
PHYSICAL REVIEW A 83, 012303 (2011)

Quantum computers: Definition and implementations

Carlos A. Pérez-Delgado and Pieter Kok
Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom

(Received 8 July 2009; published 13 January 2011; publisher error corrected 3 February 2011)

The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both
experimental and theoretical research in quantum-information processing. These criteria were formulated
specifically for the circuit model of quantum computing. However, several new models for quantum computing
(paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the
general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum
computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if
it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional
structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for
information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum
memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing
quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for
selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the
most natural paradigm given a particular physical implementation.

DOI: 10.1103/PhysRevA.83.012303 PACS number(s): 03.67.Lx, 03.67.Ac, 03.67.Pp, 03.67.Hk

I. INTRODUCTION

One of the main focal points of modern physics is the
construction of a full-scale quantum computer [1,2], which
holds the promise of vastly increased computational power
in simulating quantum systems. In turn, this may lead to
fundamentally new quantum technologies [3,4]. There is also
mounting evidence that these devices can solve standard
mathematical-computational problems more efficiently than
classical computers. Improvements range from quadratic
speedup in general-purpose algorithms, such as search [5–10],
to exponential (over best-known classical counterparts) in
specialized algorithms, such as the hidden subgroup problem
[11–13].

The common goal of creating a quantum computer has
acted as a focus for research in experimental and theoretical
physics as well as in computer science and mathematics.
In particular, this goal has pushed forward the search for
better ways to control different types of quantum systems,
such as cold and hot ions [14,15], cavity QED [16], neutral
atoms [17], liquid and solid-state NMR [18–22], silicon-based
nuclear spins [23], electrons floating on helium [24], quantum
dots [25], Cooper pairs [26], Josephson junctions [27–30],
and linear optical systems [31,32] among others. Important
new results in the field, both theoretical and experimental,
continue to drive progress in quantum-information processing.
As a consequence, our ability to control quantum systems
has improved dramatically over the past 15 years, and we
understand many aspects of classical and quantum computing
as well as broader aspects of fundamental physics much
better.

An important part in focusing the research in quantum-
information processing has been the set of criteria for creating
a quantum computer, pioneered by Deutsch [1] and expanded
and formalized by DiVincenzo [33–35]. They have inspired
new experimental and theoretical research in quantum control
and quantum-information processing. The criteria, now known
as DiVincenzo’s criteria, apply explicitly to the circuit model of

quantum computation. According to the criteria, any quantum
computer must facilitate the following:

(i) A scalable physical system with well-characterized
qubits;

(ii) the ability to initialize the state of the qubits to a simple
fiducial state, such as |000 . . .〉;

(iii) long relevant decoherence times, much longer than the
gate operation time;

(iv) a universal set of quantum gates;
(v) a qubit-specific measurement capability.
These five criteria were originally formulated by

DiVincenzo in 1996 [33]. Subsequently, DiVincenzo formu-
lated two more criteria for quantum communication [34]:

(vi) the ability to interconvert stationary and flying qubits;
(vii) the ability to faithfully transmit flying qubits between

specified locations.
Since the formulation of the criteria, new ways of making

quantum computers have been invented that do not always
seem to fit the criteria very well. Today, experimentalists can
choose between various paradigms for quantum computation,
such as adiabatic quantum computing, globally controlled
quantum computing, and the one-way model, all with their
various strengths and weaknesses. Each paradigm requires a
completely different approach, yet all attempt to reach the same
end goal, namely, to construct a quantum computer. While all
models are computationally equivalent, their differences allow
for different intuitions and practical advantages. This allows
for greater freedom in the laboratory. For example, where one
was once required to control individual qubits, today we know
that global control suffices in certain instances. The wealth
of paradigms also enriches our theoretical knowledge and
increases our chances for finding new algorithms. For example,
universal blind quantum computation [36] was developed
using intuition gained from the one-way model for quantum
computing. DiVincenzo himself wrote about the implications
of these new paradigms for the criteria in 2001 and relished
how heresies to the dogmatic criteria were arising in the field
of quantum computation [35].

012303-11050-2947/2011/83(1)/012303(15) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.012303

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

We expect that there must be a form of the criteria that does
not make any assumptions about the particular implementation
of the quantum computer. In this paper, we formulate such
general criteria for constructing a quantum computer, and we
identify the metric that determines whether the criteria are
met in terms of fault tolerance and scalability. To achieve this,
we must construct a new operational definition of a quantum
computer and the algorithms that run on them. Finally, we
construct a decision tree to help select the most promising
paradigm given a particular physical implementation. This will
provide the experimentalist with a map of the key theoretical
results they need in order to make their laboratory setup into a
full-scale quantum computer. While the criteria are designed
to be independent of the paradigms, the decision tree must be
updated whenever new paradigms are developed.

II. WHAT IS A QUANTUM COMPUTER?

Before we can discuss the new criteria for quantum
computation, we have to define exactly what we mean by
the term quantum computer. Although most readers will
have an intuitive concept, a formal definition of the term is
quite elusive. In the literature, there are broadly four types
of definitions, and we will argue that they generally fall
short of what we seek in a useful definition of a quantum
computer. First, a quantum computer can be defined as a
representation of a quantum Turing machine, as proposed
by Deutsch in 1985 [1], and further formalized and studied
elsewhere, e.g., Refs. [37,38]. While satisfactory from a
formal computer science perspective, this is not the most
useful formulation when one is concerned primarily with the
implementation of a quantum computer. Second, many texts
use an implicit definition of a quantum computer. For example,
Mermin [39] writes that “a quantum computer is one whose
operation exploits certain very special transformations of its
internal state,” and the subject of the book is these special
transformations. In Nielsen and Chuang [40], a definition of
a quantum computer is never given, and the reader instead
develops an intuition for the meaning of the word quantum
computer over the course of the material. The implicit
definition is a perfectly good pedagogical approach, but it is not
the clear brief statement we need to derive the criteria. Third,
quantum computers are sometimes defined as devices that
can outperform classical computers. The trouble with these
types of definitions is that they depend on the classification of
computational problems, and there are a number of important
open questions about this classification (for example, whether
P = NP). Although unlikely, it may well be that classical
computers are just as powerful as quantum computers, and
the definition ceases to have meaning. Therefore, we require
a definition that does not depend on the classification of
problems in complexity theory. Finally, there are constructive
definitions, which state that quantum computers are made
of quantum bits, use entanglement, etc. The trouble with
such definitions is that they tend to be quite specific about
the implementation. For example, a definition in terms of
qubits seems to exclude the possibility of creating a quantum
computer using continuous variable quantum systems. Instead,
we want a definition that does not presuppose anything about
the building blocks of the quantum computer, does not depend

on the classification of problems in complexity theory, and
is independent of our interpretation of quantum mechanics
(two philosophers with radically different interpretations of
quantum mechanics should still be able to agree on whether
a device can be classified as a quantum computer). Finally,
the definition must not make any reference to the paradigm
that is used to perform the computation in any fundamental
way. For example, the end user of a quantum computer will
generally not be interested in whether the device uses the
adiabatic, measurement-based, or some other as yet unknown
form of quantum computing, unless that makes a difference
in the performance of the device. In other words, we need an
operational definition of a quantum computer. We will give a
formal definition of a quantum computer in the following, after
a brief discussion of the intuitive background of this definition.

Broadly speaking, we define a quantum computer as a
device that can run a quantum algorithm efficiently, where a
quantum algorithm is a classical bit string that encodes a series
of quantum operations (typically quantum gates). The quantum
computer should be able to take this string as input and produce
another bit string as output. The probability distribution of the
output should be consistent with the predictions of quantum
theory. Finally, the time it takes the computer to produce
the output should be in agreement with the difficulty of the
algorithm, e.g., an exponential-time algorithm can take the
quantum computer an exponentially long time to compute,
but a polynomial-time algorithm should be computed in
polynomial time. To see how a classical computer is believed
to fail this criteria, consider Shor’s factoring algorithm: The
number of steps in the algorithm scales polynomially with the
size of the input, but the actual classical implementation will
scale exponentially.

There are three important advantages to this definition.
First, it makes no reference to how the quantum computer
works, which means that the definition does not have to be
updated when new methods of implementation are invented.
Second, the definition does not refer to any specific com-
putational problems, such as factoring, as a differentiator
from a classical computer. Instead, the definition calls for
the ability to compute any quantum algorithm, in an efficient
enough manner. And third, the definition does not make any
assumptions about either the theory of computation or the
nature of physical reality. This means that the definition will
still be valid when our knowledge of the relationship between
classical and quantum computing becomes more complete
and when physical theories that supersede quantum theory
are developed.

To formulate our definition in a precise mathematical way,
let s(n)

in be a string of classical symbols, and let the program
P of size r be a symbolic representation of an algorithm (for
more details, see Sec. III).

Definition 1. An ideal quantum computer is a hypothetical
device that accepts as input a classical bit string s(n)

in , and a
quantum program P with size r , acting on a Hilbert space
Hn of dimension 2n. For any given program P , the quantum
computer produces the classical output bit string s

(m)
out with

probability,

pP

(
s

(m)
out

∣∣s(n)
in

) = 〈
s(n)

in

∣∣U †
P

(
In−m ⊗ ∣∣s(m)

out

〉 〈
s

(m)
out

∣∣)UP

∣∣s(n)
in

〉
.

012303-2

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

The total amount of resources used by the device scales
polynomially in r .

The operator In−m is shorthand for the identity on the
subspace of Hn, that is, the orthocomplement of the subspace
spanned by {|s(m)

out 〉}. It is worthwhile to emphasize that the
quantum computer uses resources that scale polynomially in
the size of the program r , as opposed to the number of bits n in
the input for the program. In other words, a quantum computer
can implement an exponential-time quantum algorithm very
well. The requirement states that if, for example, the algorithm
itself is polynomial time, then the quantum computer must
also run in polynomial time. We do not impose the stronger
restriction that the quantum computer uses resources that
are linear in r . There are a number of reasons why this is
reasonable. First, there are various different quantum computer
paradigms, as we discuss elsewhere in this paper, and while all
of them are equivalent with regard to which computation they
can perform efficiently, some computations can be slightly
more efficient on one platform than on another. For example,
calculating the ground state of a BCS Hamiltonian on a
traditional NMR quantum computer may be quadratically
slower than doing the same calculation on a qubus quantum
computer [41]. Second, as we have discussed earlier, there
are various different languages in which quantum programs
can written. It may be necessary to translate or compile the
program from the language it is written to the native language
of the quantum computer; and this translation may take up to
polynomial time in the size of the program. Third, there are
the issues of scalability and fault tolerance, to which we will
return in Sec. IV. Because of overheads due to error correction
and fault tolerance, it is possible that the amount of resources
needed by a quantum computer to solve larger problems scales
superlinearly.

Why is the quantum computer in Definition 1 a hypothetical
device? Suppose that instead we defined a real quantum
computer according to Definition 1. The quantum computer
should then be able to accept an input of any size and to
compute arbitrary quantum programs on this input. On the
other hand, any real quantum computer has a well-defined
finite size, in terms of the number of logical input bits it
can operate on. Furthermore, it needs to potentially create
entanglement across as many subsystems as it has input bits.
Therefore, we can always construct a problem that is too large
for our (possibly very large) quantum computer, and such a
device would fail according to Definition 1. Nevertheless, any
reasonable definition of a real quantum computer should admit
this finite device as a true quantum computer.

This is an important difference between classical and
quantum computers. Any classical computer that is large
enough to be universal will be universal in the strictest sense,
and no restrictions are placed on the efficiency of the classical
computation. It accepts an input string of any size and can
compute an algorithm of any size, given that it is provided
with sufficient work space. We could introduce the notion
of a quantum work space, but that would be cheating. It
is a profound and important fact that a quantum computer
cannot store partial results while it works on other parts of a
computation. Every part of a computation can potentially be
entangled to every other part, which is central to the speedup

that quantum computers can achieve over classical computers
[42,43]. Moreover, due to the monogamy of entanglement,
stored partial results cannot interact with anything but the
quantum computer itself. Therefore, the quantum work space
must be considered an integral part of the quantum computer.

The quantum work space has traditionally been described
as a set of qubits. However, in recent years, it has been
shown that it is not necessary to restrict ourselves to the
qubit model. In particular, an important subdiscipline of
quantum-information theory involves the use of continuous
variable quantum information carriers, or qunats. Therefore,
this leads us to consider a formal definition of the quantum
work space, which, from now on, we call a quantum memory:

Definition 2. A quantum memory of size k = log2 d is a
physical system that can represent any (computable) quantum
state in a Hilbert space of dimension d.

Although the size of a quantum memory is measured
in qubits, the definition does not specify what type of
information carriers should be used. However, d must be finite,
which means that even if the quantum memory is based on
continuous variables, the effective Hilbert space must be finite.
Consequently, when continuous variables are the information
carriers, the logical encoding must either be in terms of a qudit
or must take the finite precision that is inherent in continuous
variables into account. Finally, a subtle but important point:
According to Definition 2, a quantum memory must be able
to represent (that is, store) any computable quantum state,
but we do not require that it actually is in such a state. That
would be too strong a requirement. Just about any current
experimental implementation of a qubit is a good example of
this. For instance, in NMR quantum computation, the nuclear
spin of an atom is used to represent a qubit. This is natural
when using a spin- 1

2 nucleus; but one can also use, say, spin- 2
3

nuclei, and simply use a subspace of the physical Hilbert space
as the computational space. A more extreme example would be
optical lattices, or quantum dots, where experimentalists use
two energy eigenstates of their respective systems to represent
qubits. It does not matter that the energy eigenstates of an atom
trapped in an optical lattice from a Hilbert space with infinite
dimensions; it can still represent a simple two-dimensional
system. Finally, a more subtle example is a device that is
not actually quantum mechanical itself but can simulate any
quantum-mechanical interaction. This too is a perfectly viable
quantum memory.

Let us now return to the definition of a quantum com-
puter. Another sense in which Definition 1 must describe a
hypothetical device is that it must produce the probability dis-
tribution pP (s(m)

out |s(n)
in) exactly. However, any real device will

unavoidably have errors and can never produce pP (s(m)
out |s(n)

in)
exactly. Of course, from a practical point of view, this level of
precision is quite unnecessary. It is perfectly acceptable that the
quantum computer creates s

(m)
out with probability p′

P (s(m)
out |s(n)

in),
where pP and p′

P are close to each other with respect to
some metric (e.g., the fidelity or the statistical distance). The
difference between the two distributions will manifest itself
as the occurrence of wrong answers in the quantum computer.
If the problem to be solved is such that we can verify the
correctness of the answer efficiently (such as factoring), then
it is sufficient to run the quantum computer repeatedly. As long

012303-3

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

as the probability of getting a wrong answer is small enough,
we can repeat the computation until we obtain the right answer.
However, one might be interested in tackling problems that
are not efficiently verifiable. In addition, it is desirable to be
able to lower bound the success probability of running the
quantum computer efficiently. In such cases, we require more
sophisticated methods of quality control. One such method is
circuit self-testing [44]. Taking these practical considerations
into account, we arrive at the following definition:

Definition 3. A k-bit quantum computer is a physical device
that accepts as input a classical bit string s(n)

in , with n � k, and a
quantum program P of size r , acting on a Hilbert space of size
2n. For any given program P , the quantum computer produces
the classical output bit string s

(m)
out with probability,

pP

(
s

(m)
out

∣∣s(n)
in

) = 〈
s(n)

in

∣∣U †
P

(
In−m ⊗ ∣∣s(m)

out

〉〈
s

(m)
out

∣∣)UP

∣∣s(n)
in

〉
, (1)

with sufficiently high fidelity. The amount of resources used
by the device scales polynomially in r .

This definition captures the notion of a quantum computer
as a real finite physical device. In particular, we now allow
our device to fail some of the time. We impose the weaker
condition that it reproduces the probability distribution with
sufficiently high fidelity. Although we do not impose a partic-
ular number as the lower bound on the success probability,
a standard choice would be 2/3. It is not a priori clear
that proving a lower bound on the reliability of a quantum
device is easy or even feasible. Practically, however, there are
procedures that should be able to prove the reliability of some
types of quantum computer architectures [44].

The drawback of Definition 3 over Definition 1 is that the
mathematical notion of scalability is lost since the device
is strictly finite. To retrieve scalability, we must refer to
Definition 1. That is, we can claim scalability of our quantum
computer architecture when, given an input string of any size
n and a quantum program, we can, in principle, construct
a physical k-bit quantum computer with k � n to run the
computation.

Thus far, we have avoided any discussion on how the
measurement statistics pP (s(m)

out |s(n)
in) are obtained. Definitions 1

and 3 are entirely operational, which means that, if a device
acts like a quantum computer in producing the probability
distribution, then, by our definition, it is a quantum computer.
Importantly, we have completely avoided any assumptions
about the representation of the data in the quantum computer.
Although the input and output are always considered classical
bit strings, the physical representation in the quantum com-
puter can be in terms of qubits, qudits, or qunats. Even if
the physical representation is in terms of qubits, the logical
qubits will, in general, not map directly to the physical qubits,
for example, due to levels of error correction. Also, we have
sidestepped any consequences of possible efficient classical
simulability of quantum processes. Our definition assumes the
input and output of classical states. This is because, ultimately,
any experiment or computation of any possible interest to
us must begin with a classical query and must finish with a
classical result. Some may argue that this is a limitation; and
indeed, a stated goal of quantum computation devices is to act
as receivers and emitters of quantum states, used in quantum
communication protocols. All of these protocols, however, can

easily be viewed as part of a distributed quantum computer,
whose ultimate inputs and outputs are, again, classical. Finally,
the definition is independent of interpretations of quantum
mechanics.

III. DEFINING QUANTUM ALGORITHMS

Our definition of a quantum computer is based on the notion
of efficient computability. In other words, an efficient quantum
program should be run efficiently by a quantum computer,
while an inefficient program may run equally inefficiently. The
purpose of this section is to formalize this notion. However,
for many readers, the idea of a program P of size r will be
sufficiently intuitive, and these readers can skip this section if
they desire.

We formalize the notion of quantum program by means of
an inductive definition: We begin by defining basic building
blocks and then describe how these building blocks can be
combined to build more complex objects. A consequence
of this is that we have to choose a particular way to
construct quantum algorithms. We have chosen the language
and building blocks of quantum circuits, since they form a
well-known and intuitive approach. While, in many ways, it
is desirable to give a general definition of quantum algorithms
that does not refer to any particular implementation, the
definition presented here allows us to achieve the goals set in
this paper properly and easily. An inductive definition allows
us to define a formal size function in a straightforward manner.
That is, not only is the size of a quantum program always well
defined, it is also easily characterized. In our case, it is simply
the sum of the cost of each individual gate.

For simplicity and without loss of generality, we will restrict
ourselves predominantly to the binary alphabet {0,1}. Any
higher-dimensional information carrier can be described in
terms of multiple bits, and even continuous variables can be
treated this way, as long as we keep in mind that they have
an intrinsic finite precision. Consequently, we consider mostly
binary finite classical bit strings s(n) ∈ {0,1}n. Quantum bit
strings will be denoted similarly by |s(n)〉 ∈ {|0〉,|1〉}⊗n.

We have defined quantum computers as accepting three
pieces of input: a bit string representing the initial state; a
bit string representing a computable quantum function on an
initial state; and a bit string that determines what measurement
should be made on the resulting final state. We call the second
input a quantum program. Note that a quantum program, by
our definition, is not quite a quantum algorithm. A quantum
algorithm is a recipe for transforming an input of any size;
e.g., Shor’s quantum factoring algorithm can be used to factor
any number. A quantum program, by contrast, acts only on
inputs of a certain size. In short, a quantum program classically
encodes a unitary operator, and a quantum algorithm is a family
of programs for different input sizes.

A commonly chosen universal set of quantum operations
consists of arbitrary finite precision one-qubit gates, along with
the controlled-Z operation (CZ).

Definition 4. Quantum gates are strings that denote quantum
operators that fall in either of the following two categories:

(1) The category of qubit rotations,

Rj (θ) = exp

(
− i

h̄
θ · σ j

)
,

012303-4

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

where j indicates the qubit, θ = (θx,θy,θz), and σ j = (X,Y,Z)
is the vector of Pauli operators on qubit j . The size of this
primitive in big Omega notation is �(m), where m is the
maximum precision of θx , θy , and θz in bits;

(2) the category of operators CZjk of controlled-Z opera-
tors between the j th and the kth logical data qubits. The size
of this primitive is �(1).

Note that any gate amounts to a bit string that records the
type of operation, the qubit(s) it operates on, and, if necessary,
the value of the angles in θ , up to a finite precision. The size
function assumes that it is, in general, harder to implement
a quantum unitary operation with higher precision, than one
with lower precision. Hence, the higher precision of the gate,
the higher its size value. The two-qubit gate, CZ, has a fixed
constant size because its precision is fixed.

The second part of an inductive definition is the closure
function. In other words, a method for constructing general set
items from atomic ones.

Definition 5. A quantum circuit can be constructed induc-
tively as follows:

(1) If q is a gate, then it is a quantum circuit.
(2) If q1 and q2 are quantum circuits, then their composi-

tion, denoted by q2 ◦ q1, is also a quantum circuit.
Therefore, a quantum circuit is a bit string that encodes (i.e.,

gives a method for implementing) a unitary operation. Given
a quantum circuit q, we denote the unitary operator it encodes
by Uq . It acts on a Hilbert space of size 2n where n is the size
of the largest index in any gate in q [recall that the index or
indices of a gate establish which qubit(s) it acts on].

An important mathematical remark is that the set of
quantum algorithms as defined previously is freely generated.
This means that given a properly formed quantum circuit, there
is only one way to construct it using the rules in Definition 5.
This, in turn, implies that we can define a size measure as a
recursive function on a quantum circuit and that this value is
always well defined.

Definition 6. The size of a quantum circuit q, denoted by
C(q) or |q| is a function from the set of all quantum circuits
to the non-negative integers and is defined as follows.

(1) If q consists of a single gate, its size is the same as that
of the gate (see Definition 4);

(2) if q is a quantum circuit such that q = q2 ◦ q1, then the
size of this circuit is |q1| + |q2|.

In Definition 7, we describe computability and complexity
of unitary operators in terms of the quantum programs that
encode them.

Definition 7. A unitary operator U is computable if there
exists a quantum program q such that Uq = U . Furthermore,
the cost of U is the size of the smallest quantum program q

such that Uq = U . Finally, U is ε approximable if there exists a
program q such that the fidelity F (U,UP) � 1 − ε. Similarly,
the cost of approximating U is the size of the smallest program
that approximates U .

Using the concepts developed in this section, we can easily
and formally speak of quantum program size. This is not a
fully developed complexity theory since it only speaks of the
size of individual objects or programs. It is merely a useful
tool to properly define quantum computers in Sec. II. Also,
we stress again that, although we have used the language of
circuits to discuss quantum programs, this is but one of many

languages in which programs can be described. Regardless of
which language we choose to represent a program, a quantum
computer, as defined earlier, must be able to implement
and to run the program, possibly via a compiler, i.e., a
classical program that translates the quantum program from
our language to some internal representation appropriate for
the hardware implementation. This translation might incur an
additional cost, but it should always be a polynomially scaling
penalty. This observation and restriction comes into play in
our definition, where we state that the quantum computer must
implement the quantum program in a time that is polynomial
in the size of the program.

IV. CRITERIA FOR BUILDING A QUANTUM COMPUTER

One of the main aims of this paper is to establish the
criteria that any implementation of a quantum computer
must meet. The first set of these criteria was formulated by
DiVincenzo and mainly concerns the circuit model of quantum
computation applied to qubits. However, other models of
quantum computation have been proposed since, and most
likely new models will be formulated in the future. In this
section, we will discuss the set of criteria that any model of
quantum computation must meet, now and in the future. These
are:

Criterion 0. Any quantum computer must have a quantum
memory.

Criterion 1. Any quantum computer must facilitate a
controlled evolution of the quantum memory that allows for
universal quantum computation.

Criterion 2. Any quantum computer must include a method
for cooling the quantum memory.

Criterion 3. Any quantum computer must provide a readout
mechanism for (nonempty) subsets of the quantum memory.

Criterion 0 establishes the conditio sine qua non of any
quantum computing device: its ability to dynamically represent
a quantum state, in other words, have a quantum memory
as defined in Definition 2. Criteria 1–3 establish further
requirements imposed on this quantum memory. These criteria
are more general than DiVincenzo’s criteria and, therefore,
more abstract. We will show in Sec. IV C that these criteria are
a general necessary requirement for quantum computation. At
the same time, its more abstract nature requires we instantiate
or specify how these criteria are met in particular implemen-
tations. For instance, one may satisfy the requirement of a
quantum memory through the use of qubits, qudits, quantum
continuous variables, or even globally addressable quantum
cells. This means that we must give a metric that allows us
to determine whether the criteria are satisfied. This metric
requires two concepts, namely, fault tolerance and scalability.

A. Fault tolerance

In practice, no device will ever be perfect. Random
fluctuations induce errors in all aspects of the computation,
including the quantum memory, the quantum evolution, and
the readout. If the device still operates in accordance with
Definition 3 in the presence of errors, the device is called
fault tolerant. The size of the errors must typically be below
a certain value in order to achieve fault tolerance, and this

012303-5

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

is called the fault-tolerance threshold. Fault tolerance was
first considered in classical computation, where fundamental
results show that, in the presence of faulty gates [45], and
even faulty gates and wires [46], classical computation can
be done robustly. The key to fault tolerance is to employ
error correction effectively. All properly functioning classical
computers operate in a fault-tolerant manner.

In quantum computing, due to the fragile nature of quantum
information and entanglement, fault tolerance is much harder
to achieve. Indeed, many people initially believed that fault-
tolerant quantum computers are physically impossible [47].
Nevertheless, it turned out that, as in classical computing,
we can employ quantum error correction, and Shor and
Steane were the first to show how to perform quantum error
correction, in principle [48–50]. Each logical qubit is typically
encoded in a number of physical qubits. A measurement of
certain observables on the qubits then allows us to extract the
syndrome, which tells us which, if any, error has occurred. For
example, an error correction code can protect a logical qubit
from a single error. However, the codes themselves consist of
a number of physical qubits, all of which are prone to errors.
In order for quantum error correction to be beneficial, the
probability of an error in the logical qubit must be smaller than
the error probability on a single physical qubit, multiplied by
all the distinct places the error can occur. When this condition
is satisfied, we can, in principle, concatenate the codes, which
means that each physical qubit in the code is itself encoded,
and so on.

However, in order to obtain fault tolerance, we also have
to make sure that the quantum error correction code and the
concatenation do not allow errors to multiply. For example,
when a qubit experiences a bit flip error, using that qubit
as the control of a CNOT will induce a bit flip error on the
target qubit as well. This means that we now have two errors,
although the CNOT worked perfectly. Quantum error correction
codes must be designed such that error propagation and
multiplication are kept under control. Furthermore, all aspects
of the quantum computer, including the memory, the evolution,
and the readout, must be performed in a fault-tolerant way. All
this must be achieved without compromising the polynomial
scaling in the amount of resources required to perform the
computation. Some of the first results on fault tolerance are
due to Shor [51], Kitaev [52], Steane [53], Gottesman [54],
and Preskill [55]. How to achieve fault tolerance and the
numerical value of the threshold depends on the paradigm and
the type of error correction. In Sec. V, we will discuss specific
fault-tolerance thresholds for the particular paradigms.

B. Scalability

The second essential characteristic of any quantum com-
puter is scalability. It is what allows us to move beyond
the proof of principle experiment to a large-scale quantum
computer that can solve interesting problems not within
reach of classical computing. While it is universally agreed
that scalability is a desired, or even required, characteristic
of potential quantum computing platforms, what exactly
constitutes scalability is often subject to debate. A textbook
definition of scalability in computer science is that a system is
scalable if its performance does not degrade significantly as

[. . .] the load on the system increases [56]. More generally,
the cost of scaling a system to size n can be described by a
cost function. This function and, in particular, its asymptotic
growth rate, determines the degree of scalability of the system.

When discussing a quantum computing device using the
foregoing definition of scalability, one would say that the
quantum computer is scalable if the resources needed to run
the same polynomial-time algorithm on a larger input scaled
polynomially on the size of the input. If the device, for reasons
of having to cope with increased error rates, decoherence,
fundamental limitations on its size, etc., cannot compute the
algorithm using, at most, a polynomial overhead, we say that
the device is not scalable. The quantum-information commu-
nity often determines that it is the size of the quantum memory
of a quantum computer that must be scaled. Even without any
further considerations, this also imposes a necessary scalability
in the quantum control efficiency. In particular, the more
logical qubits are maintained in the device, the more parallel
operations (or faster serial operations) are needed in order
to keep the device fault tolerant. By this definition, there is
currently no scalable quantum computing device.

While the preceding definition of scalability is widely
accepted in the computer science and systems engineering
communities, it is somewhat problematic when applied to
quantum computing technology. In particular, people often
have a different definition of scalability in mind. Considering
that no scalable quantum computers exist yet, scalability
usually refers to the future scalability of the proposed
implementation of a quantum computer. Therefore, it is a
prediction.

This issue was addressed recently by Bacon [57], who
presents an overview of several methods to analyze, to
evaluate, and to discuss the future scalability of a quantum
computing device. These include the economic cost of scaling
these devices; the current knowledge of the technology used
in the device; how this technology fits in the larger fields of
physics, chemistry, etc., and whether the technology has been
used in scalable devices other than quantum computers. These
three forms of scalability can be understood as follows: First,
there is the actual scalability of a system. This is the scalability
cost function of actually existing devices, according to the
earlier definition. Second, there is the projected scalability
of a quantum computer architecture, which is given by
the expected cost function. As with the actual cost, this
will be a function mapping the size of logical qubits to a
resource cost. It is similar in all other respects too, except
that it refers to a hypothetical cost derived by projecting
our advances in technology into the future. In the absence
of true quantum computers, the projected scalability is the
quantity that is of most use to current designers of quantum
computer architectures. However, it is also the most difficult
to quantify, due to inherent uncertainties in technological and
economic predictions. Finally, the fundamental scalability of
an architecture is given by upper and lower bounds on the
resource cost function that are direct consequences of the
(known) laws of physics, in particular, quantum mechanics.
These are absolute values, that upper and lower bounds can
be derived formally from first principles, and generally, the
usefulness of the values for a particular device will rest in the
size of the gap between the lower and upper bounds.

012303-6

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

We can now state unambiguously when the criteria for
quantum computing are met. First, the device must be a
fault-tolerant quantum computer, which means that all the
error probabilities for all the possible errors in a realistic error
model are below the fault-tolerance threshold. Consequently,
the errors associated with each of the four criteria (memory,
evolution, cooling, and readout) must be below this threshold.
Second, the device must be scalable. The specific type of
scalability (actual, projected, or fundamental) depends on the
objectives of the user. For a prototype quantum computer,
one would require actual scalability up to a certain small
number, while an industry interested in commercial production
of quantum computers must meet projected scalability.

C. The criteria

We now discuss the four criteria that must be met when we
want to build a scalable fault-tolerant quantum computer.

Criterion 0. Any quantum computer must have a quantum
memory.

It is clear from Definition 3 that the quantum computer
must be able to store the classical input bit string s(n)

in in such a
way that it can be used in the computation. The storage device
must be able to hold any computable quantum state that can
be evolved unitarily from the input qubit string |s(n)

in 〉.
Some states are known to have an efficient classical

representation, such as the so-called stabilizer states [58].
These can have large amounts of entanglement and may be
considered true quantum states. Since we do not specify how
the quantum memory operates, we may try to cheat the system
by tracking only the efficient classical description of the state
and proceed with the computation using only these states.
However, if the memory holds only states of this type, the
quantum computer operating with this memory cannot produce
the output pP (s(m)

out |s(n)
in) efficiently. This is a consequence

of the Gottesman-Knill theorem [58]. A quantum computer
requires the ability to store any computable quantum state,
which, in general, is not known to have efficient classical
representations.

The quantum memory must be able to store any computable
pure quantum state. However, this does not mean that the
quantum memory always is in a pure state. The storage of
a pure quantum state in an overall mixed system can be
achieved in several ways. For example, a pure quantum state
can be encoded in pseudopure states or in decoherence-free
subspaces. Regardless of the encoding, the device gener-
ally needs to store a quantum state for prolonged periods
of time.

Criterion 1. Any quantum computer must facilitate a
controlled evolution of the quantum memory, which allows
for universal quantum computation.

According to Definition 3, a quantum computer produces a
probability distribution that depends on the unitary encoding
UP of the program of interest P , and it must do so effi-
ciently. It is generally accepted that this implies that, for
many algorithms, the same probability distribution cannot
be simulated efficiently on a classical computer. If this is
indeed the case, then the evolution UP must be inherently
quantum mechanical. Currently, we know of several ways
to implement UP , for example, via a series of qubit gates,

via adiabatic transformations, controlled measurements, etc.
This process must act in accordance with the laws of quantum
mechanics and is ultimately controlled by the user or program-
mer of the device. Therefore, we call this controlled quantum
evolution. This leads to Criterion 1. The core distinguishing
feature between various quantum computing paradigms is
often the mechanism for performing the quantum evolution.
Other criteria (memory, cooling, and readout) are then chosen
to support the specific implementation of the controlled
evolution. It does not matter whether the quantum evolution is
described in the Schrödinger picture, the Heisenberg picture, or
in an interaction picture. These different pictures do not yield
observable differences, and all lead to the same probability
distribution pP (s(m)

out |s(n)
in).

At this point, we should note that any type of controlled
evolution implies that the quantum computer must incorporate
a clock of some sort. Moreover, as quantum computing is
currently understood, each part of the computer must be
synchronized to the same clock. It is, however, possible
to implement distributed quantum computing between par-
ties that move relativistically with respect to each other
by encoding the quantum information in Lorentz invari-
ant subspaces [59]. A general discussion on the role of
reference frames in quantum information can be found in
Ref. [60].

Criterion 2. Any quantum computer must include a method
for cooling the quantum memory.

Once we have built a quantum computer, we most likely
want to use it more than once. Since any real quantum
computer has a finite size k, the preparation of a computation,
therefore, includes the erasure of the previous computation.
The entropy generated in this procedure must be extracted
from the quantum computer, and we call this (information
theoretic) cooling. In addition to the entropy generated by
the erasure of previous computations, entropy may leak
into the quantum memory via unwanted and uncontrolled
interactions with the environment. Such entropy leaks cause
errors in the computation, which may be removed using
quantum error correction procedures. This is also a form
of cooling. Therefore, any real quantum computer must
satisfy Criterion 2.

The concept of cooling encompasses both the initialization
of the quantum memory and the error correction during the
computation. Furthermore, the boundary between initializa-
tion and error correction is fuzzy. For example, in the one-way
model of quantum computation, it can be argued that the
initialization process is the construction of a high-fidelity
graph state. In this case, the initialization may include the
preparation of the qubits in a ground state as well as the en-
tangling interactions and the various entanglement distillation
procedures that are used to make the graph state. Alternatively,
one may argue that initialization means only the preparation
of the qubits in the pure ground state |0〉. The creation of the
graph state then falls in the category of controlled quantum
evolution, augmented by quantum error correction. Whether
it is more natural to view the entire graph state creation as
the initialization procedure or only qubit initialization often
depends on the physical implementation. In optical lattices,
it may be more appropriate to interpret initialization as the
creation of the cluster state, whereas systems in which each

012303-7

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

two-qubit interaction must be invoked separately favor qubit
initialization as the natural interpretation.

A consequence of this fuzziness between initialization and
error correction is that it is not important what pure state
the system is cooled to. In practice, this will depend on the
most accessible states of the physical implementation. Once
the system is cooled down sufficiently, the different types of
control (both quantum evolution and further error correction)
can bring the quantum memory into any desired state.

Criterion 3. Any quantum computer must provide a readout
mechanism for subsets of the quantum memory.

According to Definition 3, a quantum computer produces
a classical bit string s

(m)
out as the output. This implies that the

quantum computer includes a mechanism that translates the
output state of the quantum memory to a classical bit string.
This is done via measurement, and in the context of computing,
we call this readout. Therefore, Criterion 3 must be satisfied
for any quantum computer.

Similar to cooling, what is considered readout is a rather
fluid concept. Much of error correction involves the mea-
surement of large parts of the quantum memory, but the
end user is generally not interested in these measurement
outcomes. Therefore, we may regard this type of readout
as part of the cooling mechanism. Again, the most natural
interpretation depends on the physical implementation of the
quantum computer.

Since the different paradigms may differ in the type of
control they require, they may also differ in the required
readout abilities. In general, the more restrictive the controlled
quantum evolution requirement is, the less restrictive the
readout requirement needs to be. For example, the ability to
do single-qubit measurements on an arbitrary basis can be
exchanged with the ability to do single-qubit measurements
on a predefined axis, if one also has the ability to do arbitrary
single-qubit rotations.

V. COMPUTATIONAL PARADIGMS

There are potentially many ways to implement a quan-
tum computer. For example, we can use trapped ions with
optical control fields, photons in linear optical networks,
electrically controlled quantum dots, etc. The specific way the
quantum computer is constructed is called the architecture.
It encompasses all the details of the implementation. Apart
from the architecture, there is another useful distinction in
different types of quantum computers. Not all types of quantum
computers treat the quantum information in the same way, and
we call the different ways of implementing the computation
at the abstract computational level paradigms. The paradigm
can be interpreted as the way the computation s(n)

in → s
(m)
out

is decomposed into primitive elements. As an example, in
Definitions 4 and 5, the primitives are chosen as the single-
qubit rotations, supplemented by the two-qubit CZ gate. These
can be translated into other primitives, associated with the
different paradigms.

Finally, there is what we refer to as data abstraction and
encoding. Error correction schemes fall into this category. For
example, CSS, stabilizer, and topological codes are all different
ways to encode data. These encodings can be used with
various (although not necessarily all) paradigms. A particular

case worth mentioning is topological quantum computing,
which was first introduced as the coupling of the topological
data encoding with the anyonic architecture. Although first
described together, it has been shown that topological codes
can be used in other architectures and paradigms, such as the
one-way model of quantum computing, using photons and
matter qubits instead of anyons.

The examples of different paradigms we will discuss shortly
are the circuit model, globally controlled quantum computing,
measurement-based quantum computing, and adiabatic quan-
tum computing. Each paradigm must meet the criteria, but
they are typically met in slightly different ways. Furthermore,
how a particular device satisfies the criteria determines the
most natural quantum computing paradigm. In this section,
we discuss the various paradigms of quantum computing, and
how the criteria for quantum computing must be met.

A. The circuit model

In the circuit model, the computation is decomposed into
logical gates that are applied successively to the qubits. This
is commonly represented graphically as a circuit, where each
horizontal line denotes the time evolution of a qubit, and logical
gates are symbols on the lines. The circuit model is arguably
the most natural way to visualize a quantum computation, and
the universality proof of other paradigms often proceeds by
reduction to the circuit model.

The key to a circuit-model description of quantum comput-
ing is a series of results, showing that any unitary operator on
n qubits can be decomposed into a series of arbitrary single-
qubit rotations and two-qubit entangling gates [61–63]. Such
a restricted set of gates is called universal. In addition, it was
shown that almost any two-qubit entangling gate can be used to
construct a universal set of gates [64,65]. Typical choices of the
entangling gate are the CNOT and the CZ. This universal set of
operations is infinite, since it contains all possible single-qubit
rotations on any one qubit. The Solovay-Kitaev theorem states
that, for any unitary operation U , there exists a finite set of
gates that can efficiently implement U to arbitrary precision
[52]. The most general form of this theorem was proved in
Appendix 3 of Ref. [40], and, for a history of the theorem,
see Ref. [66]. The implication of the theorem is that we can
construct a quantum computer based on a finite set of gates.

In order to achieve a complete computation device, it is
necessary to supplement the universal set of gates mentioned
earlier with two more primitives, namely, measurements
and cooling. It is often assumed that the measurements are
von Neumann measurements, which leave the system in the
eigenstate corresponding to the measurement outcome. This
type of measurement can act as a cooling mechanism as well
since it transforms mixed states into pure states. In general,
however, von Neumann measurements may be difficult to
implement (for example, when the quantum information is
carried by a photon, which is usually destroyed by the
detector), and we will assume here that measurement and
cooling are independent requirements.

Fault-tolerance thresholds in the circuit model (as well as in
other paradigms) depend very much on the implementation of
the quantum error correction codes. Consequently, the thresh-
olds vary substantially. Early calculations yielded thresholds

012303-8

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

TABLE I. Quantum computing criteria for the circuit model.

C0. Identifiable and addressable individual qubits;
C1. the ability to implement a universal set of gates;
C2. the ability to reduce the entropy of the state of any qubit;
C3. the ability to measure any single qubit in the computational.

basis.

for the error probability per gate around 10−6 [52,55,67,68]
and 10−4 [58]. Steane proved a threshold of 3 × 10−3 [69], and
Knill derived a threshold of ∼1% [70]. Models that allow only
nearest-neighbor interactions have thresholds on the order of
10−4 to 10−5 [71]. Better bounds are shown indirectly through
the use of different models, see Sec. V C.

Summarizing, the requirements for universal fault-tolerant
quantum computation using the circuit model are given in
Table I. We have put “qubits” in quotes, since there are circuit-
model proposals that act on qudits or continuous variables [72].
However, these proposals can always be recast in terms of
qubits, including continuous variables (with finite precision).
For qubits, this list reduces to the DiVincenzo criteria, where
our Criterion 0 encompasses DiVincenzo’s Criteria (i) and
(iii); our Criterion 1 is equal to Criterion (iv); our Criterion 2 is
equivalent to Criterion (ii), and our Criterion 3 is DiVincenzo’s
Criterion (v).

B. Global control

The second paradigm we consider here is usually called
globally controlled quantum computing, or global control, for
short. In 1993, Lloyd described the fundamental idea behind
this paradigm, which differs significantly from the circuit
model in that it does not employ a universal set of single- and
two-qubit gates [73]. Instead, the quantum memory consists
of units called quantum cells, which have some controllable
(often nearest-neighbor) interactions that can be switched on
and off. The quantum evolution associated with the algorithm
then proceeds via operations that act on all quantum cells
indiscriminately. As an example, consider a one-dimensional
spin- 1

2 lattice (this can be a crystal, optical lattice, etc.),
often called a spin chain. Suppose further that the method
of addressing the spins in the lattice is through some magnetic
field. A homogenous field affecting all spins identically is
typically easier to achieve than a gradient field that couples
to only a few or even a single lattice spin. Similarly, the
distance between interacting spins is much shorter than optical
wavelengths, making individual optical control of the spins
extremely challenging. A global-control paradigm offers clear
practical benefits in these situations.

In Lloyd’s original scheme, the spins in the one-dimensional
lattice are of three different types, or species, A, B, and C,
arranged in cyclical repeating order with switchable nearest-
neighbor interactions. Each species can be addressed indepen-
dently from the other species. A setup that accommodates this
type of control is a crystal or polymer with three different
species of nuclei and where each nucleus is coupled to
its neighbors. The controlling mechanism then consists of
magnetic pulses tuned to the resonance frequencies of the
target nuclei. Lloyd showed that even such limited control
over a homogenous system like this allows for universal

quantum computation. The scheme involves initializing the
system to a particular state where the entire lattice, except for
a small region, is set to a fiduciary initial state. The small
region is set to a state known as the control pointer. Logical
operations then consist of applying homogenous pulses that
act only nontrivially in the vicinity of the control pointer state.
These operations can change the state of logical qubits in the
vicinity of the pointer or can move the pointer up and down
the chain. It was further shown by Benjamin [74], Benjamin
and Bose [75,76], and Benjamin et al. [77] that two different
spin species, A and B, still allow for universal quantum
computation. Other possible implementations are discussed
in Refs. [78–81].

Readout is done through a global, or bulk, measurement on
a cell species. This means that the state of any one particular
cell is not readily available, but rather, it is possible to make
a measurement of a global character that does not distinguish
between cells. An example measurement of this type is the bulk
magnetization of a spin ensemble. Mathematically, it is similar
to projecting onto eigenspaces spanned by computational
basis states of a certain Hamming weight. This might not
seem powerful enough to give the output of a computation,
but it is indeed possible to use the finite nature of the cell
chain and the particular boundary conditions to extract the
result of the computation [73,74]. Another possible technique
includes the use of spin amplification [82]. Quantum cellular
automata (QCA) are similar to spin chains, with the added
constraint that the evolution is not only homogenous in space,
but also in time. In other words, the global operation is a
repeating cycle of a set of operations. QCA are an important
theoretical construct, in that they are the natural generalization
of the classical model of computation based on cellular
automata [80].

Quantum error correction in globally controlled systems
was discussed by Bririd et al. [83]. Fitzsimmons and Twamley
[78,79] proved the existence of a threshold, and Kay [84,85]
proved a fault-tolerance theorem with a threshold of 10−11.
Both fault-tolerant protocols require the ability to cool spins
using global control. One way to achieve cooling is to endow
all spins (or at least a large subset of them) with a third unstable
state |2〉. Spontaneous emission of a photon from this state
then produces the required ground state |0〉. It is not normally
assumed that these emissions can be detected. However, this
does not affect the initialization procedure. QCA have been
shown to be universal for quantum computing [80,81,86], but
an open question remains whether they can be implemented in
a fault-tolerant manner. The requirements for universal fault-
tolerant quantum computation using the globally controlled
array model are summarized in Table II.

TABLE II. Quantum computing criteria for global control models.

C0. Identifiable and globally addressable individual quantum cells;
C1. the ability to implement a universal set of global operators;
C2. the ability to reduce the entropy of the global state of a species

of cells;
C3. the ability to make a global measurement on a species of cells.

012303-9

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

C. Measurement-based quantum computing

Measurement-based quantum computing has its origins in
at least two converging lines of research. First, it was realized
in the quantum computing community that two-qubit gates are
generally far more difficult to implement with high fidelity than
single-qubit gates. This led to the concept of gate teleportation
[87] in which the quantum channel of a teleportation event
is modified to induce a specific gate on the teleported
qubits. The most famous application of gate teleportation
is the demonstration that it is possible to build a quantum
computer with only single photons, linear optical elements,
and photon counting [31]. The second line of research that led
to measurement-based quantum computing was the study of
practical applications of large-scale entanglement with a lattice
structure [88]. These so-called cluster states appear naturally
in optical lattices, and many other regular structures that are
characterized by nearest-neighbor interactions (such as the
Ising interaction).

Measurement-based quantum computation relies on the
preparation of a large entangled state, the cluster state, which
is typically a regular lattice where each vertex represents
a qubit initially in the state (|0〉 + |1〉)/√2, and each edge
represents a CZ operation [89]. The computation proceeds
by making single-qubit measurements on a subset of the
qubits. The measurement outcomes determine the single-qubit
observables for the next measurement round, and so on.
Many classes of large entangled states have been identified
as universal resources for quantum computing. The quantum
program is encoded entirely in the single-qubit measurement
bases [90,91]. Because of this measurement-driven approach
and the fundamental irreversibility of the measurement pro-
cedure, this is also called the one-way model of quantum
computing. One of the major advantages of the one-way
model over the circuit model is that the universal resource
state (i.e., the cluster state) does not carry any information
about the computation. Therefore, it is possible to create
these states by any (efficient) means, not necessarily using
high-fidelity deterministic two-qubit gates [92–94]. This can
significantly reduce the requirements for building a quantum
computer.

The fulfillment of the four criteria for building a quantum
computer in the one-way model is somewhat fluid in the
sense that we can interpret certain aspects of the model as
falling under different criteria. First, the quantum memory of
a quantum computer based on the one-way model consists
of qubits, although the model can also be defined on qudits
[95,96] and qunats [97]. The qubits must be addressable to
the extent that any single-qubit measurement in the equatorial
plane of the Bloch sphere, as well as a computational basis
measurement, can be reliably performed. Similar requirements
exist for measurement-based protocols that are based on other
types of information carriers, such as continuous variables
[97]. Second, the controlled quantum evolution is somewhat
hidden in measurement-based quantum computation. We start
with a large entangled resource state that is typically a stabilizer
state, which permits an efficient classical description. The
measurements will remove qubits from the state and, in doing
so, will drive the entangled resource state to different states
that are typically no longer efficiently describable as stabilizer

TABLE III. Criteria for measurement-based quantum computing.

C0. Identifiable and addressable individual qubits;
C1. the ability to implement single-qubit measurements in a large

subset of bases;
C2. the ability to cool the quantum memory to a universal

entangled resource state;
C3. the ability to measure any single qubit in the computational

basis.

states. Another sense in which measurement-based quantum
computing needs controlled quantum evolution is in the
creation of the entangled universal resource. If we use proba-
bilistic gates, we have to put up with an inherent lack of control.
However, we can choose efficient strategies that allow us to
induce the control necessary to create the universal resource
[98]. Alternatively, we can use near-deterministic gates with
additional purification and distillation [99]. Third, the creation
of the entangled resource can also be regarded as cooling
to the ground state of a suitable many-body Hamiltonian.
Still, even after the cluster state has been produced, we have
to allow for quantum error correction protocols, since the
cluster state must be protected from errors while its qubits
are waiting to be measured. Finally, the readout mechanism
is, of course, central to the measurement-based model. Not
only does the one-way quantum computer need the readout
for the final step of retrieving the outcome of the computation,
the computation itself is driven by the measurements. The
criteria are summarized as in Table III. Here, we encounter
a rare occasion of a paradigm for which one criterion
implies another. In this case, Criterion 1 implies Criterion 3.
This indicates that measurement-based quantum computation
may, in some cases, be easier to implement than other
paradigms.

The one-way model of quantum computing can be made
fault tolerant as well. Two threshold theorems by Nielsen
and Dawson (2005) give the maximum allowable errors
when the cluster states are created with noisy deterministic
linear optical entangling gates and when only probabilistic
(noisy) linear optical entangling gates are available [100].
Raussendorf and Harrington derived a threshold theorem for
general two-dimensional cluster states and found a maximum
error of 0.75% [101–103].

D. Adiabatic control

The final paradigm we consider here is adiabatic quantum
computing. The main difference from the previous paradigms
is that, in the adiabatic model, the quantum information
is not processed in discrete time steps (i.e., gates) but
in a continuous fashion. Of course, all gates must also
operate continuously in the temporal domain in any practical
implementation, but the important distinction here is that,
in nonadiabatic paradigms, the quantum program is defined
procedurally. In other words, an algorithm is composed of
discrete time steps, at which specific operations are carried
out. Adiabatic quantum computing is a complete departure
from this line of thinking. The core of this paradigm is the
adiabatic theorem, first developed and proven by Born and
Fock [104]. The theorem states that a physical system will

012303-10

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

remain in its instantaneous eigenstate if any given perturbation
acting on it does so slowly enough with respect to the
gap between the minimal eigenvalue and the rest of the
Hamiltonian’s spectrum.

The basic idea of the adiabatic paradigm is that, instead
of carrying out an algorithm that takes you to the desired
output via gates, one has to give a Hamiltonian Hf whose
ground state represents the solution to the computational
problem. The quantum computer starts in the ground state
of a Hamiltonian H0, and the computation proceeds by
adiabatically changing the initial Hamiltonian H0 into Hf .
The paradigm has a very distinct elegance, since we do
not have to state the procedure but rather the desired
output in terms of a Hamiltonian. In classical computing,
this approach leads to various benefits, for example, easily
provable correctness of algorithms.

The standard example of this paradigm is the adiabatic
implementation of a Grover search. The problem is to find
a marked bit string s of size n out of a possible N = 2n bit
strings. Grover showed, by explicit construction, that this can
be solved in time O(

√
N), whereas the most efficient classical

algorithm scales as O(N). In the adiabatic paradigm, we
choose Hf = I − |s〉〈s|. The ground state of this Hamiltonian
is |s〉 (i.e., the solution to the problem). Moreover, the
Hamiltonian can be constructed without explicit knowledge
of |s〉 (which would defeat the purpose) but rather by properly
encoding the condition that marks s as the solution. Since there
is no a priori knowledge of which string is the marked one, we
start the system in a superposition |ψ0〉 of all possible strings,
and we let H0 = I − |ψ0〉〈ψ0|. Evolving adiabatically from H0

to Hf and measuring the final state will provide the desired
outcome s. Roland and Cerf calculated the time constraints
needed in order to maintain adiabaticity and showed that
total running time of the algorithm is O(

√
N) [105]. It is

straightforward to adapt this algorithm to solve any NP

problem, again in O(
√

N) time (where N is the size of the
search space or set of possible solutions). Recently, Aharonov
et al. demonstrated a procedure for adapting any quantum
circuit algorithm into an adiabatic procedure [106]. However,
the straightforward translation of algorithms can produce
unwieldy results. Although all paradigms have the same
computational power, some algorithms are better described in
one model rather than another. In the case of adiabatic quantum
computation, the natural algorithm is Grover’s search.

From an implementation standpoint, perhaps the biggest
drawback of adiabatic quantum computation is the very
specific and nontrivial requirements on Hf . While in the
quantum circuit model, all quantum computation can be
reduced to single- and two-qubit gates, in the adiabatic model,
we often need many-body interactions. For example, three-
body interactions are required for the naive implementation of
satisfiability, and up to five-body interactions are necessary for
general quantum circuit simulation. If we implement a fault-
tolerant adiabatic computation, the many-body interactions
may be even higher.

The error correction schemes that are developed for adia-
batic quantum computing so far are based on using quantum
error detecting codes in the Hamiltonian, ensuring that any
logical error would drive the energy of the system considerably
upward [107]. This should ensure that the system, assuming

TABLE IV. Criteria for adiabatic quantum computing.

C0. Identifiable and addressable individual qubits;
C1. the ability to implement arbitrary Hamiltonians consisting of

many-body interactions terms;
C2. the ability to reduce the entropy of the quantum memory to

the ground state of a prescribed Hamiltonian;
C3. the ability to measure any single qubit in the computational

basis.

it stays sufficiently cool, does not leave the ground state.
In principle, it is possible to use longer and longer codes,
which would protect against larger and larger entropy in
the system. However, this also requires higher many-body
terms in the Hamiltonian. Progress is being made toward
complete fault tolerance for adiabatic quantum computing
[108], but there currently exists no threshold theorem. We
summarize the criteria for universal fault-tolerant adiabatic
quantum computation in Table IV. However, since the precise
requirements for fault tolerance are not known at this time,
these criteria may change. In particular, the required size of
the many-body interaction is not known at this time.

E. Hybrid architectures

While many architectures for quantum computers use only
one particular paradigm, this is not necessary, in general. It is
possible that specific implementations of a quantum computer
use a combination of paradigms for different parts of the
computation. Several hybrid schemes have been proposed
already, and we mention a few of them here.

First, different paradigms may be used to implement a quan-
tum computer and to connect several computers in a network.
For example, a circuit model-QCA hybrid architecture was
proposed by Laflamme and Cory for a universal quantum
computer to be developed in the near future. Such a device
would have several universal quantum registers, each with
the same number of logical qubits. These registers would
be linked to each other via spin chains, which would be, in
turn, controlled as a QCA and would act as conveyer belts for
information between the universal registers.

Second, different paradigms may be used for creating
the universal quantum evolution on one hand and the error
correction protocols on the other hand. For example, a hybrid
architecture using the one-way model and the circuit model
was proposed by Campbell and Benjamin [109]. This is based
on a distributed scheme where distant qubits are entangled via
optical path erasure, but instead of a single qubit at each distant
site, there may be several qubits. These few-qubit processors
process quantum information using the circuit model. An
earlier version of such an architecture is the broker-client
scheme for efficiently creating large cluster states [110]. The
number of qubits per site may, in principle, become quite large,
allowing error correction and other low-level information
management at the site level and having only logical or
higher level operations occur via optically entangling remote
operations.

Third, we can even use different paradigms in several
aspects of the quantum evolution. For example, we can
decompose the evolution in terms of a quantum circuit but

012303-11

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

use adiabatic control to implement the universal set of quantum
gates [111]. In short, even if none of the existing paradigms suit
a particular physical setup perfectly, it might still be possible to
tailor a hybrid scheme. Finally, we should note that there are
quite possibly many more universal quantum computational
paradigms.

F. Quantum communication

The four criteria for quantum computing also apply to
quantum communication, albeit in a slightly modified form.
First, we can regard quantum communication as a form
of distributed quantum computing, although communication
protocols are typically much simpler than general quantum
algorithms. Therefore, we consider the criteria explicitly for
the case of distributed quantum computing. Clearly, the criteria
are then sufficient for quantum communication. However, they
are not quite necessary. Quantum communication requires
quantum memories, cooling, and readout, but only a restricted
set of quantum algorithms need to be performed. Therefore,
we modify Criterion 1 to

Criterion 1a. Any quantum communication device must
facilitate a restricted set of controlled quantum evolution of
the quantum memory.

The restricted set consists of the identity and simple
operations, such as the swap operation.

The measures that determine whether the criteria are
satisfied are still scalability and fault tolerance. Scalability
is almost immediate: When Alice and Bob are able to
communicate a single qubit at a cost C, they will be able
to communicate N qubits at cost NC, simply by repeating the
procedure for communicating a single qubit. Fault tolerance
for quantum communication can also be defined. In particular,
this is illustrated by the security proof of BB84 by Shor and
Preskill [112]. Security is defined in terms of the maximum
allowable mutual information between Alice and Bob on one
hand and the environment on the other hand. Error correction
can then be used to minimize the mutual information. Shor
and Preskill found a maximum allowed error of ∼11%. This
can be regarded as a threshold theorem for BB84.

VI. SELECTING A PARADIGM

With the availability of various paradigms for quantum
computing, the natural question for any experimentalist is
which paradigm is best suited for my physical system. In order
to help answer this question, we present a decision tree (shown
in Fig. 1) that may act as a rough guide toward implementing
fault-tolerant quantum computation. To this end, we discuss
some aspects of scalability, addressability of the qubits, and
the type of qubit control that is most natural for the physical
system.

A. Monolithic vs modular scalability

Scalability is required for any implementation of a quantum
computer. Here, we consider two types of scalability, namely,
monolithic scalability and modular scalability.

Scalability is monolithic when the quantum computer is a
single device, and we can increase the size of the device while
still satisfying the criteria. One example of a monolithically

FIG. 1. Example of a decision tree to determine which quantum
computing paradigms are most suitable for a given physical setup.

scalable setup is solid-state NMR. Here, each nucleus is a
physical qubit, and scaling the device simply implies using
a larger solid with more nuclei. Other examples include
optical lattices, quantum dots, and superconducting qubits.
An example of a system that is not monolithically scalable
is an atom in a cavity. We cannot double the number of
atoms in the cavity without altering the physics of the device.
However, atoms in cavities can exhibit modular scalability.
We can increase the number of cavities (with atoms inside),
which, in turn, can be entangled remotely, for example, using
mediating photons. A scalable quantum computer can then
be built by using various cavities or more abstractly and,
in general, various modules. There is a certain amount of
arbitrariness in determining whether a system is modular or
monolithic. For example, a full-scale quantum internet can
be interpreted as a modular system, even if each module is
a monolithic k-bit quantum computer. Therefore, whether a
system should be regarded as modular or monolithic depends,
in large part, on the context.

While it is possible to force both monolithic and modular
quantum devices into any of the earlier paradigms, some
paradigms can be seen as more natural. A physical setup that
exhibits modular scalability is best suited for the measurement-
based quantum computing paradigm of Sec.V C. A setup that
is monolithically scalable may be better suited for the circuit
model (Sec. V A), or global control (Sec. V B), depending
on the other device properties. Setups that are somewhere
between monolithically and modularly scalable can benefit
from a hybrid approach (see Sec. V E).

012303-12

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

B. Addressability

The quantum memory of the device, whether it be mono-
lithic or modular, must be addressable in some form. We have
seen that different paradigms place different requirements
on the precise character of this addressability. In the circuit
model and the measurement-based model, each qubit must
be addressed individually, while in the global control model,
the quantum memory is addressed without discriminating
between qubits. This typically places restrictions on the type
of interactions between the qubits (see Sec. V B).

It is a natural assumption that each module in a modular
device can be distinguished and addressed independently from
other modules. Hence, addressability is really only a concern
for the physical qubits within each module and is of greatest
concern for monolithic setups. Therefore, the paradigm best
suited for monolithic quantum systems with limited address-
ability is globally controlled quantum computing.

Another important issue is the level of addressability.
Like other features discussed before, addressability is not
a binary condition, but rather, there is a full gradient of
possibilities. On the one extreme, there is complete individual
addressability of each individual subsystem, qubit, etc. On the
other extreme, each subsystem is completely indistinguishable
from any other. In between, we have systems and architectures,
where there are two, three, or more distinguishable species.
Furthermore, these may be spatially ordered in a homogenous
or nonhomogenous fashion. Physical system examples of these
differences could be a carbon nanotube, where the individual
carbon nuclei are the fundamental quantum subsystems, each
indistinguishable from the other; and a polymer consisting of
two or three different nuclei arranged in a repeating pattern.
Various proposals, as discussed in Sec V B, are available, each
more or less relevant depending on the exact nature of the
physical device.

C. Quantum evolution implementation

Finally, we consider the type of control that we may
have over a device. This depends on various aspects of the
architecture. For instance, modular devices, and those with
limited addressability, impose restrictions on the type of
control available to the user or programmer of the quantum
device. Even without these constraints, however, it is possible
to choose between two fairly distinct methods of quantum
control, namely, adiabatic or nonadiabatic quantum evolution.
In our decision tree in Fig. 1, this choice is the final bifurcation
that indicates which quantum paradigm is most suitable for
a particular device. Again, the distinction between adiabatic
and nonadiabatic control can be blurry in some cases. As an
example of a hybrid approach to quantum control, we refer to

Gauger et al., who propose an implementation in which the
computational paradigm is the circuit model, but (some of) the
individual gates are operated in an adiabatic manner [111].

In general, the decision tree should be taken, at best, as a
help to guide experimentalists toward the most suitable imple-
mentation given their experimental setup. As new paradigms
are developed, the decision tree will grow more branches,
and other questions about the capabilities of the physical
devices must be answered. Nevertheless, the four criteria
themselves are independent of the computational paradigm
and, therefore, should once more be regarded as the central
dogma for implementing a quantum computer.

VII. CONCLUSIONS

The DiVincenzo criteria have been extremely influential in
focusing the theoretical and experimental research in quantum
computing. However, since the initial formulation of the
criteria for the circuit model, several new paradigms for
quantum computation have been invented or developed further.
As a consequence, the original criteria are sometimes violated
in certain paradigms. In this paper, we have generalized the
DiVincenzo criteria to take into account new paradigms,
such as the one-way model, globally controlled quantum
computing, and adiabatic quantum computing. We distilled
the criteria down to four general requirements, namely, the
availability of a quantum memory, the ability to induce a
(near) unitary evolution, the ability to implement (information-
theoretic) cooling, and readout of the quantum memory.
These criteria are derived directly from a new definition of a
quantum computer. We distinguish between an ideal quantum
computer, which has an arbitrarily large size, and a k-bit
quantum computer that can have a physical implementation.
The desiderata that determine whether the criteria are met are
fault tolerance and scalability.

In addition to the four criteria for quantum computing,
we constructed a decision tree that may help experimentalists
decide which paradigm is the most natural for a particular
physical implementation. This decision tree will have to be
updated whenever new paradigms for quantum computing
are invented. However, the criteria are independent of new
paradigms.

ACKNOWLEDGMENTS

The authors wish to acknowledge valuable discussions with
and comments from Sean Barrett, Niel de Beaudrap, Earl
Campbell, Donnie Chuang, Irene D’Amico, David Deutsch,
David P. DiVincenzo, Richard Jozsa, Andrew Steane, Terry
Rudolph, Stefan Weigert, and David Whittaker.

[1] D. Deutsch, Proc. R. Soc. London, Ser. A 400, 97
(1985).

[2] D. Deutsch, Proc. R. Soc. London, Ser. A 425, 73 (1989).
[3] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[4] S. Lloyd, Science 273, 1073 (1996).
[5] E. Biham, O. Biham, D. Biron, M. Grassl, and D. Lidar,

in Quantum Computing & Quantum Communications; First

NASA International Conference; Selected Papers, QCQC’98,
edited by C. Williams, Lecture Notes in Computer Science,
Vol. 1509 (Springer, Berlin, 1998), p. 140.

[6] E. Biham, O. Biham, D. Biron, M. Grassl, and D. A. Lidar,
Phys. Rev. A 60, 2742 (1999).

[7] E. Biham, O. Biham, D. Biron, M. Grassl, D. Lidar, and
D. Shapira, Phys. Rev. A 63, 012310 (2000).

012303-13

http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1098/rspa.1989.0099
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1103/PhysRevA.60.2742
http://dx.doi.org/10.1103/PhysRevA.63.012310

CARLOS A. PÉREZ-DELGADO AND PIETER KOK PHYSICAL REVIEW A 83, 012303 (2011)

[8] N. Cerf, L. Grover, and C. Williams, Phys. Rev. A 61, 032303
(2000).

[9] L. Grover, in Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing (STOC), 1996 (Association for
Computing Machinery, New York, 1996), p. 212.

[10] L. K. Grover, Phys. Rev. Lett. 80, 4329 (1998).
[11] R. Cleve, A. Ekert, L. Henderson, C. Macchiavello, and

M. Mosca, Complexity 4, 33 (1998).
[12] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R.

Soc. London, Ser. A 454, 339 (1998).
[13] P. W. Shor, in Proceedings of the 35th Symposium on Foun-

dations of Computer Science (FOCS), 1994 (IEEE Computer
Society, Los Alamitos, CA, 1994), p. 124.

[14] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[15] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971

(1999).
[16] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys.

Rev. Lett. 75, 3788 (1995).
[17] H. J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, and P. Zoller,

J. Mod. Opt. 47, 415 (2000).
[18] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu,

and R. Schack, Phys. Rev. Lett. 83, 1054 (1999).
[19] D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad.

Sci. USA 94, 1634 (1997).
[20] N. A. Gerschenfeld and I. L. Chuang, Science 275, 350

(1997).
[21] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,

1037 (2004).
[22] F. Yamaguchi and Y. Yamamoto, Appl. Phys. 68, 1 (1999).
[23] B. E. Kane, Nature (London) 393, 133 (1998).
[24] P. M. Platzman and M. I. Dykman, Science 284, 1967

(1999).
[25] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[26] D. V. Averin, Solid State Commun. 105, 659 (1998).
[27] Y. Makhlin, G. Schön, and A. Shnirman, Nature (London) 398,

305 (1999).
[28] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,

357 (2001).
[29] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der

Wal, and S. Lloyd, Science 285, 1036 (1999).
[30] A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett. 79,

2371 (1997).
[31] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London)

409, 46 (2001).
[32] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling,

and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).
[33] D. P. DiVincenzo, in Mesoscopic Electron Transport, edited

by L. Sohn, L. Kouwenhoven, and G. Schön, NATO Ad-
vanced Study Institute, Series E, Vol. 345 (Kluwer Academic,
Dordrecht, 1996), p. 657.

[34] D. P. DiVincenzo, Fortsch. Phys. 48, 771 (2000).
[35] D. P. DiVincenzo, Quantum Inf. Comput. 1, 1 (2001).
[36] A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of

the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), Atlanta, GA, 2009 (IEEE Computer Society,
Los Alamitos, CA, 2009), p. 517.

[37] E. Bernstein and U. Vazirani, in Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing (STOC), 1993
(Association for Computing Machinery, New York, 1996),
p. 11.

[38] A. C.-C. Yao, in Proceedings of the 34th Annual Symposium
on Foundations of Computer Science (FOCS), 1993 (IEEE
Computer Society, Los Alamitos, CA, 1993), p. 352.

[39] N. D. Mermin, Quantum Computer Science: An Introduction
(Cambridge University Press, New York, 2007).

[40] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, UK, 2000).

[41] K. Brown, V. Kendon, and W. J. Munro, Simulating the BCS
Hamiltonian on a Qubus Quantum Computer, White Rose
Meeting (York, UK, 2009).

[42] R. Jozsa and N. Linden, Proc. R. Soc. London, Ser. A 459,
2011 (2003).

[43] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[44] F. Magniez, D. Mayers, M. Mosca, and H. Ollivier, Automata,

Languages and Programming 4051, 72 (2006).
[45] J. von Neumann, Probabilistic Logics and Synthesis of Reliable

Organisms from Unreliable Components, Automata Studies
(Princeton University Press, Princeton, 1956).

[46] P. Gaćs, J. Comp. Sys. Sci. 32 (1986).
[47] W. G. Unruh, Phys. Rev. A 51, 992 (1995).
[48] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
[49] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[50] A. Steane, Proc. R. Soc. London, Ser. A 452, 2551

(1996).
[51] P. W. Shor, in Proceedings of the 37th Annual Symposium

on Foundations of Computer Science (FOCS), 1996 (IEEE
Computer Society, Los Alamitos, CA, 1996), p. 56.

[52] A. Y. Kitaev, Russ. Math. Surveys 52, 1191 (1997).
[53] A. M. Steane, Phys. Rev. Lett. 78, 2252 (1997).
[54] D. Gottesman, Phys. Rev. A 57, 127 (1998).
[55] J. Preskill, Proc. R. Soc. London, Ser. A 454, 385 (1998).
[56] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy,

Performance by Design (Prentice Hall, Englewood Cliffs, NJ,
2004).

[57] D. Bacon, The Quantum Pontiff, Climbing Mount Scalable
(2009) [http://scienceblogs.com/pontiff/].

[58] D. Gottesman, Ph.D. thesis, California Institute of Technology,
1997 (unpublished), arXiv:quant-ph9705052v1.

[59] P. Kok, T. C. Ralph, and G. J. Milburn, Quantum Inf. Comput.
5, 239 (2005).

[60] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod.
Phys. 79, 555 (2007).

[61] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and
H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

[62] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev.
Lett. 74, 4083 (1995).

[63] D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995).
[64] D. Deutsch, A. Barenco, and A. Ekert, Comp. Bull. 449, 669

(1995).
[65] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[66] C. Dawson and M. Nielsen, Quantum Inf. Comput. 6, 81

(2006).
[67] D. Aharonov and M. Ben-Or, in Proceedings of the 31st Annual

ACM Symposium on Theory of Computing (STOC), 1999
(Association for Computing Machinery, New York, 1999),
p. 176.

[68] E. Knill, R. Laflamme, and W. H. Zurek, Science 279, 342
(1998).

012303-14

http://dx.doi.org/10.1103/PhysRevA.61.032303
http://dx.doi.org/10.1103/PhysRevA.61.032303
http://dx.doi.org/10.1103/PhysRevLett.80.4329
http://dx.doi.org/10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO;2-U
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.75.3788
http://dx.doi.org/10.1103/PhysRevLett.75.3788
http://dx.doi.org/10.1103/PhysRevLett.83.1054
http://dx.doi.org/10.1073/pnas.94.5.1634
http://dx.doi.org/10.1073/pnas.94.5.1634
http://dx.doi.org/10.1126/science.275.5298.350
http://dx.doi.org/10.1126/science.275.5298.350
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1103/RevModPhys.76.1037
http://dx.doi.org/10.1007/s003390050846
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1126/science.284.5422.1967
http://dx.doi.org/10.1126/science.284.5422.1967
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1016/S0038-1098(97)10001-1
http://dx.doi.org/10.1038/18613
http://dx.doi.org/10.1038/18613
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1103/PhysRevLett.79.2371
http://dx.doi.org/10.1103/PhysRevLett.79.2371
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1007/11786986_8
http://dx.doi.org/10.1007/11786986_8
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1070/RM1997v052n06ABEH002155
http://dx.doi.org/10.1103/PhysRevLett.78.2252
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1098/rspa.1998.0167
http://scienceblogs.com/pontiff/
http://arXiv.org/abs/arXiv:quant-ph9705052v1
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/RevModPhys.79.555
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevLett.74.4083
http://dx.doi.org/10.1103/PhysRevLett.74.4083
http://dx.doi.org/10.1103/PhysRevA.51.1015
http://dx.doi.org/10.1103/PhysRevLett.75.346
http://dx.doi.org/10.1126/science.279.5349.342
http://dx.doi.org/10.1126/science.279.5349.342

QUANTUM COMPUTERS: DEFINITION AND IMPLEMENTATIONS PHYSICAL REVIEW A 83, 012303 (2011)

[69] A. M. Steane, Phys. Rev. A 68, 042322 (2003).
[70] E. Knill, Nature (London) 434, 39 (2004).
[71] K. M. Svore, B. M. Terhal, and D. P. DiVincenzo, Phys. Rev.

A 72, 022317 (2005).
[72] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
[73] S. Lloyd, Science 261, 1569 (1993).
[74] S. C. Benjamin, New J. Phys. 6, 61 (2004).
[75] S. C. Benjamin and S. Bose, Phys. Rev. Lett. 90, 247901 (2003).
[76] S. C. Benjamin and S. Bose, Phys. Rev. A 70, 032314 (2004).
[77] S. C. Benjamin, B. W. Lovett, and J. H. Reina, Phys. Rev. A

70, 060305(R) (2004).
[78] J. Fitzsimons and J. Twamley, Phys. Rev. Lett. 97, 090502

(2006).
[79] J. Fitzsimons and J. Twamley, e-print arXiv:0707.1119.
[80] C. A. Pérez-Delgado and D. Cheung, Phys. Rev. A 76, 032320

(2007).
[81] K. G. H. Vollbrecht and J. I. Cirac, Phys. Rev. A 73, 012324

(2006).
[82] C. A. Pérez-Delgado, M. Mosca, P. Cappellaro, and D. G. Cory,

Phys. Rev. Lett. 97, 100501 (2006).
[83] A. Bririd, S. C. Benjamin, and A. Kay, e-print

arXiv:quant-ph/0308113.
[84] A. Kay, e-print arXiv:quant-ph/0504197.
[85] A. Kay, e-print arXiv:quant-ph/0702239.
[86] J. Watrous, in Proceedings of the 36th Annual Symposium

on Foundations of Computer Science (FOCS), 1995 (IEEE
Computer Society, Los Alamitos, CA, 1995), p. 528.

[87] D. Gottesman and I. L. Chuang, Nature (London) 402, 390
(1999).

[88] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910
(2001).

[89] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[90] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311
(2004).

[91] R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys. Rev. A
68, 022312 (2003).

[92] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005).
[93] D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501

(2005).
[94] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).
[95] M. S. Tame, M. Paternostro, C. Hadley, S. Bose, and M. S.

Kim, Phys. Rev. A 74, 042330 (2006).
[96] D. L. Zhou, B. Zeng, Z. Xu, and C. P. Sun, Phys. Rev. A 68,

062303 (2003).
[97] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.

Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).
[98] D. Gross, K. Kieling, and J. Eisert, Phys. Rev. A 74, 042343

(2006).
[99] Y. L. Lim, S. D. Barrett, A. Beige, P. Kok, and L. C. Kwek,

Phys. Rev. A 73, 012304 (2006).
[100] M. A. Nielsen and C. M. Dawson, Phys. Rev. A 71, 042323

(2005).
[101] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504

(2007).
[102] R. Raussendorf, J. Harrington, and K. Goyal, Ann. Phys. 321,

2242 (2006).
[103] R. Raussendorf, J. Harrington, and K. Goyal, New J. Phys. 9,

199 (2007).
[104] M. Born and V. Fock, Zeit. Phys. A 51, 165 (1928).
[105] J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).
[106] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and

O. Regev, SIAM J. Comput. 37, 166 (2007).
[107] S. P. Jordan, E. Farhi, and P. W. Shor, Phys. Rev. A 74, 052322

(2006).
[108] D. A. Lidar, Phys. Rev. Lett. 100, 160506 (2008).
[109] E. T. Campbell and S. C. Benjamin, Phys. Rev. Lett. 101,

130502 (2008).
[110] S. C. Benjamin, D. E. Browne, J. Fitzsimons, and J. J. L.

Morton, New J. Phys. 8, 141 (2006).
[111] E. Gauger, A. Nazir, S. C. Benjamin, T. M. Stace, and B. W.

Lovett, New J. Phys. 10, 073016 (2008).
[112] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441

(2000).

012303-15

http://dx.doi.org/10.1103/PhysRevA.68.042322
http://dx.doi.org/10.1038/nature03350
http://dx.doi.org/10.1103/PhysRevA.72.022317
http://dx.doi.org/10.1103/PhysRevA.72.022317
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1126/science.261.5128.1569
http://dx.doi.org/10.1088/1367-2630/6/1/061
http://dx.doi.org/10.1103/PhysRevLett.90.247901
http://dx.doi.org/10.1103/PhysRevA.70.032314
http://dx.doi.org/10.1103/PhysRevA.70.060305
http://dx.doi.org/10.1103/PhysRevA.70.060305
http://dx.doi.org/10.1103/PhysRevLett.97.090502
http://dx.doi.org/10.1103/PhysRevLett.97.090502
http://arXiv.org/abs/arXiv:0707.1119
http://dx.doi.org/10.1103/PhysRevA.76.032320
http://dx.doi.org/10.1103/PhysRevA.76.032320
http://dx.doi.org/10.1103/PhysRevA.73.012324
http://dx.doi.org/10.1103/PhysRevA.73.012324
http://dx.doi.org/10.1103/PhysRevLett.97.100501
http://arXiv.org/abs/arXiv:quant-ph/0308113
http://arXiv.org/abs/arXiv:quant-ph/0504197
http://arXiv.org/abs/arXiv:quant-ph/0702239
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevA.69.062311
http://dx.doi.org/10.1103/PhysRevA.69.062311
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevA.74.042330
http://dx.doi.org/10.1103/PhysRevA.68.062303
http://dx.doi.org/10.1103/PhysRevA.68.062303
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevA.74.042343
http://dx.doi.org/10.1103/PhysRevA.74.042343
http://dx.doi.org/10.1103/PhysRevA.73.012304
http://dx.doi.org/10.1103/PhysRevA.71.042323
http://dx.doi.org/10.1103/PhysRevA.71.042323
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://dx.doi.org/10.1137/S0097539705447323
http://dx.doi.org/10.1103/PhysRevA.74.052322
http://dx.doi.org/10.1103/PhysRevA.74.052322
http://dx.doi.org/10.1103/PhysRevLett.100.160506
http://dx.doi.org/10.1103/PhysRevLett.101.130502
http://dx.doi.org/10.1103/PhysRevLett.101.130502
http://dx.doi.org/10.1088/1367-2630/8/8/141
http://dx.doi.org/10.1088/1367-2630/10/7/073016
http://dx.doi.org/10.1103/PhysRevLett.85.441
http://dx.doi.org/10.1103/PhysRevLett.85.441

