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Postulates for measures of genuine multipartite correlations
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A lot of research has been done on multipartite correlations, but the problem of satisfactorily defining genuine
multipartite correlations—those not trivially reducible to lower partite correlations—remains unsolved. In this
paper we propose three reasonable postulates which each measure or indicator of genuine multipartite correlations
(or genuine multipartite entanglement) should satisfy. We also introduce the concept of degree of correlations,
which gives partial characterization of multipartite correlations. Then, we show that covariance does not satisfy
two postulates and hence it cannot be used as an indicator of genuine multipartite correlations. Finally, we propose
a candidate for a measure of genuine multipartite correlations based on the work that can be drawn from a local
heat bath by means of a multipartite state.
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I. INTRODUCTION

One of the most important problems in quantum-
information theory is the problem of quantifying correlations.
Henderson and Vedral [1] raised the problem of separating
total correlations in a bipartite state into quantum and classical
parts (see also in this context Refs. [2–4]). They also proposed a
measure of purely classical bipartite correlations. It was shown
in Ref. [5] that there exist bipartite states which have almost
maximal entanglement of formation and almost no mutual
information and, hence, almost no classical correlations. In a
series of papers a thermodynamical approach to quantifying
correlations was developed [6–8]. It is well known that bits of
information can be used to extract work from a heat bath [9]. If
we have a bipartite quantum state one can ask how much work
can be extracted from the heat bath under different classes of
operations. In particular, Ref. [6] defined quantum-information
deficit as the difference between globally and locally (with
the use of local operations and classical communication)
extractable work from the heat bath. Recently it was shown
that under some restricted scenario of work extraction there
exist quantum states for which quantum-information deficit
is equal to quantum mutual information [10]. As a result, all
correlations behave as if they were exclusively quantum.

The problem of coexistence of quantum and classical
correlations in multipartite systems was considered in [11].
It was shown that there exist n-qubit states which consist of an
equal mixture of two W states with an odd number of qubits,
for which n-party covariance defined as Cov(X1, . . . ,Xn) =
〈(X1 − 〈X1〉) . . . (Xn − 〈Xn〉)〉 is zero for all choices of local
observables Xi and the state is genuinely entangled. Based on
these observations the authors argued that genuine multipartite
correlations can exist without classical correlations. However,
the conclusion is based on the assumption that covariance is
an indicator of genuine multipartite correlations.

In this paper we formulate three postulates which any
measure or indicator of genuine multipartite correlations
should satisfy. We show that covariance does not satisfy two
postulates when applied to more than two-partite systems. Our
counterexamples are the states considered in Ref. [11]. Hence,

the vanishing of covariance for multipartite states does not
imply the absence of genuine multipartite classical correlations
but rather shows that covariance cannot be an indicator of
genuine multipartite classical correlations. As a by-product we
obtain a protocol of distillation of W states from a wide class of
states (for distillation of W states from generic states see [12]).

The paper is organized as follows. In Sec. II, we formulate
reasonable postulates for measures or indicators of genuine
multipartite correlations and introduce the concept of degree
of correlations. In Sec. III we show that covariance does
not satisfy the postulates. In Sec. IV we discuss the relation
between multipartite correlations and work extraction. In
Sec. V we draw our conclusions.

II. GENUINE n-PARTITE CORRELATIONS

We do not know what it means that a state has genuine
multipartite correlations. Hence we give reasonable postulates
which each measure or indicator of genuine multipartite
correlations should satisfy. In Sec. II A we formulate postulates
for genuine n- and k-partite correlations of an n-partite state. In
Sec. II B we introduce the degree of correlations as an indicator
of genuine k-partite correlations for an arbitrary multipartite
state. The postulates apply to correlations in general; hence,
in particular, they apply also to genuine multipartite entangle-
ment or genuine multipartite classical correlations.

A. Genuine n- and k-partite correlations of an n-partite state

Each measure or indicator of genuine n-partite correlations
for an n-partite state should satisfy the following postulates.

Postulate 1. If an n-partite state does not have genuine
n-partite correlations and one adds a party in a product state,
then the resulting n + 1 partite state does not have genuine
n-partite correlations.

Postulate 2. If an n-partite state does not have gen-
uine n-partite correlations, then local operations and unani-
mous postselection (which mathematically correspond to the
operation �1 ⊗ �2 ⊗ · · · ⊗ �n, where n is the number of
parties and each �i is a trace nonincreasing operation acting
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on the ith party’s subsystem) cannot generate genuine n-partite
correlations.

Postulate 3. If an n-partite state does not have genuine
n-partite correlations, then if one party splits his subsystem
into two parts, keeping one part for himself and using the other
to create a new n + 1-st subsystem, then the resulting n + 1-
partite state does not have genuine n + 1-partite correlations.

One can also require (compare Postulate 2) for each
measure C(ρ) of genuine n-partite correlations that it does
not increase on average under local operations; i.e.,

C(ρ) �
∑

i1,i2,...,in

pi1,i2,...,in

C
(
E1

i1
E2

i2
. . . En

in
ρE

1†
i1

E
2†
i2

. . . E
n†
in

/
pi1,i2,...,in

)
, (1)

where E
j

i are Krauss operators acting on j th subsystem sat-
isfying

∑
i E

j†
i E

j

i � I and pi1,i2,...,in = Tr(E1
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⊗ · · · ⊗
En

in
ρE

1†
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⊗ E
2†
i2

⊗ · · · ⊗ E
n†
in

). It seems that this requirement
should be added to the postulates of Henderson and Vedral [1]
for measures of classical bipartite correlations.

Let us now propose a definition of genuine multipartite
correlations.

Definition 1. A state of n particles has genuine n-partite
correlations if it is nonproduct in every bipartite cut.

Below we prove that the genuine multipartite correlations
defined here satisfy Postulates 1–3.

Observation 1. If genuine n-partite correlations are defined
as in Definition 1 then they satisfy Postulates 1–3 (Fig. 1).

Proof. It is clear that genuine n-partite correlations satisfy
Postulate 1.

To show that they satisfy Postulate 2 we observe that an n-
partite state which does not have genuine n-partite correlations
is of the form

ρ = ρ(n1) ⊗ ρ(n2), (2)

where ρ(n1) and ρ(n2) are states of n1 and n2 particles,
respectively (n1 + n2 = n). It is clear that this product form is
preserved by the operation �1 ⊗ �2 ⊗ · · · ⊗ �n.

To show that genuine n-partite correlations satisfy Postulate
3 we observe that, if a state does not have genuine n-partite
correlations before splitting, then after splitting it has the form

ρ = ρ ′(n1+1) ⊗ ρ ′(n2), (3)

where ρ ′(n1+1) and ρ ′(n2) are states of n1 + 1 and n2 particles,
respectively, or

ρ = ρ ′(n1) ⊗ ρ ′(n2+1), (4)

where ρ ′(n1) and ρ ′(n2+1) are states of n1 and n2 + 1 particles,
respectively. Hence, we see that it does not have genuine n + 1-
partite correlations. This ends the proof of Observation 1.

It is useful to define k-partite genuine correlations for n-
partite states not only for k = n as we did above but also for
any k � n.1 A suitable definition is the following

1We have used this definition implicitly in a previous version. We
are grateful to Michael Seevinck for pointing out that it is not stated
formally.

(a)

(b)

(c)

FIG. 1. Illustration of Observation 1. (a) Four parties share a joint
state ρ. (b1) The third and the fourth party add ancillas in a state
which is product with the original system and the other ancilla. After
this step the parties share the state ρ ⊗ ρA3 ⊗ ρA4. (b2) The third
and the fourth party perform local operations on their original qubits
and ancillas. After this step the parties share the state idO1 ⊗ idO2 ⊗
�1

O3A3 ⊗ �2
O4A4(ρ ⊗ ρA3 ⊗ ρA4), where idi denotes the identity map

acting on qubit i and �a
ij denotes any completely positive map acting

on qubits i and j . (c) The third and the fourth party send ancillas to
the fifth and sixth party, respectively. If the initial state has degree
of correlations less than n then the final state cannot have degree of
correlations greater than or equal to n + 2.

Definition 2. A state of n particles has genuine k-partite
correlations if there exists a k-particle subset whose re-
duced state has genuine k-partite correlations (according to
Definition 1).

Remark. The postulates apply also to entanglement. How-
ever, Definitions 1 and 2 do not. More precisely, they do apply
to pure state entanglement; i.e., one can say that n-partite
pure state has genuine n-partite entanglement if and only if
it is nonproduct with respect to any bipartite cut. To obtain
a definition of genuine multipartite entanglement for mixed
states, we proceed in a standard way [13]; i.e., we say that
an n-partite state ρ has genuine n-partite entanglement if it is
not a mixture of pure states that do not have genuine n-partite
entanglement. This is a counterpart of Definition 1, which
then determines the counterpart of Definition 2. Thus, to rule
out correlations that do not represent entanglement, we can
add a fourth postulate, saying that by mixing states which
do not have n-partite entanglement we cannot obtain genuine
n-partite entanglement. The resulting notion of genuine n-
partite entanglement is slightly different from the notion of
n-partite entanglement of Ref. [14]. For example, an n-particle
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state which contains k-partite entanglement according to
Ref. [14] cannot contain m-partite entanglement for m < k,
as opposed to our genuine multipartite entanglement. For
example, if we have a 5-partite state which is a product
of a Greenberger-Horne-Zeilinger (GHZ) state and a singlet
state, then it contains both 2- as well as 3-partite genuine
entanglement, while it contains only 3-partite entanglement
according to Ref. [14].

B. Degree of correlations

We introduce the concept of degree of correlations. We do
not define it first but rather require that it should satisfy the
following postulates.

Postulate1′. If one adds a party in a product state with the
remainder of the system then the degree of correlations cannot
change.

Postulate 2′. Local operations and postselection cannot
increase the degree of correlations. In particular local unitary
operations cannot change the degree of correlations.

Postulate 3′. If one party splits his subsystem into two,
i.e., sends part of his subsystem to a new party who is not
correlated with the remainder of the system, then the degree
of correlations can increase at most by 1.

Let us now propose a definition of the degree of correlations.
Definition 3. A state has degree of correlations equal to

n if there exists a subset of n particles which has genuine
n-partite correlations and there does not exist a subset of
m particles which has genuine m-partite correlations for any
m > n.

Example 1. An n-partite state of the form

� = 1

2

1∑
i=0

|ii . . . i〉〈ii . . . i| (5)

has genuine 2-, 3-,. . .,n-partite correlations and degree of
correlations equal to n.

Example 2. An n-partite state of the form

� = 2

2n

1∑
i1+i2+···+in=0 mod2

|i1i2 . . . in〉〈i1i2 . . . in| (6)

has only genuine n-partite genuine correlations and degree of
correlations equal to n. It does not have genuine 2-,3-,. . .,n −
1-partite correlations.

We can now find the form of a state which has degree of
correlations equal to n.

Observation 2. A state which has degree of correlations
equal to n is of the form

ρ = ρ(n) ⊗ ρ(m1) ⊗ · · · ⊗ ρ(mM ), (7)

where ρ(n), ρ(m1), . . . , ρ(mM ) are states of n, m1, . . . , mM

particles which are nonproduct in any bipartite cut and n �
m1, . . . ,mM .

Proof. It is clear that the arbitrary state can be written in
this form for some n. The state has degree of correlations at
least equal to n because the reduced state of first n particles
is nonproduct in any bipartite cut. To show that the degree of
correlations cannot be greater than n it is enough to notice that
if we trace some particles then if the state is product in some

cut before we trace particles then it will be product in this cut
after we trace particles.

Below we prove that the degree of correlations defined
earlier satisfies Postulates 1′–3′.

Observation 3. If genuine n-partite correlations and degree
of correlations are defined as in Definition 1 and Defini-
tion 2 then the degree of correlations satisfies Postulates
1′–3 ′.

Proof. It is clear that the degree of correlations satisfies
Postulate 1′.

To show that it satisfies Postulate 2′ we use the fact proved
in Observation 2 that a state which has degree of correlations
equal to n is of the form

ρ = ρ(n) ⊗ ρ(m1) ⊗ · · · ⊗ ρ(mM ), (8)

where ρ(n), ρ(m1), . . . , ρ(mM ) are states of n, m1, . . . , mM

particles, respectively, which are nonproduct in any bipartite
cut and n � m1, . . . ,mM . It is clear that this product form
is preserved by the operation �1 ⊗ �2 ⊗ · · · ⊗ �k , where
k = n + m1 + · · · + mM is the number of parties.

To show that degree of correlations satisfies Postulate 3′ we
observe that a state which has degree of correlations equal to
n after sending part of a one party’s system is of the following
form

ρ = ρ ′(n+1) ⊗ ρ ′(m1) ⊗ · · · ⊗ ρ ′(mM ), (9)

where ρ ′(n+1), ρ ′(m1), . . . , ρ ′(mM ) are states of n + 1, m1, . . . ,
mM particles or

ρ = ρ ′(n) ⊗ ρ ′(m1+1) ⊗ · · · ⊗ ρ ′(mM ), (10)

where ρ ′(n), ρ ′(m1+1), . . . , ρ ′(mM ) are states of n, m1 + 1, . . . ,
mM particles and so on. Hence, we see that it has a degree of
correlations of at most n + 1.

Using Postulates 1–3 we can prove the following
observation.

Observation 4. If the initial state has degree of correlations
less than n and then if the parties add k ancillas in a product
state, perform local operations on their particles and their
ancillas, and send ancillas to k new parties in such a way
that each new party receives an ancilla from only one party,
then the final state cannot have degree of correlations greater
or equal to n + k.

Proof. First, k parties add ancillas in a product state. The
degree of correlations cannot change (Postulate 1′). Next, k

parties apply local operations to their original qubits and added
ancillas. The degree of correlations cannot increase (Postulate
2′). Finally, k parties send ancillas to k new parties. The degree
of correlations can increase at most by k (it can increase by 1
for each sent ancilla) (Postulate 3′).

III. COVARIANCE DOES NOT SATISFY POSTULATES

A. Postulate 2

Before we show that covariance does not satisfy Postulate 2
we present a purification protocol which allows the distillation
of W states from certain mixed states. The protocol consists of
two steps. In the first step each party performs a measurement
on their particle—the so-called local filtering [15–17]. The
measurements performed by all parties are independent; i.e.,
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they are not conditioned on the results of the measurements
performed by other parties. In the second step the parties
postselect a state. The postselected state can have fidelity
with the W state as close to 1 as one wants. However, the
probability of distilling such a state decreases with fidelity.
This protocol is a multipartite version of the so-called
quasidistillation process [18,19].

Let us consider an n-partite state which is a mixture of a W

state and a normalized state ρ(1) with support contained in the
2n − n − 1-dimensional Hilbert space spanned by all vectors
which have two or more 1’s, i.e.,

ρ = p|W 〉〈W | + (1 − p)ρ(1), (11)

where

|W 〉 = 1√
n

(|10 · · · 0〉 + |01 · · · 0〉 + · · · + |00 · · · 1〉). (12)

Let each party perform a measurement described by the
following Kraus operators:

ES = |0〉〈0| + √
ε|1〉〈1|,

EF = √
1 − ε|1〉〈1|. (13)

The action of E⊗n
S on states with m 1’s and n − m 0’s is given

by the following formula:

E⊗n
S |1〉⊗m|0〉⊗(n−m) = √

ε
m|1〉⊗m|0〉⊗(n−m). (14)

A similar result applies for all permutations of m 1’s and n − m

0’s.
Hence, if each party obtains S as the result of the

measurement, then the post-measurement state is proportional
to

ρ ′ = E⊗n
S ρE⊗n

S = εp|W 〉〈W | + ε2(1 − p)ρ ′(1), (15)

where ρ ′(1) is an unnormalized state with the sum of eigenval-
ues less than or equal to 1 and with support contained in the
(2n − n − 1)-dimensional Hilbert space orthogonal to the W

state. The probability that each party obtains S as the result of
the measurement is

q = Tr(ρ ′) > εp. (16)

The fidelity of the postmeasurement state with the W state is

F = 〈W |ρ ′|W 〉
Tr(ρ ′)

>
εp

εp + ε2(1 − p)
. (17)

If ε is small then the fidelity is close to 1. Hence, with small
probability it is possible to distill a state close to W . More
precisely, the probability that we distill a W state with fidelity
F satisfies

q >
p2

(1 − p)

1 − F

F
. (18)

Consider now as an example the n-partite state from [11]
which is an equal mixture of W and W states consisting of an
odd number of qubits; i.e.,

ρ = 1
2 |W 〉〈W | + 1

2 |W 〉〈W |, (19)

where

|W 〉 = 1√
n

(|01 · · · 1〉 + |10 · · · 1〉 + · · · + |11 · · · 0〉). (20)

One can show that for this state all n-partite covariances vanish
[11] (for completeness we show it in the Appendix).

Let the parties apply the just described protocol to the
state of Eq. (19). If each party obtains S as the result of the
measurement then the postmeasurement state is proportional
to

ρ ′ = ε 1
2 |W 〉〈W | + εn−1 1

2 |W 〉〈W |. (21)

The probability that each party obtains S as the result of
measurement is

q = 1
2ε(1 + εn−2). (22)

The fidelity of the postmeasurement state with the W state is

F = 〈W |ρ ′|W 〉
Tr(ρ ′)

= 1

1 + εn−2
. (23)

Let us take ε = 1 − 1√
n

and calculate the limit of q and F for
large n. We have

q ≈ 1

2

(
1 − 1√

n

)
(1 + e−√

n) (24)

and

F ≈ 1

1 + e−√
n
. (25)

More generally, the probability that we distill the state W with
fidelity F is

q = 1

2F

(
1 − F

F

) 1
n−2

. (26)

In Fig. 2, we show how the probability of distillation
depends on the fidelity of the distilled state for mixtures of two
W states. For large n, the probability of obtaining a state close
to W is close to 1

2 . Hence, asymptotically the measurement
effectively projects the initial state on the W state.

We have thus shown that we can transform with local
operations and postselection the state of Eq. (19) into a state
of the form

ρ = F |W 〉〈W | + (1 − F )|W 〉〈W |, (27)

0.6 0.7 0.8 0.9 1.0
F

0.2

0.4

0.6

0.8

1.0

q

FIG. 2. (Color online) Probability of distillation (q) versus
fidelity (F ). From bottom to top: 3-qubit state, 5-qubit state, 7-qubit
state, 9-qubit state, 49-qubit state, and 499-qubit state.
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C

FIG. 3. (Color online) Covariance (C) versus fidelity (F ) for a
3-qubit state (thin line) and a 9-qubit state (thick line).

where 0 < F < 1 can be arbitrary close to 1. The n-partite
covariance Cov(σ 1

z , . . . ,σ n
z ) of this state is given by the

following expression (we show it in the Appendix):

Cov
(
σ 1

z , . . . ,σ n
z

)
= Tr[(σz − 〈σz〉)⊗nρ]

= −F (1 − 〈σz〉)n−1(1 + 〈σz〉)
+ (1 − F )(−1)n−1(1 + 〈σz〉)n−1(1 − 〈σz〉), (28)

where

〈σz〉 = Tr(σzρ)

= FTr(σz|W 〉〈W |) + (1 − F )Tr(σz|W 〉〈W |)
= (2F − 1)

n − 2

n
. (29)

In Fig. 3, we present how it depends on the fidelity F for a
3-qubit state and a 9-qubit state. For both states the covariance
vanishes for F = 1

2 .
Let us summarize this result. The parties start with a state for

which all covariances vanish. Then they apply local filtering
and postselect a state. They can choose measurements in such
a way that the postselected state has nonvanishing covariance.
Hence, we have shown that covariance does not satisfy our
second postulate. This shows that covariance should not be
regarded as an indicator of genuine multipartite classical
correlations.

B. Postulate 3

Suppose that n parties share a state of Eq. (19). Let each
party add to their original qubit an auxiliary qubit in state |0〉,
perform CNOT gate (the original qubit is control qubit and the
auxiliary qubit is target qubit), and send the ancilla to new
party. Each new party receives an ancilla from only one party.
The 2n-partite state is

ρ ′ = 1
2 |W ′〉〈W ′| + 1

2 |W ′〉〈W ′|, (30)

where

|W ′〉 = 1√
n

(|10 . . . 0; 10 . . . 0〉 + |01 . . . 0; 01 . . . 0〉
+ · · · + |00 . . . 1; 00 . . . 1〉) (31)

and

|W ′〉 = 1√
n

(|01 . . . 1; 01 . . . 1〉 + |10 . . . 1; 10 . . . 1〉
+ · · · + |11 . . . 0; 11 . . . 0〉). (32)

One can show that the following covariance,

Cov
(
σ 1

z , . . . ,σ 2n
z

) = Tr[(σz − 〈σz〉)⊗2nρ ′], (33)

is equal to 1. We see that covariance does not satisfy Postulate
3 when applied to more than two-partite states.

IV. MULTIPARTITE CORRELATIONS
AND WORK EXTRACTION

In this section we investigate the relation between mul-
tipartite correlations and the amount of work that can be
extracted from the environment [6,8,9,20]. Let us suppose that
two parties share a quantum state ρAB . It is well known that
this state can be used to extract work from the environment
in many different ways. We consider two scenarios. In the
first one the parties are allowed to perform closed local
operations; i.e., they can perform local unitary operations
and local dephasing (CLO) [8]. In the second one they are
allowed to perform closed local operations and send classical
communication, i.e. transfer subsystems through completely
dephasing channels (CLOCC). If for the state ρAB the parties
can extract more work with CLOCC than with CLO, then
the state ρAB has classical correlations. Let us now consider
multipartite states. By analogy we expect that if the parties can
extract more work with CLOCC and with sending classical
information across any bipartite cut than with CLOCC and
without sending classical information across at least one cut,
then the state has genuine multipartite classical correlations.
We shall denote the difference between extractable work
in those two scenarios minimized overall bipartite cuts
by δW .

The aforementioned procedure is closely related to the
procedure which is used in the definition of quantum-
information deficit [6] and quantum discord [2]. Quantum-
information deficit is defined as the minimal difference
between work which can be extracted from the environment
by a party who has the whole state ρAB and can perform
CLO and by a pair of parties who share a state ρAB

and can perform CLOCC. One-way quantum-information
deficit (i.e., when one allows classical communication only
in one direction) is equal to quantum discord optimized
over von Neumann measurements [21]. It should be noted
however that both quantum-information deficit and quan-
tum discord measure only quantum correlations and not all
correlations.

Example 3. Here we compare the amount of work ex-
tractable with the use of an equal mixture of two tripartite
W states when three parties cooperate, i.e., there is classical
communication across any cut, and when two parties cooper-
ate, i.e., there is no classical communication across one cut.
Let us first suppose that three parties cooperate. If the parties
dephase their qubits in a {|0〉,|1〉} basis and the first two parties
send their qubits to the third party (this is equivalent to sending

012312-5



CHARLES H. BENNETT et al. PHYSICAL REVIEW A 83, 012312 (2011)

qubits down a completely dephasing channel), then the third
party will hold the state

σ123 = 1
6 (|001〉〈001| + |010〉〈010| + |100〉〈100|
+ |110〉〈110| + |101〉〈101| + |011〉〈011|). (34)

They can now extract 3 − log2 6 ≈ 0.4150 bits of work.
Another protocol is the following: one party measures in a
chosen basis and tells the result to other parties, who then
draw work from the resulting state they share. If the basis is
|0〉,|1〉, the result is the same as above. The complementary ba-
sis {|+〉 = 1√

2
(|0〉 + |1〉),|−〉 = 1√

2
(|0〉 − |1〉)} gives 0.4499,

while the optimal basis is {
√

1
3 |0〉 +

√
2
3 |1〉,

√
2
3 |0〉 −

√
1
3 |1〉},

providing 0.4502 bits of work. We do not know whether by
general CLOCC protocol one can extract more work.

Let us now suppose that only two parties cooperate, i.e.,
the first one and the second one. The reduced state of the third
party is maximally mixed and they cannot extract any work at
all. The reduced state of the first two parties is Bell diagonal

ρ12 = Tr3ρ = 2
3 |�+〉〈�+| + 1

6 |�+〉〈�+| + 1
6 |�−〉〈�−|,

(35)

where

|�+〉 = 1
2 (|01〉 + |10〉)

|�±〉 = 1
2 (|00〉 ± |11〉). (36)

If the first party dephases their qubit in a {|+〉,|−〉} basis and
sends their qubit to the second party, then the second party
after applying local unitary operation will hold the state

σ12 = 5
12 |01〉〈01| + 5

12 |10〉〈10| + 1
12 |00〉〈00| + 1

12 |11〉〈11|.
(37)

They can now extract 1 − H ( 5
6 ) � 0.3499 bits of work, where

H (x) = −x log2 x − (1 − x) log2(1 − x) is binary entropy.
This is maximal work which can be extracted with the help
of one-way classical communication even if one takes into
account positive operator-valued measures (POVMs) and the
asymptotic limit of many copies [8]. However, again, it is not
known if one can extract more work with the help of two-way
classical communication.

To summarize, we showed that if the communication
through an A:BC cut is allowed, then we can extract at least
0.4502 bits of work, while if it is not allowed, we are able
to provide a protocol which extracts 0.3499 bits of work
(this concerns all possible cuts, as the state is permutationally
symmetric). If the latter protocol were optimal, we would have
δW >∼ 0.1. This supports the existence of genuine tripartite
correlations in the state.

Example 4. On the other hand if the parties can extract
the same amount of work with CLOCC and with sending
classical information across any bipartite cut as with CLOCC
and without sending classical information across at least one
cut, then we cannot conclude that the state does not have
genuine multipartite classical correlations. Let us consider the
following tripartite state:

ρ123 = 1
2 |�+〉〈�+|12 ⊗ |0〉〈0|3 + 1

2 |�−〉〈�−|12 ⊗ |1〉〈1|3.
(38)

If three parties cooperate they can extract one bit of work.
However if only the first and the second party cooperate
they can also extract one bit of work. On the other hand the
state is nonproduct across any bipartite cut and according to
Definition 1 it has genuine tripartite classical correlations.

The previous two examples show that on the one hand
δW can indicate multipartite correlations; on the other hand it
may vanish, even though the state is nonproduct against any
cut. This is analogous to the behavior of some entanglement
measures; e.g., distillable entanglement can vanish for states
despite that they are entangled. Thus δW quantifies some
particular type of genuine multipartite correlations, which may
be absent in some states even though they contain genuinely
multipartite correlations.

Let us note that the aforementioned property of δW is
similar to covariance, which disappears for state (19), even
though it has genuine multipartite correlations with respect
to some other criteria. One basic difference is, however, that
covariance can be positive even for states such as the product
of Einstein-Podolsky-Rosen (EPR) pairs |�+〉AB ⊗ |�+〉CD ,
which quite obviously do not represent fourpartite correlations,
as follows easily from Postulates 1–3 (an example of non
zero covariance is Cov(σA

Z ,σB
Z ,σC

Z ,σD
Z ) = 1). Moreover, we

believe (though we have not proven) that δW would satisfy
our postulates; i.e., having been zero for some state, it will not
go up under the operations described in the formulation of the
postulates, while covariance, as we have shown in previous
sections, violates two postulates.

V. CONCLUSIONS

In conclusion we have proposed reasonable postulates
which each measure or indicator of genuine multipartite
correlations (or genuine multipartite entanglement) should
satisfy. We also introduced the concept of degree of cor-
relations, which gives partial characterization of multipar-
tite correlations. We have shown that covariance does not
satisfy the proposed postulates and it cannot be used as
an indicator of genuine multipartite classical correlations.
In particular, our postulates show that the claim that there
exist genuine n-partite quantum correlations without genuine
n-partite classical correlations is not justified. As a by-product
we obtained a protocol of distillation of W states from a
wide class of states. Finally, we propose a candidate for a
measure of genuine multipartite correlations based on work
that can be drawn from local environments by means a
multipartite state. We hope that our results, especially the
proposed postulates, will allow us to develop understand-
ing and a quantitative description of genuine multipartite
correlations.
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APPENDIX: CALCULATION OF COVARIANCE

We calculate all covariances for an equal mixture of two W

states consisting of an odd number of qubits:

ρ = 1
2 |W 〉〈W | + 1

2 |W 〉〈W |. (A1)

We can write it as

Cov(X1, . . . ,Xn)

= Tr((X1 − 〈X1〉) . . . (Xn − 〈Xn〉)ρ)

= F 〈W |(X1 − 〈X1〉) . . . (Xn − 〈Xn〉)|W 〉
+ (1 − F )〈W |(X1 − 〈X1〉) . . . (Xn − 〈Xn〉)|W 〉, (A2)

where Xi denotes the Pauli matrix acting on the ith qubit.
Since 〈Xi〉 = 0 we have

Cov(X1, . . . ,Xn)

= 1
2 〈W |X1 . . . Xn|W 〉 + 1

2 〈W |X1 . . . Xn|W 〉, (A3)

and we only need to calculate 〈W |X1 . . . Xn|W 〉 and
〈W |X1 . . . Xn|W 〉. Moreover, since σx and σy exchange |0〉
and |1〉 the only nonvanishing terms are those which contain

(1) n times σz,
(2) 2 times σx and n − 2 times σz,
(3) 2 times σy and n − 2 times σz,
(4) 1 times σx , 1 times σy , and n − 2 times σz.

The other products of Pauli matrices when acting on the W

or W state transform it into some orthogonal state, and hence
their expectation value in the W or W state is equal to zero.
We do not consider in detail the preceding four cases as they
are are similar and we restrict our attention to only the second
case. Using the relations

σ 1
x σ 2

x σ 3
z . . . σ n

z |100 . . . 0〉 = |010 . . . 0〉, (A4)

σ 1
x σ 2

x σ 3
z . . . σ n

z |010 . . . 0〉 = |100 . . . 0〉, (A5)

σ 1
x σ 2

x σ 3
z . . . σ n

z |001 . . . 0〉 = −|111 . . . 0〉, (A6)

σ 1
x σ 2

x σ 3
z . . . σ n

z |011 . . . 1〉 = (−1)n|101 . . . 1〉, (A7)

σ 1
x σ 2

x σ 3
z . . . σ n

z |101 . . . 1〉 = (−1)n|011 . . . 1〉, (A8)

σ 1
x σ 2

x σ 3
z . . . σ n

z |110 . . . 1〉 = −(−1)n|000 . . . 1〉, (A9)

and so on, we obtain

〈W |σ 1
x σ 2

x σ 3
z . . . σ n

z |W 〉 = 2

n
, (A10)

〈W |σ 1
x σ 2

x σ 3
z . . . σ n

z |W 〉 = (−1)n
2

n
, (A11)

which leads to

Tr
(
σ 1

x σ 2
x σ 3

z . . . σ n
z ρ

) = 0 (A12)

and similarly for other products of n Pauli matrices.
We also calculate the covariance Cov(σ 1

z , . . . ,σ n
z ) for an

arbitrary mixture of two W states consisting of an odd number
of qubits,

ρ = F |W 〉〈W | + (1 − F )|W 〉〈W |. (A13)

We can write it as

Cov
(
σ 1

z , . . . σ n
z

)
= Tr[(σz − 〈σz〉)⊗nρ]

= FTr[(σz − 〈σz〉)⊗n|W 〉〈W |]
+ (1 − F )Tr[(σz − 〈σz〉)⊗n|W 〉〈W |]. (A14)

Using identities

(σz − 〈σz〉)⊗n|W 〉 = (1 − 〈σz〉)n−1(−1 − 〈σz〉)|W 〉 (A15)

and

(σz − 〈σz〉)⊗n|W 〉 = (−1 − 〈σz〉)n−1(1 − 〈σz〉)|W 〉, (A16)

we obtain

Cov
(
σ 1

z , . . . σ n
z

)
= Tr[(σz − 〈σz〉)⊗nρ]

= −F (1 − 〈σz〉)n−1(1 + 〈σz〉)
+ (1 − F )(−1)n−1(1 + 〈σz〉)n−1(1 − 〈σz〉). (A17)

The average value of σz for W and W states is n−2
n

and − n−2
n

,

respectively. Hence, the average value of σz for a mixture of
W and W states is

〈σz〉 = Tr(σzρ)

= FTr(σz|W 〉〈W |) + (1 − F )Tr(σz|W 〉〈W |)

= (2F − 1)
n − 2

n
. (A18)
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