1〉〈0|i ⊗ |0〉〈1|i+2 + |0〉〈1|i ⊗ |1〉〈0|i+2].

(6)

The expression for Ji,i+2 will depend on the type of interaction
between spin chain sites. Here we explicitly consider three
cases. The first and more general approximates the next-
nearest-neighbor interaction as proportional to the average of
the related interactions between nearest-neighbor sites,

Ji,i+2 = �(Ji,i+1 + Ji+1,i+2)/2, (7)

with the parameter � defining the strength of the interaction.
This expression simulates the original coupling modulation of
the chain.

Second, we explicitly consider dipole-dipole interactions,
which are relevant, e.g., to chains of quantum dots with exciton

qubits and Förster coupling [18]. In this case the coupling
between sites scales as 1/R3, with R being the distance
between the two sites considered. For roughly equidistant sites,
we then expect the next-nearest-neighbor couplings to be about
a tenth of the nearest-neighbor couplings. By using this and
Eq. (1) we obtain

J
dip
i,i+2 = J0{[i(N − i)]−

1
6 + [(i + 1)(N − i − 1)]−

1
6 }−3. (8)

Finally we consider the case of coupling due to tunneling,
relevant, e.g., to graphene quantum dots with spin qubits [19].
Here the coupling scales as 4t2/U , with U being the on-
site Coulomb energy and t ∝ Re−R|k| the tunneling (hopping)
parameter, with k the “forbidden” momentum in the barrier
[19]. In this case there is no explicit expression for the next-
nearest-neighbor couplings in terms of {Ji,i+1}, but {J tun

i,i+2} can
be determined numerically by using the expression for t and
Eq. (1). We note that we expect {J tun

i,i+2} to be very small, as
the interaction decays exponentially with the distance.

If we consider chains of quantum dots with exciton qubits,
we can assume Jmax ≈ 1 meV, where Jmax = maxi{Ji,i+1}
and Rmin ≈ 10 nm. Figure 1 then shows that results from
Eq. (8) are in very good agreement with considering Eq. (7)
with � = 0.12, a value that one would expect from dipole-
dipole interaction and basically equidistant sites (see previous
discussion). In this case the effect of next-nearest-neighbor
interaction is extremely detrimental to the system as even the
fidelity of the first state transfer at t = 0.5tS is reduced by
almost 50%.

By contrast, the tunneling mechanism case leads to very
different results. Using the parameters in [19] for graphene
dots and spin qubits, we obtain the results shown in the inset
of Fig. 1: after 3tS the system has lost less than 2% of its
fidelity. These results are in very good agreement with Eq. (7)
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FIG. 1. Influence of H3 on the example of an eight-spin chain
with initial input state |ψin〉 = |11000000〉, fidelity vs rescaled time
t/tS , according to both Eqs. (7) and (8) (dipole-dipole coupling). The
peak at t = 0.5tS is approximately 0.52. As the model of Eq. (7)
matches the data derived from Eq. (8) extremely well, the lines of the
respective plots are nearly indistinguishable. Inset: The same as for
the main panel but for graphene quantum dots and spin qubits, with
tunneling coupling (thin lines) and coupling according to Eq. (7),
� = 0.0001 (bold lines). Again results from the two models for the
coupling constants are almost indistinguishable from each other.

012325-2



EFFECT OF PERTURBATIONS ON INFORMATION . . . PHYSICAL REVIEW A 83, 012325 (2011)

with � = 0.0001 as can be seen in the inset of Fig. 1, where
the plots are virtually indistinguishable. It is very encouraging
that in this case realistic parameters point to such small values
of � and thus generate very high fidelity transfer.

In the following we will use the expression in Eq. (7)
to further discuss the effects of H3. As values of � smaller
than 0.01 have a minor detrimental effect on the system, we
will from here onward focus on the range 0.01 � � � 0.1,
where the upper bound may be of interest to some experimen-
tal implementations, e.g., as discussed in the dipole-dipole
interaction case.

We will now consider the effect of the fabrication defects
(a) to (d) first on the transfer of factorizable states, i.e.,
unentangled chains, and then on entanglement creation and
entanglement transfer along a spin chain. For unentangled
states, we will consider a six-spin chain for all investigations
of fabrication defects while in the case of entanglement, we
will also consider an eight-spin chain. As we will explicitly
see later for H1, the influence of fabrication defects does
depend on the chain length, but not on the parity of the
chain.

A. Transfer of unentangled states

The device we consider in this paper is a linear spin chain
with couplings fixed such that the conditions for PST are
satisfied. One of the properties of these devices, which we
make heavy use of, is the mirroring rule [20,21]. The mirroring
rule is such that any state injected into a linear spin chain,
subject to the constraints of Eq. (1) and site-independent εi ,
evolves into its “mirror state,” where the symmetry center of a
chain is the middle point in chains with N even or the middle
site (N + 1)/2 in chains with N odd. This mirroring property is
independent of the number of excitations a state comprises and
also of the length of the chain. Furthermore the mirroring rule
holds for states spread across the whole chain: all excited sites
are mirrored across to their “twin” with respect to the chain
center of symmetry. We call this mirrored state the “twin state.”
When investigating the quality of a device with fabrication
defects of any sort, we are primarily interested in the effect on
the twin state at t = tM , but it is also important to consider the
effects on the next few periods as some quantum-information
protocols may require periodicity of their systems [22].

As can be seen in Fig. 2, the effect of random noise leads
to a continuous and definite decline in the transfer fidelity of
both the input state |110000〉 and its twin state |000011〉 at the
mirroring times. Naturally, this means an increased probability
of the occurrence of other possible states (not shown on the
graph) but this happens on a relatively unpredictable basis,
with no one state ever becoming and remaining particularly
prominent.

In comparison, when looking at the evolution over a few
periods, even a relatively large value of γ = 0.05 in Eq. (5)
has less effect on the six-spin chain, as shown in Fig. 3(a).
Similarly, the on-site energies represented by Eq. (4) also lead
to an unrecoverable decay in the state transmission fidelity,
with the excitations being ultimately entirely spread out along
the chain (not shown). A combination of any of these three
perturbation factors simply accelerates the decay trend of the
desired states.
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FIG. 2. Influence of random noise [see item (a) in text] for η = 0.1
on a six-spin chain with two excitations, fidelity vs rescaled time t/tS .
States other than the input state and its twin state are not shown. The
first peak at t = 0.5tS = tM is 0.9975.

However, if we simply analyze the first revival peak at
t = tS , we see that for varying γ and ε, even when perturbing
the system by as much as 20% of J0, the system suffers less
than a 10% loss in fidelity (Fig. 4). Here, to represent the fact
that εi is site dependent, we used the value εi = εJ0di for all
sites i, with 0 � di � 1 being a random number generated from
a flat distribution for each i. An average over 200 realizations
for every value of ε was then taken.

Finally, we also note that next-nearest-neighbor interactions
perturb the system similarly to noise. This can be seen in Fig. 5
where, even for a reasonable value of � = 0.01, the transfer
peaks of both the initial state of a six-spin chain and its mirror
twin quickly decay. In order to achieve the same fidelity loss at
t = 4.5tS as for � = 0.01 (Fig. 5), we have to consider a value
of γ one order of magnitude bigger, as is shown in Fig. 3(b).

In our simulations we have kept the value of Jmax constant
as N is varied: this models the physical constraint that in any
realistic system the coupling strength is capped by a maximum
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FIG. 3. Effect of perturbation H2 [Eq. (5)] on a six-spin chain,
fidelity vs rescaled time t/tS . (a) γ = 0.05. The first peak at t =
0.5tS = tM is 0.9988. (b) γ = 0.1. The first peak at t = 0.5tS = tM is
0.9954.
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FIG. 4. (Color online) Revival fidelity of the state |ψin〉 =
|111000〉 in a six-spin chain, measured on the first revival peak at
time t = tS , vs γ and ε.

characteristic value. As a result J0 = 2Jmax/N (J0 = 2Jmax/

N
√

1 − 1/N2) for even (odd) chains. To avoid this implicit
dependence on N , we have here set εi = εJmaxdi (where di

is a random number from a uniform distribution within 0 and
1) and averaged every point on the graph from 200 random
realizations. As we see in Fig. 6(a), the effect of H3 at t = ts
becomes very detrimental to the system even for the relatively
small value of � = 0.05, although the loss of fidelity for � =
0.01 is very small even for long chains. On the other hand, the
effect of on-site energies may be tolerable for values of ε up to
0.1, where long chains of N = 15 suffer less than a 20% loss
in fidelity.

A simple estimate of the effect of errors in the energy level
spectrum [14] suggests an overall error or loss in fidelity
for PST that scales as an exponential decay in N with
Gaussian dependence on the characteristic noise parameters.
We compare this with the numerical results in Fig. 6, where
the loss of fidelity due to H1 scales as e−Nf (ε) and the loss
due to H3 scales as e−Nf (�) with increasing chain length
N , where f (�) = �2/�2

0 and f (ε) = ε2/ε2
0 so that �0 and

ε0 characterize the impact of the noise. The comparison in
Fig. 6 shows that this simple analytical form can reproduce
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FIG. 5. Influence of H3 [Eq. (6)] with � = 0.01: fidelity of the
state |ψin〉 = |110000〉 in a six-spin chain vs rescaled time t/tS . The
first peak at t = 0.5tS = tM is 0.9966.
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FIG. 6. (a) Fidelity of initial vector |110 · · · 0〉 at t = tS vs chain
length N for three values of �, as labeled. Fits are according
to e−N�2/�2

0 with �0 = 0.21. (b) Average fidelity of initial vector
|110 · · · 0〉 at t = tS vs chain length N for three values of ε, as labeled.
Fits are according to e−Nε2/ε2

0 , with ε0 = 1.12.

the numerical results to a high degree of accuracy: the loss of
fidelity scales indeed as an exponential decay with Gaussian
damping in the noise parameters.

We conclude from these results that the transfer of un-
entangled states across the device is very robust against the
perturbations H1 and H2, and less so for H3. The effect of
random noise in the system, as we have implemented it,
is slightly more noticeable at the transfer time tM but still
allows for excellent transfer at a loss rate of just over 10%
over the course of four periods. With regard to longer term
periodicity, it is the next-nearest-neighbor interaction term H3

which perturbs the system most for the values of εi , γ , and �

shown.

B. Transfer and creation of entangled states

One of the most outstanding properties of spin chains is
their ability to not just transfer reliably factorizable states
but also to transfer information encoded as entangled states.
This is again based on the mirroring rule [20,21] and
was first mentioned and discussed under various aspects in
Refs. [14,23–28]. Entanglement is one of the key resources
in quantum computing and is crucial to some quantum
cryptography protocols and to quantum teleportation. Being
able to reliably transfer entanglement from one place to
another is therefore a core interest that the device we are
analyzing should be able to respond to. This property follows
from the fact that the set of states |φ{i},n〉 = |i1,i2, . . . ,iN 〉,
ij = 0,1, to which the mirroring rule applies, is a basis set
so that any state, and in particular entangled states, can be
written as the superposition |�〉 = ∑

{i},n c{i},n|φ{i},n〉. Here
n is the total number of excitations in the state, and {i} is
the ensemble of indices ij different from zero. The above
relation implies that after tM has passed the following twin
state is reached: |�twin〉 = ∑

{i},n c{i},n exp{−iH tM}|φ{i},n〉 =∑
{i},n c{i},n|φ{i},n;twin〉, so that in particular any entangled state

is transferred into its mirror entangled state.
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When considering spin chains with (i) an entangled initial
state or (ii) an initial state that leads to entanglement, it
is more useful to observe the evolution of the EOF in the
system. We use chains with an initial Bell state on spins
1 and 2 to represent scenario (i), as for example |ψin〉 =

1√
2
(|1000〉 + |0100〉). Accordingly, we monitor the EOF in

the reduced density operator of spins (1,2), tracing out the
rest of the chain. To monitor the twin state entanglement we
calculate the EOF for the reduced density operator of spins
(N − 1,N ). Scenario (ii) is different in that the initial state
of the chain is not entangled, but will lead to entanglement
through natural dynamics. As an example of this, we use a
linear chain with input |+〉 = 1√

2
(|0〉 + |1〉) on both spins 1

and N . This is equivalent to an initial state |ψin〉 = ( 1
2 )|010N +

110N + 011N + 111N 〉 ⊗ |0203 · · · 0N−1〉, where the subscripts
designate the spin site. A system set up in this way will then
show a maximally entangled state in spins 1 and N at time
t = tM [22,29–31].

The effect of noise on entangled chains shows a trend
similar to that of unentangled chains. However, we notice that
the loss of the EOF in Fig. 7 which represents case (ii) is nearly
10% bigger than the loss of the EOF in Fig. 8 [case (i)] over
the course of the seven periods shown. As a comparison, the
unentangled state of Fig. 2 loses a similar amount of fidelity
over the same amount of time as the chain in Fig. 7.

There is no effect from perturbation H2, Eq. (5), in case (i),
as there is only one excitation in the system in both amplitudes.
Obviously this would not be so for a Bell state with a doubly
excited amplitude. Similarly, the effect of H2 in case (ii) is
restricted to the two-excitation subspace populated by the
evolution of the |111N 〉 ⊗ |02 · · · 0N−1〉 component of |ψin〉
only and is thus not very prominent, as is shown in Fig. 9.

The effect of on-site energies on the other hand remains,
regardless of the system. We demonstrate this in Figs. 10(b)
and 11(b), which show the detrimental effect of H1 on
entangled systems [types (i) and (ii), respectively]. Similar
to Fig. 6, the loss in the EOF scales as an exponential in
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FIG. 7. Influence of random noise [see item (a) in text] for
η = 0.1 on the EOF between the end spins of a eight-spin chain
with input state |ψin〉 = ( 1

2 )(|0108〉 + |1108〉 + |0118〉 + |1118〉) ⊗
|02 · · · 07〉 vs rescaled time t/tS . The first peak at t = 0.5tS = tM
is 0.9983.
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FIG. 8. Influence of random noise [see item (a) in text] for η = 0.1
on the EOF between the end spins of an eight-spin chain with input
state |ψin〉 = ( 1√

2
)(|10000000〉 + |01000000〉) vs rescaled time t/tS .

The first peak at t = 0.5tS = tM is 0.9993.

N with Gaussian damping in the noise parameters. Again,
the influence of H1 has been averaged over 200 random
realizations using random numbers εi from a flat distribution,
such that εi = εJmaxdi and 0 � di � 1.

Figures 10(b) and 11(b) also show that for ε � 0.1, EOF
close to unity can still be achieved for all chain lengths
considered. However, we note that for larger values of ε,
chains with type (ii) entanglement suffer significantly more
entanglement loss than those of type (i) which are already
entangled at t = 0.

As with unentangled states, next-nearest-neighbor interac-
tion is a relevant issue for entangled states. In Fig. 5, we showed
that a six-spin chain suffered serious fidelity loss (∼20%) for
relatively small � = 0.01 after about four periods, but still
reached a fidelity of 0.9966 at tM ; similarly we see in Fig. 11
that, for the same value of �, a six-spin chain with case
(ii) entanglement would reach an EOF of 0.99 at t = tM and
performs thus equally well. An EOF of almost unity persists
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FIG. 9. Influence of H2 [Eq. (5)] with γ = 0.05 on the EOF
between the end spins of a eight-spin chain with input state |ψin〉 =
( 1

2 )(|0108〉 + |1108〉 + |0118〉 + |1118〉) ⊗ |02 · · · 07〉 vs rescaled time
t/tS . The first peak at t = 0.5tS = tM is 0.9996.
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FIG. 10. For chains with type (i) entanglement (spins 1 and 2 are
entangled at t = 0). (a) EOF of qubits 1 and 2 at t = tS vs chain length
N for three values of �, as labeled. Fits are according to e−N�2/�2

0 ,
with �0 = 0.31. (b) Average EOF of qubits 1 and 2 at t = tS vs
chain length N for three values of ε, as labeled. Fits are according to
e−Nε2/ε2

0 , with ε0 = 3.06.

for all N considered and small �. More than 90% of the EOF is
maintained even for � as large as 0.05 for long chains with type
(ii) entanglement while chains with type (i) suffer significantly
more and long chains lose over 30% of their EOF for the same
value of �. We note that for values of � >∼ 0.05, in chains with
type (ii) entanglement, while the EOF is fairly well maintained
at t = tM , its subsequent periodicity is completely lost for any
chain length (Fig. 12; for a demonstration of the same effect
in an unentangled chain, see Fig. 1).

As noted above the effect of H3 on entangled states is
different from case (i) to case (ii). In Fig. 13 we see that for
� = 0.01 a state that is initially already entangled does not

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6  8  10  12  14

E
O

F

N

(b)
ε=0.05
ε=  0.1
ε=  0.5

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

E
O

F

(a)

∆=0.01
∆=0.05
∆=  0.1

FIG. 11. For chains with type (ii) entanglement (spins 1 and N
become maximally entangled at t = tM ). (a) EOF of qubits 1 and N
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0 , with �0 = 0.63. (b) Average EOF of qubits 1
and N at t = tM vs chain length N for three values of ε, as labeled.
Fits are according to e−Nε2/ε2

0 , with ε0 = 2.01.
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FIG. 12. Spin chains with input state |ψin〉 = ( 1
2 )(|010N 〉 +

|110N 〉 + |011N 〉 + |111N 〉) ⊗ |02 · · · 0N−1〉. (a) EOF of |ψin〉 vs
rescaled time t/tS for � = 0.05: the periodicity of the EOF is
completely lost after the second peak at t = 1.5tS . (b) EOF of |ψin〉
vs rescaled time t/tS for � = 0.1: the periodicity of the EOF is
completely lost after the first peak at t = 0.5tS .

suffer very much and retains an EOF of over 90% at t ≈ 4tS ,
after four periods, whereas a chain where the entanglement
is created through the system dynamics suffers a loss of the
EOF of about 15% after four periods, at t ≈ 4.5tS , as shown
in Fig. 14.

Overall, we observe that the perturbative influence of
next-nearest-neighbor interaction [Eq. (6)] is the main cause
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FIG. 13. Influence of H3 [Eq. (6)] with � = 0.01 on the EOF
between the end spins of an eight-spin chain with input state |ψin〉 =
( 1√

2
)(|10000000〉 + |01000000〉) vs rescaled time t/tS . The first peak

at t = 0.5tS = tM is 0.9986.
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FIG. 14. Influence of H3 [Eq. (6)] with � = 0.01 on the EOF
between the end spins of a eight-spin chain with input state |ψin〉 =
( 1

2 )(|0108〉 + |1108〉 + |0118〉 + |1118〉) ⊗ |02 · · · 07〉 vs rescaled time
t/tS . The first peak at t = 0.5tS = tM is 0.9976.

for loss of fidelity in both unentangled states and states whose
entanglement results only from their dynamics and which
are initially unentangled, although unentangled chains suffer
slightly more. Entangled chains with an initially entangled
state on the other hand have been shown to be more robust
against this type of defect.

Despite these variations, our study clearly demonstrates
that next-nearest-neighbor interactions are the most damaging
form of perturbation overall, as seen in state transfer fidelity
or EOF. The reason for this is that the next-nearest-neighbor
interaction is the only fabrication defect or limitation in the set
(a)–(d) that effectively opens up new channels for the system
dynamics. The Hamiltonian H3 of Eq. (6) connects chain
sites which would otherwise be disconnected (at the same
order in perturbation). It therefore facilitates a more efficient
(in a detrimental sense) spread of excitations. The general
consequence of this is more damage to transfer fidelity or EOF,
when compared to defects (a)–(c) with the same level of noise.
Numerical simulations (not shown) support this explanation,
as addition of new perturbative channels for the dynamics by
hand (as opposed to via H3) into the full Hamiltonian can lead
to results similar to those in, for example, Fig. 12. It has been
shown in Ref. [32] that opening new channels even beyond
next-nearest-neighbor interaction can be compensated for if lo-
cal control within the chain is possible by adjusting the nearest-
neighbor coupling. This degree of local control may not always
be available and/or might not be desirable; so in our work we
consider the longer range interactions as a potential perturba-
tion on nearest-neighbor systems designed to produce PST.

III. EFFECT OF NONSYNCHRONOUS AND
IMPERFECT INPUT OPERATIONS

In this section we will discuss the effect of imperfect exci-
tation injection into the device when multiple excitation states
are considered. A possible device configuration for input and
output of multiple excitations is sketched in Fig. 15, where each
site in the chain is associated with a register which can act as
an input-output device. We assume that there exists a clock to
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FIG. 15. (Color online) Sketch of possible multiple qubit input-
output device. In the example each spin corresponds to a specific
register, while the active input registers are the i and j registers
and the information is transferred to the N − i + 1 and N − j + 1
registers via the mirroring rule.

which the machinery at both ends of the chain have reference.
(Without such a clock even simple PST could not operate, as
extraction has to be timed with respect to injection.) The timing
errors we consider are with respect to this reference clock.

We will first consider the case of unentangled input states
|φ{i},n〉 and then analyze the effects on entangled input states.

A. Unentangled states: Nonsynchronous injection

Let us consider the injection and transfer of a state |φ{i},n〉.
An important question to ask is how and to what extent a time
delay in input operations would alter the transmission fidelity.
This question is particularly important for multiple excitations:
for a single excitation a delayed injection would not alter the
overall state evolution, but there would be merely an overall
time shift. For multiple excitations, however, it may occur that
during the preparation of a state |φ{i},n〉, with n > 1, not all
input sites are accessed at exactly the same time. As a conse-
quence a system which is supposed to be prepared in a two-
excitation state may start evolving as a one-excitation system
if the two required excitations are not injected in synchrony.

Let us focus on the latter case. When considering such a
delayed input there is a finite probability that the second spin
k we want to inject an excitation into is already occupied.
The result of this scenario is dependent on the injection
mechanism; so we will consider the two main possibilities:
(I) spin excitation via a Rabi-flopping control pulse on spin
k, applicable for example to systems in which excitations
correspond to ground-state excitons confined within a quantum
dot chain or to flipping the spin of an electron already confined
within the chain, and (II) injection via SWAP operation or
injection of an additional particle in the chain. The latter may
correspond, e.g., to the scenario in which the state in the qubit
of register k closest to the spin chain (see Fig. 15) is swapped
with the state in the chain site k—e.g., via a train of laser
pulses in the case of exciton qubits (see Ref. [18])—or to the
scenario in which the main computation occurs via coherent
electron transport in quantum wires (such as in Ref. [33]), each
connected to a spin chain site.

In case (I) injecting an excitation corresponds to apply-
ing a π -pulse using the Hamiltonian HR = 	(t)|0〉〈1|k +
	∗(t)|1〉〈0|k , with 	 being the Rabi frequency (we assume
that qubits can be manipulated on an individual basis).
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FIG. 16. Fidelity with input of the second excitation in a six-spin
chain with 0.1tM delay vs rescaled time t/tS . Panel (a) shows injection
by Rabi flopping, where the resulting error remains in the system
as the zero vector |000000〉. At t = tS the state of the first spin is
measured and an excitation is found. This allows for refocusing the
system in the two-excitation subspace only. The peak of |110000〉 at
multiples of tS plus delay is 0.7807. If at t = tS the second spin is
measured instead, the peak fidelity becomes 0.7203. Panel (b) shows
injection by SWAP operation where the error remains in the system
in the one-excitation subspace. At t = tS the state of the register is
measured and no excitation is found. This projects the system in the
two-excitation subspace only and disentangles the chain from the
register. The peak of |110000〉 at multiples of tS plus delay is 0.9870.

Accordingly, at the delayed injection of the second excitation,
the system state will evolve as

∑

j

c{ij },1
∣∣φ{ij },1

〉 →
∑

j 
=k

d{ij ,ik},2
∣∣φ{ij ,ik},2

〉 + d0|φ{},0〉, (9)

with d{ij ,ik},2 = c{ij },1 for j 
= k and d0 = c{ik},1. Here we have
explicitly displayed the set of indices {i}. The last term
in Eq. (9) corresponds to the error induced by having a
nonzero probability |c{ik},1|2 of an excitation present in spin
k and translates, after injection, into the probability of having
no-excitations at all present in the chain [see Fig. 16(a)]. If
the desired dynamics is such that a certain site j has unit
probability to contain an excitation at a later time t̄ though,
the system can be refocused by measuring site j at t̄ : a result
of “excitation present” would collapse the system state into
two-excitation dynamics, which is the closer to the desired
dynamics the smaller the delay; a result of “no-excitation
present” would imply that the chain contains indeed no
excitation at all. We underline that the latter result could be
used as a protocol to reinitialize the chain itself.

In case (II) the scenario is very different. Should the first
excitation already have a nonzero probability of occupying
site k, the second excitation will have a related probability of
remaining in the register. The register would then become
entangled with the spin chain. The injection process can
in fact be described as follows (where we assume that the
presence of the excitation in site k is the only cause of failed

injection):
∑

j

c{ij },1
∣∣φ{ij },1

〉 ⊗ |1〉register

→
∑

j 
=k

d{ij ,ik},2
∣∣φ{ij ,ik},2

〉 ⊗ |0〉register

+ c{ik},1
∣∣φ{ik},1

〉 ⊗ |1〉register, (10)

with d{ij ,ik},2 = c{ij },1 for j 
= k.
The simplest way to destroy this unwanted entanglement

is to measure, after injection, whether the second excitation
is still present in the register or wire. By this measure, we
remove the entanglement between register and device, but we
also get to know exactly what state the device itself is in:
if the measure outcome is “no excitation in the register” the
injection has been successful and the spin chain now follows
a two excitation evolution which is the closer to the desired
dynamics the smaller the injection delay has been. This is
described in Fig. 16(b). If the outcome of the measurement is
“excitation in the register” the chain will continue to evolve as
a one-excitation system. However in the latter case we have
also reset the chain, ready for trying again the injection of the
second excitation at the earliest convenient time.

In Fig. 17, we give an overview of various possible
delay scenarios, assuming input by SWAP operation with error
correction by measurement of the injecting register or wire
performed immediately after the attempted injection of the
second excitation. In Fig. 17(a), the delay of the second
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FIG. 17. Effects of delayed input of a second excitation on a
six-spin chain with SWAP operation given by fidelity vs rescaled time
t/tS . (a) Input delayed by 0.15tM . (b) Input delayed by an integer
number of tS (here, 1tS). (c) Input delayed by an odd multiple of tM
(here, 1tM ). For panel (a) the maximum recurring fidelity of |000011〉
is 0.9313, at odd integer multiples of tM plus the delay. For panel (b),
due to the complete period delay, |000011〉 emerges with unit fidelity,
whereas for panel (c) the occurrence is negligible.
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FIG. 18. Fidelity after second input to a six-spin chain is delayed
by an odd multiple of tM (here, 3tM ) vs rescaled time t/tS . The peak
of |010001〉 at t = 2.5tS reaches unity.

excitation is equal to 0.15tM . Even with the error correction
measurement we see an impact on the system as the delay
between the two injections puts a cap on the fidelity of the
revivals of the desired two-excitation input state. The larger the
delay (up to the mirror time tM ), the more serious the impact.
Figure 17(b) demonstrates that even if timely simultaneous
injection were not possible, the ability to inject the second
excitation an integer number of periods tS after the first one
would allow for perfect revivals. In contrast, Fig. 17(c) shows
that a second injection exactly tM away from the ideal case
would result in the total decay of the desired state. However,
we have to keep in mind that at t = tM , where |φ{i},1〉 has the
lowest fidelity, the corresponding twin state will be achieving
perfect fidelity and that therefore a new state will emerge. We
illustrate this in Fig. 18: at a time equal to an odd multiple of
tM , the initial input state |100000〉 has zero fidelity, while its
twin state |000001〉 has unit fidelity. Injection of the second
excitation into the second site (which would have resulted in
the ideal state |110000〉 if there had been no delay) results
in |000001〉 → |010001〉. This state then continues to evolve
with its twin state |100010〉, both of them alternately reaching
perfect fidelity. The additional features on the plots of vectors
with two excitations, as well as the narrowing of the main
peak, are due to excitation of the particular superpositions
of energy eigenstates in the two-excitation subspace that
correspond to our initial state. This shows how we can use
delayed input to transfer states which are different from the
twin sites of the input sites while still assuring PST. This may
be useful if, for example, not all sites are accessible for input
operations.

B. Unentangled states: Imperfect input operations

Imperfect injection can occur even without delays between
different excitations’ injections due to other device imper-
fections. A typical example could be the possibility that in
the SWAP injection scenario one of the two excitations is
partially reflected into the wire. This may occur in a device
in which the spin chain is formed by gate-defined quantum
dots where electrons are injected via (computational) wires,

with the reflection being caused by imperfect lowering of a
potential barrier between the wire and the selected spin chain
site k. In this case the injection would be described by

|φ{},0〉 ⊗ |1〉registerk ⊗ |1〉registerj

→ d{ij ,ik},2
∣∣φ{ij ,ik},2

〉 ⊗ |0〉registerk ⊗ |0〉registerj

+ c{ij },1
∣∣φ{ij },1

〉 ⊗ |1〉registerk ⊗ |0〉registerj , (11)

where the first spin has been perfectly injected at site j ,
while there is a reflection probability |c{ij },1|2 associated with
spin k. In this scenario measuring the absence (presence) of
excitation in the register after injection would ensure that
the chain is undergoing exactly the desired dynamics (or
that the chain is ready for reinjecting the second excitation
at the closest suitable time). The aforementioned scenario
can be straightforwardly extended to the case in which a
finite probability of reflection is associated with both injection
sites.

While in this paper we are only discussing delays at the
input stage, similar problems may arise of course at readout,
should the extraction of a state covering multiple sites not be
as timely as we would hope it to be. It is also worth noting that
any peak following delayed input is shifted forward in time
linearly with increasing delay.

C. Entangled states

When considering imperfect or nonsynchronous input and
entanglement transfer, we see an effect similar to that on
unentangled states. Again, as the overall desired system state is
more complicated, we monitor the evolution of the amount of
entanglement in the relevant subsystem, instead of individual
vectors. In Fig. 19 we show the evolution of the first EOF
peak after the delayed input has taken place, for case (ii)
where entanglement is created from an initial product state.
In this setting it is not possible to implement the refocusing
protocol for the Rabi flopping, but we are assuming that
the confirmed injection protocol for the SWAP operation is
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FIG. 19. Maximum value of the first EOF peak at tM vs input de-
lay for an eight-spin chain with initial input state |ψin〉 = ( 1

2 )(|0108〉 +
|1108〉 + |0118〉 + |1118〉) ⊗ |02 · · · 07〉 for both Rabi flopping and
SWAP operation types of injections.
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for a six-spin chain with initial input state |ψin〉 = ( 1√
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)(|100000〉 +

|010000〉) for both SWAP operation and Rabi flopping types of
injections.

implemented instantaneously, just after the injection attempt.
Due to the fact that the two injection sites in the state
described in this figure are at opposite chain ends, there is
virtually no difference between injection by Rabi flopping
and injection by SWAP operation. As long as the second
injection is only delayed by a small fraction of tM , the first
excitation will not have spread out far enough yet to affect
the second injection site. We see that, even for delays as
large as 0.1tM , the system retains over 90% of its possible
entanglement.

When we consider two adjacent injection sites, there is
instead a clear discrepancy between the decay in the EOF
in a chain with input via Rabi flopping or SWAP operation
(Fig. 20). Again, we assume that there is an instantaneous
SWAP correction protocol applied, while refocusing after the
Rabi flopping is not possible. As in the case of nonsynchronous
input in unentangled states, a delay in a SWAP type injection
perturbs the system far less than using Rabi flopping and
shows virtually no loss in the amount of entanglement in the
system, even for delays as large as 0.05tM . If instead Rabi
flopping is used, the decay in the EOF is similar to that in
Fig. 19.

IV. CONCLUSIONS

In this paper we have considered a variety of physically rel-
evant perturbative factors in spin chains. We have investigated
in detail their effects on information transfer and entanglement
generation and transfer. For different forms of perturbation,
the results of our extensive numerical studies on the quality
of transfer can be captured with a straightforward analytic
expression that demonstrates exponential damping with the
number of spins in the chain and Gaussian dependence on
the relevant perturbation parameter. This expression provides
a simple tool for estimating the efficiency of a chain under
the action of perturbations. We have also related our dimen-
sionless perturbation parameter scales to actual parameters for
candidate spin chain realizations such as quantum dots with

exciton qubits and graphene dots with spin qubits, providing
a calibration of our estimator tool for these experimental
systems.

We have considered the transport of both unentangled
states and entangled states via spin chains, subject to various
forms of perturbation, and a general conclusion is that
next-nearest-neighbor interactions are the most damaging to
transfer fidelity or EOF. The reason for this can be traced
back to the fact that the next-nearest-neighbor interaction is
the only perturbation that effectively opens up new channels
for the system dynamics. Connecting sites which would
otherwise be disconnected (at the same order in perturbation)
allows a more efficient (in a detrimental sense) “spread”
of excitations and consequently drastically diminishes the
occurrence of quantum coherent effects such as revivals and
PST. In particular, we have seen that the introduction of
next-nearest-neighbor coupling may lead to non-negligible
quality loss after only a few periods. Systems with simpler
input states are generally slightly less affected than those of
a slightly more complex nature, but as different perturbation
factors affect different excitation subspaces, there is no clear
advantage of one particular type of state in terms of robustness.
However, for all fabrication defects considered we have found
that the transport during the first period remains of high quality
for perturbation amplitudes of the order of a few percent,
while the periodicity itself may be destroyed for next-nearest-
neighbor couplings above about 5%. This is of particular
concern for schemes based on dipole-dipole interactions,
where, for roughly equidistant sites, the next-nearest-neighbor
interactions are of the order of 10%. Nevertheless, due to the
Gaussian dependence of transport efficiency on perturbation
amplitudes, provided that the perturbations are kept below
these few percent thresholds, spin chains are demonstrated
to be very good candidates for the implementation of solid
state quantum-information-processing devices, robust against
various forms of perturbation.

Additionally, we have seen that the effect of imperfect input
or injection operations leads to a permanent (but constant) loss
in information transport quality and entanglement generation.
For input delayed by a time approaching the mirroring time
tM , the transport of the intended state is replaced by a new
input state, which is then subject to the system dynamics
as per usual. Furthermore, there is a fundamental difference
between the two input methods we have considered. If Rabi
flopping is used and the injection of the second excitation
is delayed, the error induced by the imperfect input remains
in the system, except if a site is expected to be in state |1〉
at a known time, when measurement of this site can recover
dynamics close to the ideal case. In the case of input by SWAP

operation, the error can be dramatically reduced by subsequent
measuring of the environment. When considering SWAP type
injection, unentangled states and type (i) entanglement states
are remarkably robust against nonsynchronous injection, with
hardly any loss of fidelity even for large delays. Type (ii)
dynamically generated entangled states are instead more
affected due to their more complex setup. Even so the loss
of the EOF remains less than 10% for delay values up to 10%
of the mirroring time tM .

Our studies demonstrate quantitatively the criteria that need
to be met, in terms of perturbation scales and injection errors,
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for imperfect spin chains to work efficiently as quantum-
information transfer and entanglement transfer or generation
devices. With modest errors at or below the few percent level,
spin chains prove to be good and robust devices,which is very
encouraging for future experiments on these systems.
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