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Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary,
here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if
entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate
ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The
common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to
an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating
strategy used to undermine the previous protocols can succeed with a rate of at most 85%. We prove the modified
protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.
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I. INTRODUCTION

Quantum cryptography has both power and limitations.
Whereas quantum cryptography can offer unconditional com-
munication security [1–3] through quantum key distribution
(QKD) [4,5] and multiparty quantum secret sharing [6,7],
it cannot protect private information in secure two-party
computations due to standard no-go theorems in quantum
bit commitment [8,9] and quantum oblivious transfer [10].
So what are the exact limits on the power of quantum
cryptography?

In this article, we help shed light on this question by focus-
ing on another proposed application of quantum cryptography.
It is called position-based cryptography (PBC) [11]. The goal
of position-based cryptography is for a prover to prove to a set
of cooperating spatially separated verifiers that he or she is at
(or in the small neighborhood of) a particular spatial location.

Why is position-based cryptography interesting? In every-
day life, we constantly place trust on spatial locations. For
instance, when using a bank to deposit some money, we seldom
ask the teller to prove that he or she is indeed a bank employee
rather than an imposter. Why? Presumably we have used this
bank before (at this particular location), and thus the teller
occupying this same physical space convinces us that he or
she can be trusted as a bank employee.

Position-based cryptography might also be of interest in, for
example, automatic road tolling in vehicular communication
systems [12]. Instead of collecting road tolls manually or
installing many automatic collection stations in each highway
entrance and exit, perhaps satellites could track all vehicles in
a highway and charge them road tolls automatically, according
to the paths taken. For such a road toll system to be foolproof,
it is important to ensure that a cheater cannot fool the verifiers
(satellites) as to his or her whereabouts.

Unfortunately, in the classical world, unconditionally
secure position-based cryptography has been proven to be
impossible [11,13]. The reason is that classical messages can
be perfectly cloned by cheaters before forwarding them to
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the authorized receiver. Consequently, neither senders nor
receivers are able to detect an intercept-and-broadcast attack.

Quantum cryptography has a fundamental advantage over
classical cryptography due to the quantum no-cloning theorem
[14,15]. In view of the success in quantum key distribution,
it is an interesting question to ask whether PBC can be
implemented with unconditional security in the quantum
setting. As far as we know, the possibility of position-based
quantum cryptography (PBQC) was first studied by Kent
under the name of “quantum tagging” as early as 2002.
Based on the idea, a patent of a quantum tagging system
introduced by Kent et al. was granted in 2006 [16]. However,
their results did not appear in the academic literature until
2010 [17]. Recently, before the appearance of Ref. [17],
two PBQC protocols have been independently proposed by
Chandran et al. [13] (hereafter denoted as Protocol A) and
Malaney [18,19] (hereafter denoted as Protocol B). Protocol A
is claimed to be unconditionally secure with a detailed proof
of security based on a complementary information trade-off
argument. Protocol B is also claimed to be unconditionally
secure due to the quantum no-cloning theorem, but no detailed
security proof has been given.

Contrary to the claims of unconditional security, both
protocols are, in fact, insecure. Cheaters can make use of
entanglement to conduct nonlocal operations to produce the
same response as in the honest case. Independent of our
present work, Kent, Munro, and Spiller [17] have discussed
some conditions required for a secure PBQC protocol. They
report that several types of PBQC scheme are insecure against
teleportation-based attacks, and they describe the attacks if
the locations of reference stations and authorized receiver are
collinear. Their attack applies to Protocols A and B for the
case of one spatial dimension.

There are two objectives in this article. First, we show how
existing PBQC protocols (Protocols A and B) can be cheated
by using entangled resources and discuss why the protocols are
insecure. We discuss not only the case of one spatial dimension
but also higher dimensions. Second, we propose a modified
protocol and discuss its security. Our article is organized as
follows. In Sec. II, we outline the procedure of both Protocol A
and Protocol B. In Sec. III, we consider the case where the
number of reference stations N = 2. Similarly to Ref. [17]
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but, more explicitly and in a step-by-step manner, we show
how the protocols can be cheated with certainty. In Sec. IV,
we consider the cases where N > 2, which can be cheated by
techniques of quantum secret sharing and cluster state quantum
computation. The reason for the insecurity of both protocols
and the loophole of the claimed security proof are discussed in
Sec. V. In Sec. VI, we give our modified protocol and examine
its security under our cheating scheme. Our protocol is proved
to be secure in Sec. VII if cheaters share entangled qubits or
qutrits only. Finally, we summarize our article in Sec. VIII
with brief discussions.

II. PBQC PROTOCOLS

Here, for simplicity, we assume that all honest
parties have synchronized clocks and work with a flat
Minkowski space time. The idea of position-based
quantum cryptography is to divide encoded quantum
information into several parts (but possibly entangled) and
distribute to N reference stations V1, . . . ,VN at various
separated locations. The divided pieces are then sent
from different directions to an authorized receiver P ,
who is located at a preassumed position �xP surrounded by
a finite secure region which no cheaters have access to. For
simplicity, we hereafter assume �xP is located equidistant from
all reference stations and that the divided information is sent
simultaneously from the respective stations. Measurement is
immediately conducted by P on the quantum system, and the
result is broadcast for verification. The argument is as follows.
Since perfect quantum measurement (learning the particle’s
state in a deterministic manner) can be achieved only with
adequate knowledge about the system, such as its polarization,
cheaters outside �xP must wait for a longer time than P to obtain
enough information for perfect measurement. Otherwise, they
are only able to conduct imperfect measurements. Therefore,
references can authenticate receiver’s position by checking
the response time and error rate of broadcasted measurement
results. Procedures of two existing proposals are outlined as
follows.

A. Protocol A

The idea of Protocol A is to send the basis of measurement
and the encoded qubit separately from different reference
stations [13]. Security of this protocol was believed to rely
on the idea that quantum system can be measured perfectly
only if the correct measurement basis is obtained. Explicit
procedures of Protocol A follows.

Step 1. Station V1 encodes a message u ∈ {0,1} as a qubit
|u〉, where |0〉 and |1〉 are +1 and −1 eigenstates of Pauli
Z operator, respectively. Inspired by the well-known Bennett-
Brassard 1984 (BB84) QKD protocol, V1 encrypts the message
by applying the transformation Hq on the qubit, where H is
the Hadamard gate and q is a random bit valued 0 or 1.

Step 2. V1 generates N − 2 random bits q2,q3, . . . ,qN−1,
and decide a bit qN by the relation

q = q2 + q3 + · · · + qN mod 2. (1)

The bits q2,q3, . . . ,qN are distributed to the reference stations
V2, . . . ,VN , respectively. The encoded message u is also sent

to other stations. We assume the communication between
reference stations are secure, for example, the QKD system
is employed.

Step 3. The reference stations V1, . . . ,VN agree a time
t0 when the PBQC scheme starts. At t = t0, V1 sends the
encoded qubit to P , while Vi sends the classical bit qi for
i = 2,3, . . . ,N .

Step 4. On receiving all information, P adds up all bits
to obtain q. The qubit can be decrypted by applying Hq

and measured in the Z basis to obtain the encoded message.
P broadcasts the results immediately to all reference stations.
We assume all operations of P cost negligible time.

Step 5. If q’s are random enough, missing any one classical
bit would cause half a chance of a wrong measurement basis.
Reference stations can validate the identity of P by checking
if the response is consistent with the encoded message. By
checking the arrival time of the response at different reference
stations, the location of P is also verified.

B. Protocol B

The idea of Protocol B [18] is to encode information
into maximally entangled states and then perform encryp-
tion by local transformations. Classical information about
transformations are sent from different reference stations.
Security of this protocol was believed to rely on the fact that
correct measurement cannot be conducted without decrypting
all qubits, as well as the idea that local measurement must
disturb an entangled state. The explicit procedure of Protocol
B follows.

Step 1. N bits of message is encoded as a N qubit GHZ
state

|GHZ〉 = 1√
2

(|a1〉|a2〉 · · · |aN 〉
±|1 ⊕ a1〉|1 ⊕ a2〉 · · · |1 ⊕ aN 〉), (2)

where a1, . . . ,aN ∈ {1,0}; ⊕ denotes addition with modular 2.
Each reference station picks a qubit from the entangled state.

Step 2. Each qubit is encrypted by the local transformation
Ui and sent to an authorized receiver P . P will store the
entangled state in his quantum memory.

Step 3. The PBQC scheme starts at an agreed time t = t0.
Every reference station sends the classical information about
the transformation Ui to P at the same time.

Step 4. P immediately decrypts the state after receiving the
classical information. He then conducts an N -qubit GHZ state
measurement to decode the message and announces his result
at once.

Step 5. The measurement result is probably wrong if
someone measures the state before getting all transformation
information. Hence the identity of P can be authenticated from
the announced result. Besides, the location of P can be verified
by checking the total time spent on the whole process.

C. Dimensionality of PBQC scheme

In general, the reference stations lie on a one-dimensional
straight line for N = 2 and a two-dimensional plane for N = 3,
and they distribute in three-dimensional space for N > 3. We
comment that the dimension of position of P that can be
verified by the PBQC scheme is independent of the spatial
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V

P

FIG. 1. At a particular time t1, the front of signals sent from
V1, V2, and V3 are represented by solid, dashed, and short-dashed
lines, respectively. While signals reach P at t = t1, another position
P2 inside the triangle of three reference positions (framed by dotted
lines) can obtain all information before t1.

dimension of the reference station distribution. For example,
even if there are two reference stations and they are collinear
with P , all three components of �xp = (xp,yp,zp) can be
authenticated by the PBQC scheme. To illustrate this idea,
assume V1 and V2 are lying on the x axis and �xp is some
point in between. The signals are sent at a time designated
by the PBQC protocols. It is easy to see that any position
with y �= 0 or z �= 0 takes a longer time than P to receive
both information from V1 and V2. Thus the one-dimensional
PBQC actually confirms the three-dimensional position of P

instead of the x coordinate only. Similarly, if P is located in
the same plane as the three reference stations V1, V2, and V3,
the PBQC scheme also verifies the three-dimensional position
of P . This argument, however, requires that the position of the
reference stations are well chosen, i.e., V1,V2,P are collinear or
V1,V2,V3,P are coplanar. Four reference stations are necessary
if their locations are constrained.

We also note that PBQC can be performed if and only
if P is located inside a polyhedron formed by the positions
of some reference stations. Otherwise, for all starting times
chosen by the reference stations, there must be places inside
the polyhedron such that shorter or equal time is required to
receive all information. The idea is illustrated in Fig. 1.

III. CHEATING IN THE N = 2 CASE

Contrary to claim(s) of unconditional security, we find
that both Protocols A and B are, in fact, insecure. We
first demonstrate our cheating strategy for the two-reference-
stations case (i.e., N = 2) for both protocols and generalize
it to the more-reference-stations case (i.e., N > 2) in the next
section. In the current case, we assume V1 and V2 are separated
by distance 2d and P is located in the middle of the two
reference stations so all systems lie on a one-dimensional
straight line. PBQC requires P is surrounded by a finite
restricted area, such as inside a big military base, with width
2l that no cheaters can get into. We assume either qubit or
classical information are transmitted at the speed of light c,
and the time for intermediate processing is negligible. If the
PBQC scheme starts at t = 0, V1 and V2 expect to get the
correct response at t = 2d/c.

P

t t

(d-l)/c

(d+l)/c

2d/c

0

2d

2l

FIG. 2. Space-time diagram of the one-dimensional scenario.
Solid lines denote space-time trajectory of information which is
possibly quantum or classical, while double lines denote that of clas-
sical information only. In both Protocols A and B, all measurements
ought to be conducted at t = (d − l)/c (shown as squares) in order
to give correct response to reference positions on the expected time
t = 2d/c. An appropriate response is decided after information of
another cheater is received at t = (d + l)/c (shown as circles). If there
is no entangled resources shared, B1 has to wait for information from
V2 to conduct perfect measurement. Trajectory of the corresponding
response is represented by the dot-dashed line, which shows the
correct result cannot reach V2 before t = 2d/c.

Successful cheating is to produce the correct response not
slower than t = 2d/c without entering the restricted area. We
find that two cheaters are enough to cheat the protocols in this
case. We assume cheaters B1 and B2 are sitting at d − l and
d + l, respectively, which are both just outside the restricted
area. The layout of our scenario is shown in Fig. 2.

A. Flaw in claimed security proof

We remark that Protocol A was once believed to be
unconditionally secure. In fact, a detailed claim of proof of
security based on complementary information trade-off was
given in Ref. [13]. The intuition behind the claimed proof is
that any measurement on the encrypted qubit would inevitably
disturb the state and hence yield a wrong outcome with nonzero
probability.

Unfortunately, in the security proof of Protocol A [13], it
was implicitly assumed that no prior entanglement is shared
by the cheaters. Indeed, a pure state is assumed for the state
consisting of only one cheater and one honest party. See, for
example, the first sentence of the last paragraph of page 8 of
Ref. [13].

We remark that such an assumption is incorrect. In fact, the
cheaters can easily nullify the security proof by using shared
entanglement. We note that with shared entangled resources,
quantum teleportation can be conducted by measuring the
qubit appropriately [20]. The main idea of our cheating scheme
in the N = 2 case is to teleport the encrypted qubit from B1

to B2 for measurement in the correct basis. Detailed cheating
strategy procedure is as follows.
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X

Z

FIG. 3. The circuit for teleporting an unknown qubit |ψ〉 [20,21].
Measurement is denoted as squares; the measurement basis is repre-
sented by the character inside the squares. U� = X(1−s2)/2Z(1−s1)/2 is
the by-product of teleportation depending on random measurement
outcome s1 and s2.

B. Cheating against Protocol A in the N = 2 case

Step 1. Before the cheaters move to the destination, they
come together and each pick a particle from a Bell state

|�00〉 ≡ 1√
2

(|00〉 + |11〉) = 1√
2

(| + +〉 + | − −〉). (3)

We assume their quantum memory is perfect so the qubits
remain coherent until measurement.

Step 2. When the PBQC scheme starts t = 0, V1 sends a
qubit Hq |u〉, and V2 sends the bit q2 = q to P . At t = (d −
l)/c,B1 captures the qubit and B2 obtains the basis information.
To avoid suspicion of P , the cheaters can send a dummy qubit
and basis information to him, and P ’s response thereafter is
interfered or blocked by classical devices. We hereafter neglect
the role of P .

Step 3. B1 immediately perform a Bell measurement on this
two qubits in order to teleport the state to B2, the circuit of
his measurement is given in Fig. 3. He sends the measurement
outcomes of the encrypted qubit, s1, and Bell state qubit, s2,
to B2 at once. We note that measurement outcomes of Pauli
operators are +1 or −1.

Step 4. At the same instance t = (d − l)/c, the teleported
qubit of B2 becomes

X(1−s2)/2Z(1−s1)/2Hq |u〉. (4)

Consider if q = 0, B2 has a state

X(1−s2)/2Z(1−s1)/2|u〉 = (−1)u(1−s1)/2|u ⊕ (1 − s2)/2〉. (5)

Since B2 knows the basis is Z, and the state in Eq. (5) is
an eigenstate of Pauli Z operator, he can conduct a perfect
measurement with outcome (−1)us2. If q = 0, B2 has a state

HZ(1−s2)/2X(1−s1)/2|u〉
= (−1)[u⊕(1−s1)/2](1−s2)/2H |u ⊕ (1 − s1)/2〉. (6)

Since B2 knows the basis is X, and the state in Eq. (6) is
an eigenstate of Pauli X operator, he can conduct a perfect
measurement with outcome (−1)us1.

B2 immediately sends the result to B1. It must be noted that
although the measurement outcome of B2 contains information
about outcome of B1 our teleportation scheme does not permit
superluminal communication because B1 cannot choose the
measurement result deterministically.

Step 5. Then at t = (d + l)/c, both B1 and B2 know each
other’s results, as well as the correct measurement basis. They
can invert the value of u by multiplying the outcome of B2

with the second outcome of B1 for q = 0 or by multiplying

the outcome of B2 with first outcome of B1 for q = 0.
B1 then sends u to V1 while B2 sends to V2, and both reference
stations will receive the correct signal at t = 2d/c. The whole
process consumes the same amount of time to produce the
same correct result as there are no cheaters; Protocol A is,
therefore, insecure in 1D.

Remark. Let us explain Step 3 (the teleportation step). The
teleported state received by B2 will be acted on by one of the
four operators, I, X, Z, or XZ. Since the original state is an
eigenstate of either X and Z, we note that the four resulting
states are either orthogonal to each other or the same (up
to an irrelevant overall phase). Therefore, B2 with the basis
information can simply measure the qubit in that basis without
disturbing the state at all. Subsequently, after hearing the actual
Bell measurement, outcomes by B1 and B2 will be able to tell
what the original state is. For this reason, B1 and B2 can cheat
successfully with certainty. Therefore, Protocol A is insecure.

Remark. Let us explain this from another angle. Since the
measurements by B1 and B2 commute with each other, we can
also interpret the result from the viewpoint where B2 performs
a measurement before B1 does. In this case, B2, with the basis
information will measure a qubit in the correct basis. Using
the Einstein-Podolsky-Rosen effect, the qubit held by B1 will
be projected to either the same state or the opposite state to
the qubit sent by V1. So the task of B1 is to perform a parity
check of the states of the two qubits. While a general parity
check is impossible for all bases, we note that in Protocol A,
we consider only the two bases X and Z. So, in this case, as
the operator XX commutes with ZZ, indeed B1 can perform
a parity check by simply doing a Bell measurement. For this
reason, B1 and B2 can cheat successfully with certainty.

C. Cheating against Protocol B in the N = 2 case

In the current case, 2 bits of information, ab =
{00,01,10,11}, can be encoded into one of the four Bell states
|�ab〉 [18] in Eq. (3) and

|�01〉 ≡ 1√
2

(|00〉 − |11〉) = 1√
2

(| + −〉 + | − +〉) (7)

|�10〉 ≡ 1√
2

(|01〉 + |10〉) = 1√
2

(| + +〉 − | − −〉) (8)

|�11〉 ≡ 1√
2

(|01〉 − |10〉) = −1√
2

(| + −〉 − | − +〉). (9)

The qubits are then encrypted by random local transformation
U1 and U2 and sent to P . The PBQC scheme starts at t = 0
when reference stations broadcast Ui and is expected to end
at t = 2d/c in the honest case. The idea of the cheating is to
first capture and store the qubits until decryption information.
One of the cheaters then teleports the qubit so the other cheater
possesses two entangled qubits to do Bell measurement. The
step-by-step procedure is as follows.

Step 1. Before the process, the cheaters share a Bell state in
Eq. (3) and store it in good quantum memory.

Step 2. The cheaters break into the quantum channels
connecting P with reference stations, they capture the qubits
sent by V1 and V2 in a good quantum memory to preserve the
coherence until measurement.
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Step 3. At t = (d − l)/c, both cheaters receive the Ui form
references, U

†
i is applied respectively on the qubits to recover

the encoded state |�ab〉.
Step 4. B2 teleports the incoming qubit to B1. We call the

encoded state qubit captured by B1(B2) as qubit 1(2), and
the Bell state qubit of B1(B2) as qubit 4(3). We analyze the
teleportation by stabilizer formalism [22] as follows. B2 apply
a controlled-NOT gate on his qubits, the state is then stabilized
by

K1 = (−1)aZ1Z2, K2 = (−1)bX1X2X3,

K4 = Z2Z3Z4, K3 = X3X4. (10)

Qubit 2 is then measured in the X basis and qubit 3 is
measured in the Z basis. The outcomes s2 and s3 are sent to B1

immediately. The new set of stabilizers after the measurement
is

K ′
1 = (−1)as3Z1Z4, K ′

2 = (−1)bs2X1X4,
(11)

K ′
3 = s3Z3, K ′

4 = s2X2.

Qubits 2 and 3 are obviously no longer entangled as they
are measured. K ′

1 and K ′
2 show that qubits 1 and 4 are

left as a Bell state |�a′b′ 〉, where a′ = a + (1 − s3)/2 and
b′ = b + (1 − s2)/2. So B1 can measure the state perfectly
by Bell measurement, the outcomes a′ and b′ are sent to B2

immediately.
Step 5. At t = (d + l)/c, both cheaters obtain information

from each other. a and b are deduced from a′, b′, s2, and s3, and
they are sent to and eventually received by reference stations
at t = 2d/c. Hence correct results are extracted by cheaters
using the same time as in honest case and PBQC is hacked.

IV. CHEATING IN N > 2 CASE

We first consider the N = 3 case in which the reference
stations lie on the same plane, and then we discuss how the
scheme can be generalized to three-dimensional cases with
N > 3. For simplicity, we assume the three reference stations
V1, V2, and V3 are located at the vertex of an equilateral
triangle. The receiver P sits in the center of the triangle,
which is distance d from each references and surrounded by
a restricted area with radius l. We find that three cheaters are
enough to cheat both protocol perfectly. We assume cheaters
B1, B2, and B3 locate at distance l from P and d − l from V1,
V2, and V3, respectively. A layout of their position is shown as
Fig. 4.

A. Cheating against Protocol A in N > 2 case

In this protocol, V1 encrypts the encoded state in Hq |u〉 and
distributes q2 and q3 to V2 and V3. The physical meaning of
q2 and q3 are the number of H gates such that progressively
applying Hq2Hq3 is equal to Hq . In this case, the cheaters are
not going to teleport the qubit as there is only one qubit but two
separate pieces of information. Instead, they need methods to
share the rotation information, so the quantum secret-sharing
scheme is employed [6,7]. The steps of the cheating scheme
are as follows.

d

l P

FIG. 4. Positions of reference stations, cheaters, and the autho-
rized receiver of our three-station scenario are shown as black dots.
The shaded region represents the restricted area surrounding P .
Without the cheating, information flows along solid lines; if cheating
presents, information flows along solid lines outside the restricted
area and follows dotted lines in the restricted area. As the path of
V2 → P → V1 is longer than V2 → B2 → B1 → V1, the process of
cheating takes a shorter amount of time than does the honest case.

Step 1. Before the PBQC scheme starts, the cheaters
construct a three-particle GHZ state

1√
2

(|000〉 + |111〉). (12)

They then travel to the desired position before the PBQC starts
at t = 0.

Step 2. At t = (d − l)/c, B2 and B3 gets q2 and q3. If
qi = 0, cheater Bi measures his qubit in the X basis; otherwise
he measures in the Y basis. According to the idea of quantum
secret sharing, if both B2 and B3 measure in the same basis, the
GHZ qubit holding by B1 becomes an eigenstate of the Pauli
X operator; otherwise, it is an eigenstate of the Y operator. As
an example, let us consider the case where q2 = 0 and q3 = 1.
It can be shown that the GHZ states before measurement are
stabilized by

K1 = −Y1X2Y3, K2 = Z1Z2, K3 = Z1Z3. (13)

Entanglement is broken after measurement, and the stabilizers
then become single-particle operators. It can be easily obtained
that B1’s qubit is then stabilized by −s2s3Y , where s2 and s3

are measurement outcomes of B2 and B3. Results of other
combination of q’s are presented in Table I.

Step 3. Immediately after the measurement, B1 applies a
Hadamard transformation H followed by a π/4 gate S on the
GHZ state qubit in order to transform the eigenstates of X to
that of Z and eigenstates of Y to that of X, with the same

TABLE I. Tables of stabilizers in different cases of qi’s. K1 is the
stabilizer of the GHZ state compatible with the measurement basis.
K ′′

1 , K ′′
2 , and K ′′

3 are stabilizers after the measurement according to
the cheating scheme.

q2 q3 K1 K ′′
2 K ′′

3 K ′′
1

0 0 X1X2X3 s2X2 s3X3 s2s3X1

0 1 −Y1X2Y3 s2X2 s3Y3 −s2s3Y1

1 0 −Y1Y2X3 s2Y2 s3X3 −s2s3Y1

1 1 −X1Y2Y3 s2Y2 s3Y3 −s2s3X1
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eigenvalues. Now it can be observed that if q2 + q3 is even,
B1 will have a qubit in the Z basis; otherwise, he will have a
qubit in the X basis. At the same time t = (d − l)/c, and B1

also receives the encoded qubit sent from V1, so he has two
qubits on hand that are parallel or antiparallel, i.e., the two
qubits are simultaneous eigenstates of either the Pauli X or Z

operator. B1 performs a Bell measurement and obtains one of
the four outcomes in Eqs. (3) and (7)–(9).

Step 4. The cheaters share their measurement outcome
and basis information with others. Since the mutual distance
among B1, B2, and B3 is

√
3l, the cheaters can obtain all the

information at t = [d + (
√

3 − 1)l]/c. From the information
of B2 and B3, the actual state of the GHZ state qubit of B1 is
known from Table I. The outcome of the Bell measurement
can tell the parity of the two qubits of B1, and the state of the
encoded qubit is obtained.

Step 5. The correct result is then sent by the cheaters
and reaches the reference stations at t = [2d + (

√
3 − 2)l]/c.

When compared to the case without cheaters that the whole
PBQC process is expected to finish at t = 2d/c, our cheating
scheme eventually requires less time to produce the correct re-
sult. Cheaters can simply delay for a while before broadcasting
their final outcomes in order to match the time consumption
in the honest case. Hence the protocol is cheated.

We note that the time is shortened because information takes
2l/c time to travel from B1’s position to B2’s position in the
honest case, while only

√
3l/c is needed if there are cheaters.

In general, if the geometry is not an equilateral triangle, our
cheating scheme may still process faster than in the honest
case, provided that P is not on the same straight line as any two
reference stations. This is because honest information has to be
sent from a vertex to the center of the triangle where P locates
and then be rebroadcast to another vertex, while information
of cheaters is transmitted along edges of the triangle.

Our cheating scheme can be generalized to cases with
N > 3 reference stations; we need at most N cheaters in each
case. Before the PBQC starts, the cheaters create a N -particle
GHZ state which is stabilized by

K1 = X1X2 · · ·XN, Ki = Zi−1Zi, (14)

for i = 2,3, . . . ,N ; the subscripts of Pauli operators denote
the order of qubits. Each cheater Bi picks a qubit and
travels to a position between P and Vi . When B2, . . . ,BN

receives the basis information, they measure their qubit in
the X basis if qi = 0 or the Y basis if qi = 1 and broadcast
the results. If even number of q’s are equal to 1, the
qubit of B1 is in the X basis; otherwise, it changes to
the eigenstate of the Y basis. In the former case, the Y

measurement must be performed in pairs. Consider qi = 1
at position m and n; we must be able to construct a stabilizer
K ′

1 = K1Km+1Km+2 · · ·Kn = −X1 · · · Ym · · ·Yn · · · which is
compatible to the measurements such that the qubit of B1

remains at the X basis after the measurement. Otherwise, there
is one single Y measurement at position r; the compatible
stabilizer becomes K ′

1 = K1K2 · · · Kr = −Y1 · · · Yr · · ·, and
the qubit of B1 has changed to the eigenstate of the Y basis.

Identical to the N = 3 case, B1 applies an SH gate onto
his cluster state qubit; he then obtains an eigenstate of the X

operator if q is odd or an eigenstate of the Z operator if q

is even. He then measures the cluster state qubit and encoded
qubit sent from V1 by the Bell measurement and broadcasts the
measurement outcome. In the present case of N > 3, cheaters
do not receive all the information at the same time, but it is
easy to check that even the slowest piece of information should
arrive as late as in the honest case. The information provided
by B2, . . . ,BN determines the actual state of the GHZ state
qubit of B1, and the measurement of B1 reveals the parity
between his two qubits. Hence the value of the encoded qubit
is obtained and the cheaters have sent the results to reference
stations. The whole process takes less time than or the same
amount of time as does the honest case.

B. Cheating against Protocol B in N > 2 case

In this protocol, 3 bits of information are encoded as one
of the eight tripartite GHZ-type states [18] characterized by
parameters b1,b2,b3

∣∣�b1b2b3

〉 = 1√
2

(|a1〉|a2〉|a3〉 ± |1 ⊕ a1〉|1 ⊕ a2〉|1 ⊕ a3〉),
(15)

where a1,a2,a3,b1,b2,b3 ∈ {0,1}; (−1)b1 = ±1 is the phase
between two superposition states, b2 = a1 ⊕ a2 and b3 =
a1 ⊕ a3. The quibits are then distributed to reference stations,
and we denote the qubit held by Vi as qubit i. Qubit i is
encrypted by the arbitrary local transformation Ui and sent
to P subsequently. The PBQC scheme starts at t = 0 when
reference stations send information of Ui to P ; the correct
response should return at t = 2d/c. We find that three cheaters
are enough to cheat perfectly in this case. The idea is the
same as in the N = 2 case, which is to teleport all qubits to
one cheater so he can conduct an N -particle GHZ-type state
measurement. The cheating strategy is as follows.

Step 1. Before they have traveled to their desired positions,
B2(B1) picks qubit 4 (5), and B3(B1) picks qubit 6(7), where
qubits 4, 5, 6, and 7 are Bell states in Eq. (3).

Step 2. The cheaters break into the quantum channel
connecting Vi and P and capture the encrypted qubits. We call
the qubit captured by B1 qubit i. At t = (d − l)/c, cheaters
receive information of Ui and a corresponding decryption
procedure is made to obtain the original encoded state.

Step 3. Immediately after the decryption, B2 and B3 conduct
a Bell measurement for teleportation. Afterward, the state is
stabilized by

K ′
1 = (−1)b1s2s3X1X5X7,

K ′
2 = (−1)b2s4Z1Z5, K ′

3 = (−1)b3s6Z1Z7,
(16)

K ′
4 = s2X2, K ′

5 = s4X4

K ′
6 = s3X3, K ′

7 = s6X6.

It is easy to verify from Eq. (16) that qubits 1, 5, and 7 become a
GHZ-type state |�b′

1a
′
2a

′
3
〉, where b′

1 = b1 ⊕ (1 − s2s3)/2, b′
2 =

b2 ⊕ (1 − s4)/2, and b′
3 = b3 ⊕ (1 − s5)/2. So B1 can conduct

a GHZ-state measurement to reveal the residual state exactly.
The result is sent to other cheaters.

Step 4. In our equilateral triangle case, information ex-
change among cheaters is finished at t = [d + (

√
3 − 1)l]/c.

The encoded message b1, b2, b3 can easily be inferred from
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the measuring outcomes. Correct results are sent to reference
stations, and the whole process can be finished as early as
t = [2d + (

√
3 − 2)l]/c, which is even shorter than in the

honest case. If the three stations do not form an equilateral
triangle, the time required by cheating is longer. But the time
consumption is in general less than 2d/c for any three-station
scenario; PBQC is hence cheated.

V. PRINCIPLE OF THE CHEATING SCHEMES

A. Protocol A

We have verified that our cheating strategy works not only
for qubits encoded in BB84 states (eigenstates of X and Z

operators) but also if eigenstates of both Pauli X, Y , and Z can
be chosen for encoding. In the one-dimensional case, the same
cheating scheme can be applied as described in Sec. III B.
What are the ideas here? An idea is that the teleported state
will be transformed by one of the four operators I , X, Z,
and XZ. Now, if the input state is an eigenstate of the X,
Y , or Z operator, then the output state will be either the
same as or opposite to the input state (up to an irrelevant
overall phase). Another idea is that a Bell measurement by B1

allows him to check the parity of the operators XX, YY , and
ZZ simultaneously as the three operators commute with each
other.

In the case of more than two reference stations, we have
to modify our quantum secret-sharing cheating strategy. It is
because quantum secret sharing can only allow conversion
between two basis, while we need switching between the three
basis in this six states protocol. Cheating can be achieved by
cluster state quantum computation (CSQC) [23]. Instead of an
N -particle GHZ state, the cheaters shares a (4N − 3)-particle
chain cluster state. B1 picks a qubit on the end of the chain,
while other cheaters pick four consecutive qubits from the
chain. As stated in Ref. [23], each cheater can conduct a
general rotation by measuring three qubits in the appropriate
direction, while the last qubit is measured in the X basis to
teleport the state to the next cheater. Finally, the cluster-state
qubit of B1 lies in the same basis as the incoming qubit,
and he can conduct Bell measurement as before. It is noted
that all cluster-state qubit measurements can be conducted
at the same time; the sequence of the measurement among
cheaters is unimportant. It is because all measurements are
local operations and obviously independent of each other.
We also note that the quantum secret sharing and quantum
teleportation mentioned before are special cases of CSQC. In
fact, CSQC is a more general concept, so we will analyze our
cheating scheme under this formalism.

We find that two characteristics of eigenstates in the X, Y ,
and Z basis leave the possibility for our cheating. First, the
conversion between them (H is the transformation between X

states and Z states; S is the transformation between X states
and Y states) are Clifford operators. Recall in the N = 2 case
that we have pulled the H gate from Eq. (4) to the front in
Eq. (6), and let the Pauli operators applying on the Z states
before the gate. Since the basis of Pauli states are not changed
by Pauli operators, the action of the transformation gate is not
altered and hence the teleported state is in the same basis as the
original qubit. In N > 2 cases, we refer to the general rotation

operation of CSQC [23],

|ψout〉 =
N∏

i=2

U�i
Ui |ψin〉, (17)

where |ψout〉 is the cluster-state qubit held by B1; |ψin〉 can
be treated as |0〉 in our case; Ui is the rotation induced by the
cluster-state measurement (in our case it is performed by Bi to
conduct rotation hinted by the message of Vi); and U�i

= XiZi

is the by-product of the random measurement outcome of the
i-th qubit. It is transparent that if all Ui are Clifford operators,
Eq. (17) becomes

|ψout〉 = UU�|0〉 = eiφU |0 or 1〉, (18)

where U is the product of all Ui , which is the complete
encoding transformation separated beforehand in this protocol.
U� is a product of Pauli operators; its form depends on U�i

as well as on the commutating relation between U�i
and Ui .

eiφ = {±1, ± i} is the phase generated by U�|0〉, and the state
|0〉 can only flip to |1〉 or remain unchanged upon U� .

The cluster-state qubit of B1 is hence parallel or antiparallel
to the encoded qubit, and B1 can obtain information of the
unknown qubit by checking the parity of his qubits on hand,
if such a parity-checking measurement exists. For eigenstates
of Pauli operators, the parity of two qubits in the same basis
can be checked by the Bell measurement, which is the second
key point to our cheating scheme. We illustrate this idea using
the BB84 states and leave interested readers to verify the Y

states. If both qubits of B1 are in the Z basis, only |�00〉 and
|�01〉 contain even-parity states and odd-parity states appear
in |�10〉 and |�11〉 only, whereas if they are in the X basis,
only |�00〉 and |�10〉 contain even-parity states and odd-parity
states appear in |�01〉 and |�11〉 only. It can be seen that
even- and odd-parity states do not appear in the same Bell
states, hence cheaters can infer the parity of qubits of B1 by
the Bell measurement result. Furthermore, cheaters know the
exact form of cluster state qubit of B1; the qubit is then revealed
by the parity.

B. Protocol B

This protocol is once believed to be secure. The argument
is based on the quantum no-cloning theorem [18]. But it is
not necessary to clone the state perfectly in order to conduct
a perfect measurement. The problem of Protocol B is that
the message is encoded in GHZ states, where each code is
related to every other by bit flips and an overall phase flip
only. Since the random by-product of our teleportation scheme
is single-particle X and Z operators, an encoded state must be
mapped to another code state after teleportation. As a result, a
standard decoding procedure can read out the teleported state
perfectly.

VI. MODIFIED PBQC SCHEME

In Sec. V, we have discussed that Protocol A is insecure
because the qubit is encoded as eigenstates of X or Z such
that the basis of state does not change on teleportation or
cluster-state manipulation. And we are able to reveal the parity
of two particles if they are in the X or Z basis. Notice, however,
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that if one modifies a protocol to allow more general bases
other than the X, Y , and Z bases, then our cheating strategy
does not generally work, in the sense that B1 may not be
able to find an appropriate basis to measure the teleported
qubits perfectly. This is because the by-product of random
measurement outcomes of teleportation may map the encoded
state into a state that is no longer a code. In fact, our cheating
scheme fails if references encoded the 2-bit message as the
states {|00〉,(|01〉 ± |10〉)/√2,|11〉} in the one-dimensional
case. It is easy to check that the by-products of teleportation
do not necessarily map a code state to a code state.

Another protocol that is resistant to our teleportation attack
is a natural extension to Protocol A. A message is encoded as
±1 eigenstates of n̂(θ,φ) · �σ

|ψ〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉, (19)

|ψ̄〉 = sin
θ

2
|0〉 − cos

θ

2
eiφ|1〉, (20)

where 0 � θ � π and 0 � φ � 2π , �σ = Xx̂ + Y ŷ + Zẑ is
the Pauli vector. Such a modified protocol was also proposed
in Ref. [17].

In the N = 2 case, reference stations V1 and V2 are assumed
to connect with a secret channel, such as a quantum channel for
QKD. Although only finite bits can be communicated through
QKD, random θ and φ can be generated by various methods.
One example is to make use of the universality of quantum
computation, where arbitrary qubits can be constructed by
sequences of Clifford operators plus a π/8 gate [18,21]. A
random sequence of “0” and “1” is generated by V1 and sent
to V2. Each “0” represents an operation of Hadamard gate H ,
while a “1” represents an operation of π/8 gate T , applying on
the state |u〉 encoded with a bit u ∈ {0,1} [18]. For example, if
the the sequence “01011” is sent, the encrypted state is given
by HT HT T |u〉.

The idea can be generated to N > 2 cases. Each of
the verifiers are connected to V1 with QKD channels for
communication of arbitrary rotation Ui . The encrypted qubit
sent from V1 to P is U2 · · · UN |u〉, while reference stations
V2 · · · VN send information of rotation Ui .

It is not difficult to check that our modified protocol is
immune to our original cheating strategy demonstrated in
Secs. III and IV. In the N = 2 case, B1 captures the state
|ψ〉 in Eq. (19) sent from V1 at t = (d − l)/c and teleports it to
B2 immediately. Although B2 knows the basis from V2, it can
be shown that the teleported state can be neither parallel nor
antiparallel with the original one, i.e., for s1 and s2 not equal
to 1, the matrix element

〈ψ |X(1−s2)/2Z(1−s1)/2|ψ〉 �= 0 or 1. (21)

Therefore B2 cannot find a basis to measure the qubit always
perfectly without knowing measurement outcomes from B1.
Message of B1 arrives B2 as soon as t = (d + l)/c. Even if B2

measures the qubit immediately, correct feedback will reach
V1 no earlier than t = 2(d + l)/c, which costs more time than
expected. Security of PBQC is hence enforced.

In the case of more reference stations, Ui’s do not belong to
the Clifford group; it precludes the encrypted state to transform
from Eqs. (17) to (18). As in the one-dimensional case,

B1 cannot perform a perfect measurement until the random
outcomes of cluster-state measurements are known. But the
location where all information can reach each other in the
shortest time is inside the restricted area of P ; in other words,
the cheaters need more time than in the honest case to get the
correct result. Security of PBQC is hence enforced.

In practice, the quantum operations, quantum channel, and
measurements are not noiseless; the incorrect response can be
given even in the honest case. The total key rate of practical
PBQC systems ought to be higher than the successful cheating
rate, i.e., the probability of producing correct feedback by
cheaters. Otherwise, failure of cheating may be regarded as
error caused by noise, and the PBQC scheme hence becomes
insecure.

We now discuss the successful cheating rate of our protocol
under various cheating schemes in the one-dimensional case.
First, we consider that B1 simply measures the qubit and
announces the result. It is equal to the average value of
|〈0|ψ〉|2 for any θ and φ. The successful rate is obviously
50%, as it does not differ from a random guess. Next, we
consider that B1 measures the qubit but announces until basis
information from B2 is obtained. The successful rate is 75%.
It is more than a random guess, because for θ < π/2, B1’s
measurement outcome is more probably correct, while it is
more probably wrong if θ > π/2. B1 can announce the inverse
of his measurement outcome for θ > π/2 case, successful
rate is then increased. Finally, we consider our teleportation
cheating scheme. B2 measures the teleported state in Fig. 3
by basis states {|ψ〉,|ψ̄〉}. Consider if the result is |ψ〉. After
knowing s2 and s3, the cheaters announce the more probable
correct result, i.e.,

|v〉 = {|ψ〉,|ψ̄〉| max(|〈ψ |X(1−s2)/2Z(1−s1)/2|v〉|2)}. (22)

The average successful rate is

1
4

∫
[1 + max(|〈ψ |X|ψ〉|2,|〈ψ |X|ψ̄〉|2)

+ max(|〈ψ |Z|ψ〉|2,|〈ψ |Z|ψ̄〉|2)

+ max(|〈ψ |XZ|ψ〉|2,|〈ψ |XZ|ψ̄〉|2)]d�, (23)

which is about 85%. We have checked numerically that 85%
is the highest successful rate that can be achieved for any
measurement basis used by B2. In the case of more reference
stations, cluster-state quantum computation requires more
measurements. So there are more random by-products and
the successful rate is anticipated to be lower than N = 2 case.

It is noted that Chandran et al. suggests B1 can entangle
the encoded qubit with his quantum memory and then sends
one to B2 [13]. Since the quantum systems are entangled, any
measurement of B1 will leave B2 a mixed state. B1 has to
announce a response before knowing measurement result of
B2; otherwise, the operation time must exceed that allowed
by the PBQC scheme. But the measurement outcome of B2 is
probabilistic; if B2 makes a response according to this, there
is the probability that the response received by V1 and V2 will
be inconsistent. This kind of inconsistency reveals there must
be cheaters lying in between, because noisy operations in the
honest case do not produce inconsistent results. So neither B1

nor B2 should do any measurement, because the cheaters are
not benefited by the quantum memory.
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VII. SECURITY OF MODIFIED PROTOCOL

So far we have demonstrated how our modified PBQC pro-
tocol remains secure against the teleportation-based cheating
scheme. It is interesting to know whether the protocol is secure
if other kinds of entangled qubits are shared among cheaters
and if a strategy other than teleportation is employed.

Recall that in the N = 2 case, we first teleport the unknown
encoded state from B1 to B2 for measurement, whereas
in the N > 2 case we use secret sharing ideas to send a
share of the basis information to B1 through cluster state
quantum computation, parity of the cluster state qubit and
encoded qubit is then checked. Although seemingly different
cheating strategy is taken in one dimensional and N > 2 cases,
they are actually the same in principle. This is because the
measurements of cheaters are local and thus independent of
each other. Time order of the measurement is unimportant; all
cheaters conduct their operation immediately after receiving
information from reference stations. It is easy to see that
measurement of a cluster state by B2 in the N = 2 case
actually uses secret sharing ideas to send a share of the basis
information to B1, while the entanglement operation and X

basis measurement of B1 is equivalent to some parity-checking
procedure.

We first consider the N = 2 case. Suppose a general
two-qubit entangled state is shared among cheaters, which
would become any set of states containing basis information
after measurements of B2. If the encoded qubit is in the Z

basis, we assume without loss of generality that B2 makes an
measurement to “send” states |0̃〉 and |1̃〉 to B1. In general, the
states B1 obtained from B2 are

|↑̃〉 = g(θ,φ)|0̃〉 + h(θ,φ)|1̃〉
(24)

|↓̃〉 = h∗(θ,φ)|0̃〉 − g∗(θ,φ)|1̃〉,
where g,h are functions of basis information of B2. Here we
have assumed that |↑̃〉 and |↓̃〉 are orthogonal, and a successful
rate of cheating decreases in the nonorthogonal case. It is
noted that the probability of |↑̃〉 or |↓̃〉 appearing is the same
as 0.5, otherwise causality is violated. After the measurement,
B2 transmits classical information on the basis of the encoded
qubit, the basis of the measurement on the entangled state, and
the measurement outcomes to B1.

In the Z-basis case, in order to distinguish |0〉 and |1〉 after
obtaining information from B2, B1 conducts a von Neumann
measurement with basis

|M1〉 = α|0〉|0̃〉 + β|1〉|1̃〉,|M2〉 = β∗|0〉|0̃〉 − α∗|1〉|1̃〉
(25)

|M3〉 = γ |0〉|1̃〉 + δ|1〉|0̃〉,|M4〉 = δ∗|0〉|1̃〉 − γ ∗|1〉|0̃〉,
where the coefficients α,β,γ,δ characterize the measurement.
The states are set as above such that every |0̃〉 and |1̃〉 associate
with either |0〉 or |1〉. Otherwise, if |Mi〉 contains terms like
(|0〉 + |1〉)|1̃〉, B1 cannot reveal the identity of the encoded
qubit after communicating with B2.

Since B1 knows nothing about the basis, he always conducts
the same measurement in Eq. (25). For general θ and φ, B1

gets one of the four states

{|ψ〉|↑̃〉,|ψ〉|↓̃〉,|ψ̄〉|↑̃〉,|ψ̄〉|↓̃〉}. (26)

An important observation is that the cheaters are able to
distinguish the encoded qubit, only if every measurement state
|Mi〉 contains components of |↑̃〉 and |↓̃〉 associated with either
|ψ〉 or |ψ̄〉 only. This statement can be reformulated to say that
each state in Eq. (26) is a superposition of at most two states
in Eq. (25).

We expand |ψ〉|↑̃〉 as

|ψ〉|↑̃〉 = cos
θ

2
g(θ,φ)|0〉|0̃〉 + cos

θ

2
h(θ,φ)|0〉|1̃〉

+ sin
θ

2
eiφg(θ,φ)|1〉|0̃〉 + sin

θ

2
eiφh(θ,φ)|1〉|1̃〉.

(27)

Without loss of generality, we assume it is a superposition of
|M1〉 and |M3〉, imposing the relations

cot
θ

2
e−iφ g

h
= α

β
, cot

θ

2
e−iφ h

g
= γ

δ
. (28)

Similarly, we expand |ψ̄〉|↓̃〉

|ψ̄〉|↓̃〉 = sin
θ

2
h∗(θ,φ)|0〉|0̃〉 − sin

θ

2
g∗(θ,φ)|0〉|1̃〉

− cos
θ

2
eiφh∗(θ,φ)|1〉|0̃〉 + cos

θ

2
eiφg∗(θ,φ)|1〉|1̃〉.

(29)

It has to be the superposition of either |M1〉 and |M3〉 or |M2〉
and |M4〉; otherwise, an unphysical result 〈ψ↑̃|ψ̄↓̃〉 �= 0 is
yielded.

We first consider |ψ̄↓̃〉 is a superposition of |M2〉 and |M4〉.
The following relations has to be satisfied

cot θe−iφ g

h
= −α

β
, cot θe−iφ h

g
= −γ

δ
. (30)

Together with Eq. (29), α,δ,g(θ,φ) ought to be zero. This
implies B2 always sends |0̃〉 and |1̃〉 to B1, and the basis of
B1 measurement is four untangled states, i.e., two single-qubit
measurements. It can be readily seen that both |ψ〉|0̃〉 and
|ψ̄〉|0̃〉 contain components of |M2〉, hence the cheaters cannot
distinguish |ψ〉 and |ψ̄〉 after communication.

Now we consider |ψ̄↓̃〉 is a superposition of |M1〉 and |M3〉,
imposing the relations

tan
θ

2
e−iφ h∗

g∗ = α

β
, tan

θ

2
e−iφ g∗

h∗ = γ

δ
. (31)

Together with Eq. (29), we have

|g|2
|h|2 = tan2 θ

2
,

|h|2
|g|2 = tan2 θ

2
, (32)

which can only be satisfied for θ = π/2 but not for general
θ . We therefore conclude that our protocol is unbreakable no
matter what two-qubit state is shared among cheaters and what
strategy the cheaters employ. We would like to comment on
the case of θ = π/2 case; it means that the basis for encoding
is perpendicular in the Bloch sphere. There are only three
mutually perpendicular directions in the Bloch sphere, which
can be regarded as the X, Y , and Z directions. It explains
why our cheating works for and only for states encoded in
eigenstates of Pauli X,Y ,Z operators.
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In the case with N > 2 reference stations, we can prove
by contradiction that our scheme is secure for any N -qubit
states shared by the cheaters using any strategy. Let the
maximum mutual distance between reference stations be 2d,
and we denote the two maximally separated reference stations
as V1 and V2. Assume P lies in the middle such that the
minimum time required for PBQC scheme is t = 2d/c and
further that the restricted area of P is so large that the N

cheaters have to sit very close to each reference station.
The minimum time required for information exchange among
cheaters is t = 2d/c. Now suppose there exists a strategy to
cheat successfully for any θ,φ with any Ui distributed to Vi .
Consider the case that U3, . . . ,UN are identity operators, in
other words the basis information is contained in U2 only.
After measurement of B3, . . . ,BN , the situation reduces to
the one-dimensional case, which cannot be cheated as proved
above. Therefore a perfectly successful strategy for N > 2
reference stations does not exist.

In general, the cheaters can share more complicated quan-
tum resources than entangled qubits. If two qubits belonging to
an entangled network, such as a 2D cluster state, are possessed
by each cheaters, it has to be treated as an entangled four-level
system, which is not covered in our proof. A PBQC protocol is
unconditionally secure if and only if cheating cannot succeed
with certainty no matter what entangled resources is shared
among cheaters, and what strategy they take. We provide in
the appendix the proof that our protocol is still secure if the
entangled three-level system is shared among cheaters.

VIII. SUMMARY

We have shown how entangled resources can help to
cheat the two proposed PBQC protocols. The idea is to
use teleportation, quantum secret sharing, or CSQC to share
part of the quantum information among cheaters, whereby
measurement can be conducted before all information is
known. Subsequent exchange of classical information allows
for correction due to the random measurement outcomes.

Our cheating scheme is successful because random by-
products of teleportation, quantum secret sharing, or CSQC are
Pauli operators. They do not map any code state out of the code
space. The loophole can be fixed by using non-Clifford states to
encode the message. Based on this idea, we propose a modified
version of Protocol A in which the code space spans the Bloch
sphere. Our protocol is proved to be secure if each cheater
shares entangled qubits or qutrits (such as particle composites
with effective spin 1). The highest average successful rate of
cheating our protocol is 75% if no entangled resource is used,
and 85% if our cheating scheme is employed.

In this article, we consider protocols only in which the veri-
fied receiver knows nothing except the publicly known method
of decoding (i.e., rules of measuring incoming qubits accord-
ing to incoming classical messages). An intriguing question is
how PBQC becomes more secure if some resources are shared
by the authorized receiver and reference stations, instead
of communicating all information through public channels.
Recently, Kent [24] has proposed a PBQC scheme that can be
proved to be perfectly secure, provided that P and reference
stations preshare a sequence of bits that cannot be obtained by
cheaters. In addition, Malaney has also considered a protocol

in which entangled pairs are shared beforehand among P and
reference stations [19]. In that case, encoded qubits can be
teleported to the authorized receiver, which eliminates the
possibility that encoded qubits are captured by cheaters. We
believe, in general, that an authorized receiver can make use of
shared resources to set up secret keys with reference stations
for message encoding. Cheaters without information of the
keys cannot obtain any knowledge of the message, and thus
this class of PBQC schemes should be secure.

Finally, we have assumed in the above consideration that
all operations are performed extremely fast compared to the
traveling time of signals. To verify the possibility of PBQC in
practice, we consider the distance between reference stations
at the order of 100 km and the size of the restricted area of P

to be 1 km. A round trip of signals takes around 100 µs, and
the presence of cheating will give a deviation for about 1% of
time, which is microseconds in scale. Considering that recent
experiments on optical quantum computation are operating on
nanosecond scales [25], the assumption of fast operation is
still valid.

Note added in proof Recently, Buhrman et al. [26] pro-
posed a rather general cheating strategy based on the nonlocal
measurement scheme of Vaidman [27]. By applying their
strategy, all PBQC protocols without preshared resources,
including our modified protocols described in Sec. VI of
the current article, can be cheated with arbitrary accuracy.
However, the required amount of entanglement and rounds
of operations scale exponentially as the number of encoded
qubits, n, involved in a PBQC protocol. In addition, the
average entanglement consumption for exact cheating is
infinite even for simple protocols involving one encoded
qubit only. Although the efficiency of the general cheating
strategy can be enhanced [26] by keeping track of the effect of
the teleportation by-products on the encoding transformation
U [28], the average entanglement required still depends
exponentially on the parameters of the protocol. So, the next
interesting open problem is to improve the efficiency of the
general cheating strategy. The security proof in Sec. VII of
the current article has put a lower bound on the required
entanglement to be entanglment of four-level systems, e.g.,
two pairs of entangled qubits. We believe the bound is not
tight. At the least, we cannot find a method to cheat our
modified protocol with two shared EPR pairs only. Can we
raise the lower bound by introducing some protocols that
cannot be cheated by any entangled four-level system? Or
is there any efficient general cheating strategy in the sense that
it consumes only a polynominal number of e-bits as a function
of the number of encoded qubits? We are currently working
on answers to these questions.
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APPENDIX: SECURITY OF SHARED
THREE-LEVEL SYSTEM

Here we outline the proof of security of our protocol if
an entangled three-level system is shared among two cheaters
in a one-dimensional case. This guarantees the security in
cases involving N > 2 reference stations, of which the one
dimensional case can always be regarded as a special case, as
claimed in Sec. VII.

First, we investigate the properties of the entangled n-level
system if the cheating is successful with certainty. We again
assume B2 can make a measurement such that B1 will receive
one of n orthogonal states with equal probability. The choice
of orthogonal states incorporates information about the basis
of encoded qubit. If the encoded qubit is an eigenstate of Z,
we let B1 receive a state belonging to {|φ1〉, . . . ,|φn〉}. Define
a vector (| �φ〉) ≡ (|φ1〉 · · · |φn〉)T such that if the encoded qubit
is an eigenstate of n̂(θ,φ) · �σ , B1 will receive an element of the
vector T̂ (θ,φ)(| �φ〉), where T̂ (θ,φ) is an n × n unitary matrix
freely chosen by B2.

Let the basis of B1’s measurement operator is
{|M1〉, . . . ,|Mn〉}. In order to distinguish the identity of
encoded qubit after exchanging information with B2, each
state |Mi〉 should not contain components of both |φj 〉|0〉
and |φj 〉|1〉 for any j . Define a selection matrix S(i) which
is an diagonal matrix with eigenvalues 1 and 0 only, such
that S

(i)
j j = 1 if |Mi〉 contains component of |φj 〉|0〉; while

S
(i)
j j = 0 if |Mi〉 contains component of |φj 〉|1〉. The states

|Mi〉 can be written as

|Mi〉 =
∑
j,j ′

(
αij ′S

(i)
j ′j |φj 〉|0〉 + αij ′

(
I − S

(i)
j ′j

)|φj 〉|1〉), (A1)

where |αi1|2 + · · · + |αin|2 = 1; I is the n × n identity matrix.
Since B1 knows nothing about the basis, his measurement is
always the same. Similar to the argument above, if B1 is able
to distinguish |ψ〉 and |ψ̄〉 after information exchange, |Mi〉
has to be

|Mi〉 =
∑
k,k′,j

(
βikS̃

(i)
kk′ T̂k′j |φj 〉|ψ〉 + βik

(
I − S̃

(i)
kk′

)
T̂k′j |φj 〉|ψ̄〉),

(A2)

where |βi1|2 + · · · + |βin|2 = 1; S̃(i) are selection matrices.
Comparing Eqs. (A1) and (A2), we get

αij

[
cos

θ

2
S

(i)
jj + sin

θ

2
eiφ

(
I − S

(i)
jj

)] = βikS̃
(i)
kk T̂kj (A3)

αij

[
sin

θ

2
S

(i)
jj − cos

θ

2
eiφ

(
I − S

(i)
jj

)] = βik

(
I − S̃

(i)
kk

)
T̂kj .

(A4)

Summing the above two relations, and taking the scalar product
of themselves, we have

∑
j

αij

[
(1 + sin θ )S(i)

jj + (1 − sin θ )
(
I − S

(i)
jj

)]
α∗

ij

=
∑

k

βikβ
∗
ik = 1, (A5)

where we have made use of the identities S2 = S, (I − S)2 =
(I − S), S(I − S) = 0. For sin θ �= 0, above equation together
with normalization of |Mi〉 imposes

∑
j

αijS
(i)
jj α∗

ij =
∑

j

αij

(
I − S

(i)
jj

)
α∗

ij = 1

2
. (A6)

This is an important relation to restrict the kind of measurement
conducted by B1. It is to say that if cheating is successful, the
absolute square sum of coefficients associated with |0〉 of any
state |Mi〉 has to be 1

2 .
Here we show that a complete set of states satisfying

Eq. (A6) does not exist in the entangled three-level system
case. Assume |M1〉 consists of {|0〉|φ1〉,|0〉|φ2〉,|1〉|φ3〉} with
a nonzero contribution. Other |M〉 cannot be formed by
combination of two |0〉 and one |1〉; otherwise, the inner
product with |M1〉 is nonzero, unless coefficient of one |0〉
is zero. We ignore this case for a while and assume other
|M〉’s has to be formed by one |0〉 and two |1〉. Consider
|M2〉 share two common components as |M1〉, for example,
it contains {|0〉|φ1〉,|1〉|φ2〉,|1〉|φ3〉}. By completeness of the
measurement states, there must be a state |M3〉 that contains
|1〉|φ1〉. But there is no state containing |1〉|φ1〉 that can both
be orthogonal to |M1〉, |M2〉 and satisfy Eq. (A6). So |M2〉
must contain {|1〉|φ1〉,|1〉|φ2〉,|0〉|φ3〉}. Since there are six
orthogonal states in total, at least three of them must share
the same set of components.

Consider that |M1〉,|M3〉,|M5〉 contain the terms
{|0〉|φ1〉,|0〉|φ2〉,|1〉|φ3〉}. As they have to satisfy Eq. (A6),
they can be expressed as

|Mi〉 = 1√
2

(cos θi |0〉|φ1〉 + sin θie
iµi |0〉|φ2〉 + eiνi |1〉|φ3〉).

(A7)

Since the three states are orthogonal, we require the following:

cos θi cos θj + sin θi sin θj e
i(µi−µj ) = −ei(νi−νj ) (A8)

for i �= j . The term on the right-hand side has norm 1, which
imposes constraints on the left-hand side such that

|M3〉= 1√
2

(cos θ1|0〉|φ1〉 + sin θ1e
iµ1 |0〉|φ2〉 − eiν1 |1〉|φ3〉).

(A9)

But one cannot find (θ5,µ5,ν5) that |M5〉 is orthogonal to |M1〉
and |M3〉. So three states sharing the same components of
states do not exist. We now return to the case that some |Mi〉
contains only two |0〉 and one |1〉 with coefficient of one |0〉
is zero. As the coefficient is zero, it is no different to treat the
component as |1〉, it will then fall into paradigm of our proof.

We have assumed in the above argument that at least one
state is a superposition of three components, we now consider
all states contain only two components. We find the only
possible choice of states is

|M1,2〉 = 1√
2

(|0〉|φ1〉 ± eiµ1 |1〉|φ2〉)

= 1√
2
|ψ〉

(
cos

θ

2
|φ1〉 ± sin

θ

2
ei(µ1−φ)|φ2〉

)

+ 1√
2
|ψ̄〉

(
sin

θ

2
|φ1〉 ∓ cos

θ

2
ei(µ1−φ)|φ2〉

)
(A10)
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|M3,4〉 = 1√
2

(|0〉|φ2〉 ± eiµ2 |1〉|φ3〉
)

= 1√
2
|ψ〉

(
cos

θ

2
|φ2〉 ± sin

θ

2
ei(µ2−φ)|φ3〉

)

+ 1√
2
|ψ̄〉

(
sin

θ

2
|φ2〉 ∓ cos

θ

2
ei(µ2−φ)|φ3〉

)
(A11)

|M5,6〉 = 1√
2

(|0〉|φ3〉 ± eiµ3 |1〉|φ1〉
)

= 1√
2
|ψ〉

(
cos

θ

2
|φ3〉 ± sin

θ

2
ei(µ3−φ)|φ1〉

)

+ 1√
2
|ψ̄〉

(
sin

θ

2
|φ3〉 ∓ cos

θ

2
ei(µ3−φ)|φ1〉

)
, (A12)

or some cyclic permutation of |φ〉. On the other hand, because
we have proved |M〉 cannot contain three components, each

|Mi〉 should be written as

|M1,2〉 = 1√
2

(|ψ〉(T̂1i |φi〉) ± eiν1 |ψ̄〉(T̂2i |φi〉)) (A13)

|M3,4〉 = 1√
2

(|ψ〉(T̂2i |φi〉) ± eiν1 |ψ̄〉(T̂3i |φi〉)) (A14)

|M5,6〉 = 1√
2

(|ψ〉(T̂3i |φi〉) ± eiν1 |ψ̄〉(T̂1i |φi〉)). (A15)

When comparing the state associated with |ψ〉 in |M1〉 and
|M3〉, it is clear that the expressions in Eqs. (A10)–(A12) and
(A13)–(A15) cannot be equivalent. Therefore, we now can
claim that B1 cannot find a measurement such as the states
|ψ〉 and |ψ̄〉 after exchanging information with B2, no matter
what set of three-level states is transmitted by B2 through the
entangled resources, which proves the security of our protocol
in this case.
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