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Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels
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We present a comprehensive analysis of the performance of different classes of Gaussian states in the
estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation
of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states,
the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for
both parameters two-mode squeezed vacuum states are more efficient than coherent, thermal, or single-mode
squeezed states. This suggests that at high-energy regimes, two-mode squeezed vacuum states are optimal within
the Gaussian setup. This optimality result indicates a stronger form of compatibility for the estimation of the two
parameters. Indeed, not only the minimum variance can be achieved at fixed probe states, but also the optimal state
is common to both parameters. Additionally, we explore numerically the performance of non-Gaussian states for
particular parameter values to find that maximally entangled states within d-dimensional cutoff subspaces (d � 6)
perform better than any randomly sampled states with similar energy. However, we also find that states with
very similar performance and energy exist with much less entanglement than the maximally entangled ones.
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I. INTRODUCTION

Decoherence lies at the core of all difficulties in im-
plementing quantum-information technologies. It degrades
information being transmitted, stored, and processed, in an
irreversible way. All these processes can be thought of
as different kinds of quantum channels, with decoherence
inevitably affecting all of them. We are interested in assessing
the deviation from ideality in Gaussian channels, and the
precision attainable when tested with Gaussian resources.
Namely, we consider a dissipative thermal bath with mean
photon number N and damping constant γ , and explore how
well different Gaussian resources perform in identifying these
parameters. Our question is immediately relevant to the field
of quantum information, since assessing the deviation from the
identity channel, i.e., the ideal information transmitter, is the
principal requirement to implementing large-scale quantum
communication. The need for an efficient characterization
of dissipation in continuous variable systems is becoming a
requisite for a number of quantum-information tasks, such as
quantum repeaters [1,2] or quantum memories [3–5], among
others. The burden of dissipation is also hindering advances in
cavity QED [6,7] and superconducting quantum circuits [8].

On the other hand, measuring decoherence is not only rele-
vant for quantum-information technology. In several contexts,
decoherence can be related to physical quantities of practical
interest, e.g., photon loss is strongly related to the impurity
doping concentration in semiconductor lasers [9]. Nonlinear
magneto-optical effects [10] can be understood as photon loss,
an effect with several technological applications such as low-
field magnetometry and gas density measurements [11–13].
Additionally, photon-photon scattering in vacuum is still an
unobserved prediction of both quantum electrodynamics and
nonstandard models of elementary particles [14,15]. These
are only a few among the several applications that involve the
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precise determination of losses in dispersive media. For this
reason, we will pose our problem and formulate our results in
a general theoretic formalism, in order to keep our results as
general as possible.

We address the problem of estimating the parameters of
a Gaussian channel describing the dynamics of a bosonic
mode a, coupled with strength � to a thermal reservoir with
mean photon number N . In the interaction picture, and within
the Markovian approximation (at any time the mode and the
bath remain unentangled), the completely positive dynamics
and the action on the mode a after time t is described by the
superoperator

S(γ,N ) = exp
γ

2
[NL[a†] + (N + 1)L[a]], (1)

where γ = �t and L[o]ρ = 2oρo† − o†oρ − ρo†o. Although
the Markov approximation requires � � 1, the effective
coupling γ = �t can be of any magnitude. For convenience we
arrange the channel parameters in the two-dimensional vector
θ = (γ,N ) and let θ̂ be the estimator, corresponding to the
outcome of the final measurement.

Previous related work in the literature addresses the
problem of estimating a state within a Gaussian family in
several different situations. Among others we should mention
the works of Yuen and Lax [16], Helstrom [17], Holevo [18],
Hayashi and Matsumoto [19], Adesso and Chiribella [20] and
Hayashi [21]. However, all of these works focus on estimating
some of all possible parameters of a Gaussian state. Most of
them focus on estimating either displacement or temperature
for fixed degrees of squeezing, while others consider the degree
of squeezing in a vacuum state. No work exists, to the best of
our knowledge, that addresses the problem of estimating all
parameters of a Gaussian state. If such a work would exist,
the problem of estimating a Gaussian channel with Gaussian
probe states would reduce to a subproblem of the former.
However, the lack of such a general result demands a dedicated
solution.
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FIG. 1. (Color online) Scheme for measuring the values of
parameters γ and N . N copies of a bipartite state ρ are independently
prepared, and acted upon by k instances of the unknown channel
I ⊗ S(θ ). A collective measurement M (k) is finally performed.

The setup that we consider is quite generic. We allow for
(i) extending the channel of interest to include an ancillary
mode b, unaffected by the channel (i.e., identity superoperator
I), obtaining the channel S� = S ⊗ I, (ii) choosing any
bipartite Gaussian state ρ0, of which k copies will be sent
through the channel, and (iii) performing a generalized
measurement M (k) (characterized by a positive operator valued
measure {M (k)

θ̂
}, M

(k)
θ̂

� 0,
∫

dθ̂ M
(k)
θ̂

= 1), on the collective

state ρ
(k)
θ = (S�ρ0)⊗k . This allows for a rather general scheme,

which tests the channel with independent and identically
prepared probes, while the generalized collective measurement
may include arbitrary quantum transformations applied to ρ

(k)
θ

prior to the measurement (see Fig. 1).
As a quantifier of the quality of the estimate, one can use

the covariance matrix

Vθ (M) =
∫

dθ̂ (θ̂ − θ )(θ̂ − θ )�tr[ρθMθ̂ ], (2)

which may depend on the chosen measurement M = {Mθ̂ }
and the particular channel being tested, θ . Alternatively, as
is customary in standard statistical inference, we can relate
any error cost function �(θ,θ̂ ) to the covariance matrix by
performing a Taylor expansion of θ̂ around θ , and defining
Gθ = 1

2∂2�(θ,θ̂ )|θ̂=θ as the Hessian of �/2, thus

〈�〉 = tr[GθVθ (M)] + o(θ̂ − θ )2. (3)

More generally, an arbitrary positive semidefinite weight
matrix Gθ can be defined to account for the relevance assigned
to each parameter. Two extreme cases, where one only cares
about one or the other parameter, can be accounted for
by the choices Gγ = diag(1,0) and GN = diag(0,1). This
approach allows one also to define strategies where one is only
interested in a particular linear combination of the parameters
X = xµθµ, by setting GX = XX�. With these considerations,
and given a large number k of copies of the fixed probe
state ρ0, one can ask what is the smallest possible value of
〈�〉 = limk→∞ k tr[Gθ Vθ (M (k))] that is allowed by the laws of
quantum mechanics.

The main question we wish to answer is the following:
To what extent can one optimize expression (3) by using
different Gaussian resources? More precisely, we will compare
the performance of thermal, coherent, single-mode squeezed

and two-mode squeezed vacuums in estimating the damping γ

and the temperature N at different parameter regimes, com-
paring the performance of each probe state at an equal amount
of energy input to the channel, n = tr[ρ0a

†a]. In order to
elucidate the role that each one of these resources plays
in the estimation problem, we will make some simplifying
assumptions. Namely, we will not consider the combina-
tion of different resources, e.g., two-mode squeezing and
displacement.

A priori it would seem that the problem may have several
different variants depending on the chosen cost function (or
G matrix). We will see, however, that some general statements
can be made. Anticipating the results that will be presented in
the present work, we will prove two points:

(1) Choosing a two-mode squeezed vacuum input state
ρ0, the parameters γ and N can be optimally estimated
simultaneously. That is, no compromise is required in the
optimization of Vθ (M). This holds true even when the optimal
measurements for γ and N do not commute.

(2) For both parameters γ and N , and at any given energy,
two-mode squeezed states always outperform any other class
of Gaussian states.

The combination of these two statements reveals a
strong compatibility between the problem of estimating the
damping γ and the temperature N in the Gaussian setting.
In Sec. II we develop our approach and derive the first
result of our paper, namely, that optimal precision with
two-mode squeezed states can be attained simultaneously for
both parameters, thus allowing us to divide the problem of
computing precision bounds into two independent problems.
Sections III and IV explore the precision bounds for estimating
γ and N individually, comparing the performances of different
Gaussian resources, focusing especially on some physically
relevant regimes of the parameters. In Sec. V we move on
to explore numerically the non-Gaussian arena and compare
the relative performances with respect to Gaussian probes.
Section VI concludes the paper with a discussion and an
overview of the obtained results. Details of the technical proofs
are provided in two Appendixes.

II. THE ULTIMATE QUANTUM LIMITS

The Heisenberg relations place a fundamental limit on the
precision with which one can measure any given observable.
When it comes to quantities not associated to an observable,
as is our case, it is necessary to resort to quantum estimation
theory, which studies the fundamental quantum-mechanical
limits to the precision of measurements in a variety of
situations. A first lower bound can be obtained from Helstrom’s
Fisher information matrix [17,18],

Vθ (M) � J (θ )−1 ∀M, (4)

where J (θ ) = Re tr[ρθ ���] is defined as the covariance
matrix of the symmetric logarithmic derivatives (SLD) �µ ful-
filling ∂ρθ/∂θµ = �µ ◦ ρ, with A ◦ B = (AB + BA)/2. The
inherent noncommutativity of quantum mechanics forbids, in
general, the attainment of this inequality when the problem is
multiparametric, as in our case. Optimizing the measurement
for one parameter will in general compromise the measurement
precision on the others. When considering single-parameter
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estimation problems, it is well known that local adaptive
measurements attain Eq. (4) [22,23]. However, even if the
optimal measurements for both parameters do not commute, it
may still be possible to devise a measurement strategy to attain
simultaneously both bounds. Recent progress in the theory of
local asymptotic normality for quantum states [24,25] suggests
that equality in Eq. (4) is asymptotically attainable if and only
if [26],

tr[ρθ [�µ,�ν]] = 0. (5)

The SLD’s for our problem, as well as in more general
contexts, were obtained by the authors in [27]. In Appendix A
we prove Eq. (5) for the case of two-mode squeezed vacuum
probe states. The implications of Eq. (5) are twofold. On one
hand, it allows one to prove that asymptotically, the estimation
problems for both parameters become independent, so that
they can be analyzed separately. This will be the subject of
the two next sections. On the other hand, we will show that
two-mode squeezed states form the optimal Gaussian class
of states. As a consequence, we will prove the existence of
and provide the explicit expression of precision bounds for the
simultaneous estimation of γ and N for error cost functions
that have diagonal G matrices.

The single-parameter precision is quantified by the asymp-
totic standard deviation,


θ =
√

lim
k→∞

k

∫
dθ̂ (θ̂ − θ )2tr

[
ρ

(k)
θ M

(k)
θ̂

]
, (6)

which is bounded by the quantum Fisher information (QFI).
The latter will be generically denoted as Jγ or JN depending
on whether we are considering the yield for parameter γ

or N , respectively. When no confusion arises, we will omit
the subscript. When we are referring to a particular yield
of QFI, specific to a given class of states, we will denote
it with the corresponding subscript Jcoh, Jth, Jsq, or J2m

for coherent, thermal, single-mode squeezed, and two-mode
squeezed vacuum states, respectively. Precision bounds are
then given by


θ � 1√
Jθ

. (7)

We will call Jθ the yield or performance.
The obtained results should be interpreted in the following

way. The two single-parameter problems have as optimal
observables the corresponding SLD’s [28], which can be
explicitly computed from [27] and are quadratic in the creation
and annihilation operators. In the multiparametric case, with
diagonal G matrices, the bounds obtained in the following two
sections provide all the necessary quantities for determining
the asymptotic error cost. The optimal measurement, however,
will require a general collective measurement, which is likely
to be beyond the technical capabilities of present-day technol-
ogy. We will focus on the theoretical attainable precision and
not discuss the details of the implementation of the optimal
observables. This will, nevertheless, provide a means to gauge
the efficiency of more applied studies such as tomographic
[29], single-mode Gaussian [30] and non-Gaussian [31], or
entanglement-assisted schemes [32].

In order to determine the precision attainable with dif-
ferent Gaussian resources we consider single-mode probes
parametrized as

ρ0 = D(d0)S(r0)ρν0S
†(r0)D†(d0), (8)

where ρν ∝ ( ν−1/2
ν+1/2 )a

†a is a single-mode thermal state, D(d) =
exp i(d2Q − d1P ) [d = (d1,d2)], and S(r) = exp 1

2 (ra†2 −
r∗a2). The first moments and covariance matrix of the single-
mode states (�0) are given by d0 and

�0 = ν0

2

(
e2r0 0

0 e−2r0

)
, (9)

while the energy in the probe is given by

n = ν0 cosh 2r0 + |d0|2 − 1

2
. (10)

Using the results of [27] it is easy to obtain the yield in
Fisher information as a function of the final parameters for
both the single- and two-mode probe states. The yields for
single-mode probes are

Jγ = d2
1e−2r + d2

2e2r

2ν
+ ν2

ν2 − 1

+ 4

(
N + 1

2

)2 1 + ν2 cosh 4r

ν4 − 1

− 4

(
N + 1

2

)
ν cosh 2r

ν2 − 1
, (11a)

JN = 4(eγ − 1)2 1 + ν2 cosh 4r

ν4 − 1
, (11b)

expressed as functions of the state parameters after the action
of the channel S. In order to obtain the final values for the
yield, one needs to consider the three different situations, n =
|d0|2/2, 2n + 1 = ν0, and 2n + 1 = cosh 2r0, and substitute
in Eqs. (11).

Turning to entangled probe states, we know from [27] that
the optimal state for constraints of the form tr[ρ0 a†a] � n

can only be pure. Since we are interested in evaluating the
sensitivity of the different Gaussian resources, and two-mode
squeezing is the only genuinely entangling resource, we will
restrict ourselves to two-mode squeezed vacuum states, which
we will denote by ρ�

0:

ρ�
0 = S2m(r0)|0〉〈0|S†

2m(r0) , (12)

where |0〉〈0| denotes the two-mode vacuum. S2m(r) =
exp 1

2 (ra†b† − r∗ab) denotes the two-mode squeezing opera-
tor, where b is the ancillary mode. Notice that we consistently
denote parameters in the probe state with the subscript 0. The
covariance matrix for the two-mode squeezed state is

��
0 = 1

2

⎛
⎜⎜⎜⎝

cosh 2r0 0 − sinh 2r0 0

0 cosh 2r0 0 sinh 2r0

− sinh 2r0 0 cosh 2r0 0

0 sinh 2r0 0 cosh 2r0

⎞
⎟⎟⎟⎠ ,

(13)

whereas the energy reads

n = 1
2 (cosh 2r0 − 1) (14)
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for the two-mode entangled state. We will consistently use n

to compare the performances of the different classes of states.
We stress that the general performance with single-mode
Gaussian probes is provided by Eqs. (11), as a function of
the state parameters after the action of the channel. Similar
expressions for two-mode probes can be obtained from the
results presented in [27] with full generality. We are interested
in evaluating the performance of four classes of Gaussian
states, namely, coherent, thermal, single-mode squeezed and
two-mode squeezed. In Appendix B we provide all the
analytic exact expressions for Jγ and JN , which contain all
the necessary information needed to discuss any regime of
parameters. Given the large number of parameters (γ , N ,
n, and those characterizing the different classes of states
considered), a thorough exploration of all the phenomenology
in all possible situations would be exceedingly long and
extremely cumbersome. On the other hand, each particular
case of interest can be thoroughly and completely analyzed by
the interested reader and professional researcher, thanks to our
analytic exact formulas. Here, in the following, we will limit
ourselves to consider and discuss in detail two particularly
interesting parameter regimes of practical relevance, namely,
that of low-energy probes and that of high-energy probes. The
former is best suited for situations where the properties of
the channel (bath) under inspection are sensitive to the effect
of intrusive probing. It is worth stressing that in some cases,
the gain by using a small amount of energy may not provide a
substantial gain with respect to the performance of the vacuum.
On the other hand, there are situations where the choice of the
probe state critically determines the attainable accuracy. We
wish to identify those situations.

III. ESTIMATING LOSS γ

We now proceed to analyze the problem of estimating γ

alone, under the assumption that the mean photon number
N is known. This problem has been partially addressed in
the literature [30–32] with different degrees of generality.
In previous studies, emphasis is placed in zero-temperature
channels (N = 0). In [32] several distinct probe states are
considered, always with fixed tomographic measurements X

and P , whereas [30,31] focus their attention in the optimal
probe states, respectively, within the single-mode Gaussian
states and non-Gaussian states. Moreover, while [32] considers
the use of entangled probes, no consideration is made about
the optimality of the measurement scheme. On the other
hand, Refs. [30,31] consider optimality of both measurement
and single-mode probe states, but they do not consider the
use of entangled probes. In this section we will combine
both approaches, namely, considering different Gaussian re-
sources, including entanglement, while still using the powerful
tools of quantum estimation theory in order to take into
account the corresponding optimal measurement for each
probe state.

The yield for two-mode squeezed probe states as a function
of the final state parameters is a highly involved expression
which provides no physical insight. Remarkably, plugging
in the dependence of the final parameters as functions of
the initial mean-photon number and the channel parameters

provides manageable expressions, reported in Appendix B
along with the yields for single-mode states. Notice that
in both cases, two-mode squeezing is taken at fixed phase.
This does not affect the generality of the analysis, since
single- and two-mode squeezing along different quadratures
can always be taken to the standard forms (9) and (13) by
means of single-mode phase shifts. The phase insensitivity of
the considered channels guarantees that this will not affect the
yield in Fisher information.

We thus proceed to compare the different resources by
writing the output parameters as functions of the initial ones
[33], which in turn are functions of the available energy. The
resulting general expressions are exceedingly complex and
provide no particular physical insight. We will, instead, explore
specific parameter regimes of physical interest. In order to
present the forthcoming results in a manageable form, we will
use, when convenient, the following definitions:

x = n(n + 1), (15a)

y = N (N + 1), (15b)

z = eγ − 1. (15c)

A. Zero-temperature baths, N = 0

As a first approach and in order to put our results in context
with previous related studies [30–32] we analyze the limiting
case of baths at zero temperature. Zero-temperature baths are
the most commonly encountered in quantum optics, and to
which most of the existing literature is dedicated. Under the
assumption that N = 0, the general expressions obtained in
Appendix B reduce to

Jcoh = n

z + 1
, (16a)

Jth = n

z + 1 + n
, (16b)

Jsq = n

z
· 1 + z2

1 + z[z + 2(n + 1)]
, (16c)

J2m = n

z
. (16d)

It is easy to verify that J2m is the largest of all these
quantities. The relations J2m � Jcoh � Jth are obvious. On the
other hand the relation J2m � Jsq only requires the observation
that (1 + z2){1 + z[z + 2(n + 1)]} −1 � 1.

A characteristic feature that we will encounter later on with
greater generality is the fact that both thermal and single-mode
squeezed states saturate their performance when n is large [see
Fig. 2]. On the other hand, the performance of coherent and
two-mode squeezed states grows linearly with n. This clearly
leaves the latter as the two candidates for optimality when n

is large. A relevant question is when does the performance
of one become much larger than that of the other? As will
be seen, two-mode squeezed vacuum states perform always
better than coherent ones. On the other hand, it is easy to
see that the increase in performance of two-mode squeezed
states is most relevant when z � z + 1 (γ � 1), since then
J2m  Jcoh. This increase in performance is independent of
the amount of energy in the probe state. This can be observed
also from Fig. 2.
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FIG. 2. (Color online) Log-log plot of the yield for the γ

parameter using (from top to bottom in the rightmost side) two-
mode squeezed states (magenta), coherent states (blue), single-mode
squeezed states (green), and thermal states (red) at different energy
regimes, for N = 0 and γ = 0.01. The saturation of the performance
for thermal and squeezed states is clear. On the other hand, the
linear dependency of coherent and two-mode entangled states is
readily visible. This is in accordance with Eqs. (16). All units are
dimensionless.

B. Low-energy regime

We now turn to the most general situation where the thermal
bath has nonzero temperature, i.e., photons can leak into the
quantum system in addition to leaking out from it. In the
low-energy regime (n � 1) we perform the Taylor expansion

Jγ = J (0) + J (1)n + o(n2), (17)

where obviously J (0) is independent of the kind of state being
considered and corresponds to the performance of the vacuum.

The common leading constant is thus given by

J (0) = N/z

1 + z(N + 1)
. (18)

Corrections of order n contribute with coefficients

J
(1)
coh = 1

1 + z(1 + 2N )
, (19a)

J
(1)
th = − (z + 1)[1 + 2z(N + 1)]

z2[1 + z(N + 1)]2
, (19b)

J (1)
sq = 2N + 1

z
− z(1 + N )2(1 + 2N )

[1 + z(N + 1)]2

+ 2(1 + 2N )2

(1 + z)2 + 2Nz[1 + z(N + 1)]
, (19c)

J
(1)
2m = (z + 1)2 + N [z(z + 2) + 2]

z[1 + z(N + 1)]2
, (19d)

where we have defined y = N (N + 1). A few comments are
in order. First of all, notice from Eq. (B8a) that the yield for
coherent states is a polynomial of first degree in n. Therefore,
J (0) + J

(1)
cohn gives the exact expression. On the other hand, the

thermal correction J
(1)
th � 0 is always negative, which implies

that weak thermal fields perform worse than the vacuum [see
Fig. 3 (left)].

The first question to ask is when do coherent states provide
any significant improvement over the vacuum. For this we
consider the condition J (0) � J

(1)
cohn. This reduces to

N [z(2N + 1) + 1]

z[z(N + 1) + 1]
� n. (20)

On the other hand, the same condition for two-mode
squeezed probe states J (0) � J

(1)
2mn reduces to

N [z(N + 1) + 1]

(N + 1)(z + 1)2 + 2N
� n. (21)
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FIG. 3. (Color online) Yield for the γ parameter using (top to bottom in the left graph and top to bottom in the right graph for n � 1)
two-mode squeezed states (magenta), single-mode squeezed states (green), coherent states (blue), and thermal states (red) at different energy
regimes, for N = 0.9 and γ = 0.3. Right: Log-log plot of the yield for n values greater than 1. The linear behavior of coherent and two-mode
squeezed states is readily apparent, whereas saturation of the yield occurs for both thermal and single-mode squeezed states. At these parameter
values we have (eγ − 1)(2N + 1) � 0.98, thus J2m/Jcoh � 2.0 for n  1. Left: Detail of the yield at low n values in linear scale. Different
slopes corresponding to the different values of J (1) are apparent. All units are dimensionless.
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Notice that for moderate values of N and large values of γ (z 
1) Eqs. (20) and (21) reduce to N (2N + 1)/[z(N + 1)] �
n and N/z � n, respectively, which shows that the regime
required for Eq. (21) is entered earlier than that of Eq. (20) for
increasing z.

In the limit of small losses (z � 1), we can expand Eqs. (20)
and (21) to zeroth order in z to obtain for J (0) � J

(1)
cohn

N

z
+ N2 � n, (22)

whereas for J (0) � J
(1)
2mn we get

N

1 + 2N
� n. (23)

The condition for J (0) � J
(1)
2mn thus reduces to N � n/(1 −

2n) � n. Notice that this is not a sufficient condition to achieve
a significant improvement using coherent probes [Eq. (22)].

On the other hand, one can see that γ � 1 (that is, z � 1)
with moderate N [z(1 + 2N ) � 1] implies J

(1)
coh � J

(1)
2m . This

means that at moderate temperatures, and with low energy
in the probe state, two-mode squeezed states significantly
outperform coherent states in the regime of small losses.

C. High-energy regime

High-energy probes are of interest when the channel being
probed is not as delicate or needs not be preserved. A natural
instance of this situation is in probing the photon-photon
scattering predicted by QED [14] and nonstandard models
of elementary particles [15]. The high-energy regime has a
substantially different behavior. Expanding the relevant yield
functions from Appendix B in inverse powers of n we obtain
series of the form

Jγ = J (−1)n + J (0) + o(1/n). (24)

In some cases J (−1) will vanish, rendering the corresponding
class of states useless compared to those for which J (−1) does
not vanish. Explicitly, we have

Jcoh = n

1 + z(2N + 1)
+ O(1), (25a)

Jth = 1 + o

(
1

n

)
, (25b)

Jsq = 1

2

(
1 + 1

z2

)
+ o

(
1

n

)
, (25c)

J2m = n

z(2N + 1)
+ O(1) (25d)

The first relevant fact to notice is that, contrary to the
low-energy regime, different Gaussian resources perform
differently in the limit of large energy. This is hardly a surprise.
We observe that the asymptotic performance is bounded for
thermal and single-mode squeezed states. This is in contrast to
the fact that single-mode squeezed states have proven highly
efficient for other precision measurements such as optical
phase [34–36] and magnetometry [37], among others. On the
other hand, coherent and two-mode squeezed states provide
an unbounded yield, as is manifest by the nonvanishing J (−1)

terms, giving a linear growth in Jγ with increasing n. This
makes the constant zeroth-order correction irrelevant. A very
important difference between coherent states and two-mode
squeezed states becomes readily apparent. While for coherent
states, the rate of growth of J (−1) is bounded, for two-mode
squeezed states it is not. In particular, the difference between
the two yields becomes most significant when z(2N + 1) � 1
and negligible when z(2N + 1)  1. This is certainly relevant
for detecting very small damping parameters, for which the
inverse dependence in z may even be sufficient to overcome
the practical limitations of achieving very high n values.

IV. ESTIMATING TEMPERATURE

Quantum thermometry has become a subject of high
physical relevance with the advent of ultracold atomic gases
[38–40]. At low temperatures, new methods need to be
envisaged to determine the magnitude of thermal fluctuations
in atomic clouds. In this section we analyze the quantum-
limited precision bounds to the estimation of temperature
(mean photon number N ) in a bosonic thermal bath, coupled to
a probe system prepared in a Gaussian state, with the coupling
strength not necessarily large, i.e., far from thermalization.

A straightforward method to measure temperature is to let
the probe system coupled to the bath to thermalize. Quadrature
measurements then provide an estimator of the mean photon
number, providing in turn an estimator of the bath temperature.
This approach has several drawbacks. Most importantly, it
requires in general a large coupling constant, γ  1, in order
to reach the steady state. However, there may be situations
where the coupling constant cannot be chosen at will. On
the other hand, this does not necessarily provide the optimal
estimation accuracy. As we will see, two-mode squeezed states
can outperform the sensitivity of the vacuum state or other
classes of Gaussian states for any parameter values.

Contrary to the effect of the decay parameter γ , which
affects both first and second moments, the temperature in
the bath only affects the second moments. First moments
evolve independently of the bath temperature [33]. This has
immediate consequences for the sensitivity of coherent states,
which will perform equivalently to the vacuum state. Thus,
we will not consider coherent probe states in this section. We
will follow the same approach taken in the previous section,
by addressing different energy regimes in the probe states.

A. Low-energy regime

As in the case for Jγ , JN will be limited to a constant value
corresponding to the sensitivity of the vacuum state J (0) at
small values of n. However, since first moments are unaffected
by the temperature of the bath, the yield of coherent states will
equal that of the vacuum. As in the previous section, we will
expand JN in powers of n, in order to obtain and analyze the
low-energy yield for each class of states,

JN = J (0) + J (1)n + o(n2). (26)

Taking the expressions from Appendix B we get

J (0) = Jcoh = z(z + 1)2

N [1 + z(N + 1)]
, (27)
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FIG. 4. (Color online) Yield for the N parameter using (top to bottom in the left graph and top to bottom in the right graph at n � 1)
two-mode squeezed states (magenta), coherent states (blue), single-mode squeezed states (green), and thermal states (red) at different energy
regimes, for N = 0.9 and γ = 0.3. Left: Detail of the yield at low n values. The X parameter is negative, which implies that single-mode
squeezing is detrimental (at small n values). Right: Behavior at high n values. All units are dimensionless.

to which corrections of order n contribute with factors

J
(1)
th = − (z + 1)2[z(2N + 1) + 1]

N2[z(N + 1) + 1]2
, (28a)

J (1)
sq = 32z(z + 1)2{2(ξ − 1) − z[4zξ 3 + (z + 2)ξ + 1]}

(4zξ 2 + 4ξ − z − 2)2[z(4zξ 2 + 4ξ + z + 2) + 2]
,

(28b)

J
(1)
2m = (2N + 1)z(z + 1)2

N (N + 1)[z(N + 1) + 1]2
, (28c)

where we have defined ξ = N + 1/2.
One can immediately observe that J

(1)
th � 0, which implies

that, similar to the situation for Jγ , small thermal fluctuations
in the probe state can only be detrimental. On the other hand,
the small n correction for single-mode squeezed states has
no unambiguously defined sign, the latter being positive only

when X = 2(ξ − 1) − z[4zξ 3 + (z + 2)ξ + 1] > 0. Solving
the inequality X > 0 for z we obtain

z <
(2ξ − 1)

√
8ξ 2 + 1 − 2ξ − 1

2ξ (4ξ 2 + 1)
. (29)

The right-hand side is positive only when ξ > 1, which means
that only for N > 1/2 is it possible to have a gain in yield
by using single-mode squeezed probes. We thus conclude that
for 0 < N < 1/2 the best single-mode probe (at low energies,
n � 1) is the vacuum state. However, if the bath temperature
is sufficiently high (N > 1/2), it is possible to improve the
sensitivity of the vacuum by single-mode squeezing.

We now turn to analyze the yield of two-mode squeezed
states. As can be readily seen in Figs. 4 and 5, the behavior
is rather simple. The slope at small values of n is always
positive and, moreover, as follows from the relations in
Appendix B, always larger than that of single-mode squeezed
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FIG. 5. (Color online) Yield for the N parameter using (top to bottom) two-mode squeezed states (magenta), single-mode squeezed
states (green), coherent states (blue), and thermal states (red) at different energy regimes, for N = 0.7 and γ = 0.08. Left: Detail of the yield
at low n values. The X parameter is positive, which can be seen by the positive slope of the single-mode squeezing (n � 1). Right: Behavior
at high n values. All units are dimensionless.
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states. Imposing that J (1)
2mn  J (0) yields n(2N + 1)  z(N +

1)2 + N + 1. Since the right-hand side is greater than unity, we
have n(2N + 1)  1 and, given that n is small, it follows that
N has to be large. Therefore we can reduce the condition to
z � (2n − 1)/N , which is never satisfied for small n. We thus
conclude that low-energy entangled probes always outperform
single-mode ones for any regime of the parameters, although
the improvement cannot always be of significant magnitude
(J (1)

2mn  J (0) cannot be achieved for small n values). Most
remarkably, two-mode squeezed states are the only class of
Gaussian states that perform better than the vacuum for any
value of the parameters.

B. High-energy regime

In the high-energy limit all yields saturate, and the perfor-
mances of each yield are fundamentally bounded by the class
of states being used. The limiting expressions read, to order
1/n,

Jth = z2(1 + z)2

n2
� 0, (30)

Jsq = 2(1 + z)2

(2N + 1)2
− (1 + z)2

(2N + 1)3zn
, (31)

J2m = (1 + z)2

N (N + 1)
− (1 + z)2

N
(
2N2 + 3N + 1

)
zn

. (32)

We have presented the second-order term for Jth because it
is the leading one. The yield, however, tends to vanish, as
can be expected by observing that in the limit of a highly
energetic probe, the thermal fluctuations in the probe are
infinitely larger than those induced by the bath, and therefore
no inference about the latter can be obtained. Single- and
two-mode squeezed states have nonzero limiting yields, but,
as anticipated, the yield saturates for highly energetic probes.
It is easy to check that in the limit n → ∞ we have J2m � Jsq

but no order can be established between the vacuum state and
single-mode squeezed states. A crossover can occur between
the performances for the vacuum and single-mode squeezed
states depending on the values of γ and N .

Concentrating on the asymptotic yield, a natural question
is to understand in what situations does two-mode squeezing
perform much better than the vacuum state. This is simple to
answer by observing that

limn→∞ J2m

Jcoh
= 1 + 1

(N + 1)z
, (33)

so that if (N + 1)z � 1 (in the high n limit) then J2m  Jcoh.
This condition is likely to occur in several practical situations
for channels close to ideal, i.e., when the decay rate γ is
very low and the temperature is low or moderate. Notice that
this is not the first time that we encounter this condition for a
significant improvement of squeezed states over coherent ones.
All results indicate that whenever there is an improvement of
two-mode squeezed states over the vacuum, it is always in the
limit of small losses (γ � 1, i.e., a close to ideal channel).
Remarkably, the two-mode squeezed vacuum states beyond
a certain energy threshold can outperform all other states,

including those with arbitrarily large energy, such as the single-
mode squeezed vacuum.

V. ENTANGLEMENT AND THE PERFORMANCE OF
NON-GAUSSIAN STATES

So far we have seen that in order to optimally estimate
the channel parameters in Eq. (1), two-mode squeezing is the
most effective resource within the arena of Gaussian inputs.
This fact suggests two immediate questions: (1) Is there a direct
relation between entanglement and the performance in channel
estimation? (2) Are there non-Gaussian states outperforming
the squeezed vacuum for the same energy supply? Questions
similar to (1) have arisen previously in the literature, both in the
finite dimensional case [41–43] and in the continuous variable
one (albeit in somewhat different setups [44]), considering
different kinds of channels. Question (2) has been also
addressed in the context of quantum channel estimation [31]
and regarding the performance in other quantum-information
tasks, especially continuous-variable quantum teleportation
[45].

With the available techniques it is difficult to give a
precise quantitative answer, since numerical techniques are
not well suited to dealing with infinite dimensional systems,
and analytic control methods are not yet well developed
beyond the Gaussian regime. The difficulty with numerical
methods resides in the fact that Hilbert-space truncation is
rendered useless at N �= 0, because thermal baths immediately
populate all levels in Fock space, thus rendering a direct
numerical approach futile, or, in the best of all cases, a rude
approximation. In order to address the question of sensitivity
of non-Gaussian states for parameter estimation, techniques
beyond those developed so far are needed, and it is beyond the
scope of this work to pursue them. Instead, we will provide a
simple qualitative answer by restricting the channels of interest
to those at zero temperature, i.e., N = 0. In this case, populated
levels in Fock space only decay to lower energy levels, and
Hilbert-space truncation provides exact numerical results.

We have computed numerically the quantum Fisher infor-
mation Jγ at γ = 0.1 for 4000 states picked from C4 ⊗ C4

constituting the subspace with at most three photons in each
mode, randomly distributed according to the SU(16) Haar
measure. In Fig. 6 we report our findings. The left plot
displays the values of Jγ against the mean photon number
in mode a, and the right plot displays the efficiency (i.e.,
the ratio Jγ /n) against the entropy of entanglement E(ρ) =
−trρa log ρa, ρa = trbρ0. Along with the random states we
display the results for maximally entangled states within the
cutoff 3 � d � 6 and the two-mode squeezed vacuum. Our
findings reveal that most states have a very high performance
in relation to the amount of energy they have in the channel
mode. In particular, for a fixed dimension cutoff the more
entangled the states are, the better they perform on average.
In particular, the maximally entangled state attains the bound
set by the squeezed vacuum. It is of course interesting to
ask how does the performance change when one introduces
temperature in the channel. This is beyond the capabilities of
numerical methods relying on dimensional cutoff, and more
advanced methods would need to be envisaged.
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FIG. 6. (Color online) Scatter plot of 4000 random probe states with at most three photons in each mode (dots), maximally entangled states
at dimension cutoff 3 � d � 6, |ψ〉 = 1√

d

∑
k |k〉|k〉 (crosses), and two-mode squeezed vacuum states (solid line). Left: Yield against mean

photon number in the channel mode a as a reference. Two-mode squeezed states interpolate the behavior of maximally entangled states. Right:
Ratio between the yield and the mean photon number Jγ /n against the entropy of entanglement E(ρ) = −trρa log ρa , ρa = trbρ. Observe
that several highly efficient probes (those with high ratio Jγ /n) are relatively unentangled as compared to the maximally entangled ones with
similar performance. Entanglement of the squeezed vacuum state is significantly higher than randomly sampled states with similar yield. Jγ

and n are dimensionless. E(ρ) is measured in ebits.

VI. DISCUSSION

We have obtained the sharp precision bounds on the
estimation of γ and N for four classes of Gaussian states,
namely, coherent, thermal, single-mode squeezed vacuum,
and two-mode squeezed vacuum. We have shown that the
two-mode squeezed vacuum always outperforms any other
class of Gaussian states. The improvement of two-mode
squeezed vacuum states versus coherent states is most relevant
when the coupling parameter γ is weak. In particular, at zero
or finite temperature, the yield Jγ of two-mode squeezed
states increases much faster with n than the yield of coherent
states at small values of γ . For JN , comparing the yield
of two-mode squeezed vacuum states versus the yield of
the vacuum, we find that for small values of n, no signif-
icant improvement can be obtained. The situation changes
dramatically in the high-energy regime, where, despite a
saturation of the yield (all yields saturate to a maximum value),
saturation occurs at much higher yields when z(N + 1) � 1.
Summarizing, we have shown that the two-mode squeezed
vacuum always outperforms any other Gaussian resource for
both estimation problems (γ and N ), and we have identified
the situations in which this improvement is most significant.
We have also provided numerical evidence that the squeezed
vacuum state provides an upper bound to the performance
of arbitrary states with dimensional cutoff. This suggests a
deeper analysis, and the causes for this optimality should be
investigated.

Turning to the multiparametric problem of simultaneously
estimating both parameters of the channel, we have shown
that the optimal state (two-mode squeezed vacuum) provides
optimal sensitivity for both parameters, and that in the many-
copy limit (k → ∞) a collective measurement exists which
saturates both bounds simultaneously, as a consequence of
Eq. (5). These results imply that the problems of estimating
γ and N enjoy a strong form of compatibility. Not only the
optimal probe state is common to both problems, but also
the corresponding optimal measurements commute in the
asymptotic limit. Therefore an overall protocol optimizing
both tasks can be envisaged (in the asymptotic k → ∞

limit). It is a relevant question to determine whether lifting
the restriction to Gaussian states can provide an increased
performance, and whether such kind of compatibility remains
true in the more general setting involving arbitrary probe states.
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APPENDIX A: PROOF OF EQ. (5) FOR TWO-MODE
SQUEEZED VACUUM STATES

In this Appendix we show that for two-mode squeezed
vacuum probe states, Eq. (5) holds. Since we are probing
channel S� with bipartite states we will be working with
two bosonic modes. We start by introducing some notation.
Let 〈X〉 = tr[ρX] be the expectation value of any opera-
tor, evaluated with the state output from the channel ρ =
S�ρ0. Ri = (Q1,P1,Q2,P2) are the canonical operators with
[Ri,Ri] = i�ij and � is the two-mode symplectic matrix,
� = ω ⊕ ω, with

ω =
(

0 1

−1 0

)
. (A1)

It is convenient to work with the centered canonical operators
R̃i = Ri − 〈Ri〉 with which we define the covariance matrix of
the output state �ij = 〈R̃i ◦ R̃j 〉. Here we have introduced the
symmetric product A ◦ B = (AB + BA)/2. We will be using
Einstein’s summation convention, and tensors of the form
Ai

k B
j

l will be written as [A ⊗ B]ijkl . Analogously Ai
kv

j will be
written [A ⊗ v]ijk ≡ [v ⊗ A]ji

k , if no confusion arises. Finally,
we construct a covariance matrix with covariant-contravariant
transformation rules, namely, �̃i

k = 〈R̃i ◦ R̃j 〉�jk so that
�̃ = ��.
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The covariance matrix of the input state will be denoted �0,

�0 = 1

2

⎛
⎜⎜⎜⎝

cosh r 0 sinh r 0

0 cosh r 0 − sinh r

sinh r 0 cosh r 0

0 − sinh r 0 cosh r

⎞
⎟⎟⎟⎠ , (A2)

and we observe that the final covariance matrix is in the
standard form [46]

� =
(

a1 cZ

cZ b1

)
, (A3)

where Z = diag(1, − 1), a = e−γ cosh r + (1 − e−γ )(N +
1/2), b = cosh r , and c = a−γ /2 sinh r . Next, define the
superoperator Dµ as DµS� = ∂µS� and notice that for both
parameters γ and N it holds that [27]

Dµρ = αµ,ij [RiρRj − (RjRi) ◦ ρ], (A4)

where the α matrices have the diagonal block structure

αγ =

⎛
⎜⎜⎜⎝

N + 1/2 −i/2

i/2 N + 1/2

0

0

⎞
⎟⎟⎟⎠ , (A5)

αN = (eγ − 1)

⎛
⎜⎜⎜⎝

1

1

0

0

⎞
⎟⎟⎟⎠ . (A6)

With this, the SLD’s read [27]

�µ = αµ,ijLij , (A7)

where

Lij = [L(0)]ijkl�
kl + [L(1)]ijk R̃k + [L(2)]ijklR̃

k ◦ R̃l, (A8)

and

L(0) = i D−1

[
�̃ ⊗ �̃ − i

4
(�̃ ⊗ 1 − 1 ⊗ �̃)

]
, (A9)

L(1) = 2i(�̃−1 ⊗ 〈R〉 − 〈R〉 ⊗ �̃−1), (A10)

L(2) = 1
2D−1[1 ⊗ 1 − i(�̃ ⊗ 1 − 1 ⊗ �̃)], (A11)

and we have defined

D = �̃ ⊗ �̃ − 1
41 ⊗ 1. (A12)

Also, observe that both αµ matrices share the same structure
αµ = κµP + iιµQ, where

P =
(
1 0

0 0

)
, Q =

(
ω 0

0 0

)
. (A13)

In order to evaluate Eq. (5), observe that some terms in
Eq. (A8) immediately drop when taking the commutator or
the expectation value

tr[ρ[�µ,�ν]] = αµ, ijαν, i ′j ′T iji ′j ′
, (A14)

where

T iji ′j ′ = tr[ρ[Lij ,Li ′j ′
]] (A15)

= [L(1)]ijk [L(1)]i
′j ′

k′ �kk′

+ [L(2)]ijkl[L
(2)]i

′j ′
k′l′ 〈[R̃k ◦ R̃l,R̃k′ ◦ R̃l′]〉. (A16)

Proceed by evaluating T iji ′j ′
. The following relations will be

used:

tr[ρ[R̃i ,R̃i ′ ]] = i �ii ′ , (A17)

tr[ρ[R̃i ,R̃i ′ ◦ R̃j ′
]] = 0, (A18)

tr[ρ[R̃i ◦ R̃j ,R̃i ′ ◦ R̃j ′
]]

= i(�ii ′�jj ′ + �ji ′�ij ′ + �ij ′
�ji ′ + �jj ′

�ii ′ ).

(A19)

Let us define the quartic momenta Kiji ′j ′ = 〈[R̃k ◦ R̃l,R̃k′ ◦
R̃l′ ]〉, and the superoperator (in phase space) D as D[A]ij =
Ai ′j ′D

i ′j ′
ij . Notice that D is linear and D[A�] = D[A]�, thus

D[A] preserves the symmetric or antisymmetric character of
A, and so does any function of D, such as D−1. With this
we define P = D−1[P ] and Q = D−1[Q], and we can write
Eq. (A14) as

αµ,ijαν,i ′j ′T iji ′j ′ = αµ,ijαν,i ′j ′
[
L(1)

]ij

k

[
L(1)

]i ′j ′

k′ �kk′
(A20a)

× (κµκνPijPi ′j ′ − ιµινQijQi ′j ′ )N ij

kl N
i ′j ′
k′l′ K

klk′l′ (A20b)

+ i(κµιν − ιµκν)PijQi ′j ′N ij

kl N
i ′j ′
k′l′ K

klk′l′ (A20c)

Concentrating on line (A20a), it is easy to see that it trivially
vanishes. Due to the antisymmetry of L(1), we have

αµ,ij [L(1)]ijk = (κµPij + iιµQij )[L(1)]ijk (A21)

= iιµQij [L(1)]ijk . (A22)

Then (A20a) reads

−ιµιν
(
Qij [L(1)]ijk

)(
Qi ′j ′ [L(1)]i

′j ′
k′

)
�kk′ = 0, (A23)

due to antisymmetry of �. Line (A20b) also vanishes iden-
tically due to the antisymmetry of K and the symmetry of
(κµκνPijPi ′j ′ − ιµινQijQi ′j ′ )N ij

kl N
i ′j ′
k′l′ under interchange of

(kl) ↔ (k′l′). We are left with line (A20c). Note that

PijQi ′j ′N ij

kl N
i ′j ′
k′l′ K

klk′l′ = PijQi ′j ′NS
ij

klNA
i ′j ′
k′l′ K

klk′l′ , (A24)

where we have replaced N by their symmetric [NS = 1 ⊗ 1]
and antisymmetric components [NA = i(�̃ ⊗ 1 − 1 ⊗ �̃)] in
accordance with the symmetry ofP andQ, respectively. Using
Eq. (A19) we can rewrite Eq. (A24) as

PijQi ′j ′N ij

kl N
i ′j ′
k′l′ K

klk′l′ = 4(tr[Q�̃�P�] + tr[Q�P�]).

(A25)

By virtue of tr[AB] = tr[A�B�], Q� = −Q, and (�P�)� =
�P�, the second term trivially vanishes. We are thus left with

tr[ρ[�µ,�ν]] = 4i(κµιν − κνιν)tr[Q���P�]. (A26)
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In order to prove that this vanishes, let us analyze the
structure of Q and P . Let us express D−1[A] as

D−1[A]ij = −4

[ ∞∑
k=0

4k(�̃�)kA�̃k

]
ij

. (A27)

Given any matrix A in block form

A =
(

a01 c0Z

c0Z b01

)
, (A28)

we can define Ak = (�̃�)kA�̃k , and it is easy to show that

�̃�Ak�̃ =
(

ak+11 ck+1Z

ck+1Z bk+11

)
, (A29)

with ak+1 = aka
2 + c(cbk + 2ack), bk+1 = akc

2 + b(bbk +
2cck), and ck+1 = −ckc

2 − aakc − bbkc − abck . From this
it is straightforward to solve the recurrence equations and
perform the resummation in Eq. (A27) to obtain the explicit
form of P . Similarly, one can obtain the explicit form for Q.
For our purposes, however, it is only relevant to notice that

P =
(

ap1 cpZ

cpZ bp1

)
, (A30)

Q =
(

aqω cq1

−cq1 bqω

)
. (A31)

Finally, we can obtain the structure of P�Q, which reads

P�Q =
(−(apaq + cpcq)1 (apcq − cpbq)Z

−cp(aq + cq)Z cp(cq − bq)1

)
. (A32)

On the other hand we have

��� =
(

(a2 − c2)ω −c(a − b)X

c(a − b)X (b2 − c2)ω

)
, X =

(
0 1

1 0

)
.

(A33)

Finally, the trace in Eq. (A26) reads

tr[Q���P�] = −(apaq + cpcq)(a2 − c2)tr[Z]

+ (apcq − cpbq)c(a − b)tr[ZX]

+ cp(aq + cq)c(a − b)tr[ZX]

+ cp(cq − bq)(b2 − c2)tr[ω]
(A34)

= 0.

This shows that

tr[ρ[�µ,�ν]] = 0. (A35)

To recapitulate, the expectation value of the commutator of
the SLD operators vanishes for probe states given by the
covariance matrix of Eq. (A2). In order to see that this result
applies to all possible two-mode squeezed vacuum states, one
has to observe that if �′

0 = S�0S
�, where S are local phase

shifts. Hence, the phase invariance of the channel guarantees
that the output covariance matrix transforms in the same way,
�′ = S�S�; thus one can write

tr[ρ[�µ,�ν]] = αµ, ijαν, klS
i
i ′S

j

j ′S
k
k′S

l
l′T

i ′j ′k′l′ , (A36)

where the left-hand side refers to the state corresponding to
�′, and T refers to the state �. Finally, since S is a symplectic

orthogonal transformation, and αµ is a linear combination of
the symplectic and the Euclidean metrics, these are invariant
under the congruence

αµ, ij S
i
i ′S

j

j ′ = αµ, i ′j ′ . (A37)

This completes the proof of Eq. (5), i.e., that the Heisenberg
limit for γ and N corresponding to two-mode squeezed vac-
uum states can be, asymptotically, simultaneously achieved.

APPENDIX B: EXACT EXPRESSIONS

We report, for completeness, the exact expressions for
the Fisher information for both parameters γ and N . When
convenient, we will use the variables

x = n(n + 1), (B1)

y = N (N + 1), (B2)

z = eγ − 1. (B3)

Moreover, we find it useful to define t = n + N + 2nN =
x + y − 
2, where 
2 = (n − N )2. In terms of x and y, we
have

n =
√

1 + 4x − 1

2
, (B4)

N =
√

1 + 4y − 1

2
, (B5)

t =
√

(1 + 4x)(1 + 4y) − 1

2
. (B6)

The following inequalities are trivial consequences of the
previous definitions:

x � 0, (B7a)

y � 0, (B7b)

z � 0, (B7c)

x + y � t � 0. (B7d)

Working out the results of [27] we obtain, for the different
classes of states,

J coh
γ = N/z

1 + z(N + 1)
+ n

1 + z(2N + 1)
, (B8a)

J sq
γ = t

z
− yt

t + yz
− 2[t(t + 1) − y]

(z + 1)2 + 2z(t + yz)
, (B8b)

J th
γ = x + y − t

yz2 + tz + x
, (B8c)

J 2m
γ = t + xz

z[(t + 1)z + 1]
. (B8d)

For N we get

J coh
N = z(z + 1)2

[1 + z(N + 1)]N
, (B9a)

J
sq
N = {z(z + 1)2[1 + 4x + z(2t + 2yz + z + 2)]}

× (t + z{x(8y + 2) + y[z(2yz + z + 2) + 3]}
+ tz2(1 + 4y)), (B9b)

J th
N = z2(z + 1)2

x + z(t + yz)
, (B9c)
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J 2m
N = (t + 1)z(z + 1)2

y(tz + z + 1)
. (B9d)

It can be checked that

J 2m
γ � J th

γ , (B10a)

J 2m
γ � J coh

γ , (B10b)

J 2m
γ � J sq

γ . (B10c)

Although apparently nontrivial, a systematic method can be
used to check all the above inequalities. We illustrate the
procedure by considering Eq. (B10a). We first write it as

t + xz

z[(t + 1)z + 1]
� x + y − t

yz2 + tz + x
(B11)

to obtain

(t + xz)
(
yz2 + tz + x

) − z(x + y − t)[(t + 1)z + 1] � 0.

(B12)
Now arranging in powers of z we obtain

xyz3 + [t(t + 1) − x − y] z2

+ [x2 + t(t + 1) − x − y]z + tx � 0. (B13)

Now it is trivial to show that all coefficients are positive
by observing that t(t + 1) = x + y + 4xy. The same method
applies to all inequalities. Notice that since γ always appears
as exp γ , then only integer powers of z will appear in the
expressions. No series expansions will be necessary and
therefore one only needs to check positivity for a finite number
of coefficients.
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