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Shor’s quantum algorithm using electrons in semiconductor nanostructures

Fabrizio Buscemi*

Department of Electronics Computer Science and Systems, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy,
ARCES, Alma Mater Studiorum, University of Bologna, Via Toffano 2/2, I-40125 Bologna, Italy, and

Center S3, CNR-Institute of Nanosciences, Via Campi 213A, I-41125 Modena, Italy
(Received 11 November 2010; published 12 January 2011)

Shor’s factoring algorithm illustrates the potential power of quantum computation. Here, we present and
numerically investigate a proposal for a compiled version of such an algorithm based on a quantum-wire
network by exploiting the potential of fully coherent electron transport assisted by the surface acoustic waves.
Specifically, a nonstandard approach is used to implement, in a simple form, the quantum circuits of the modular
exponentiation execution for the simplest instance of Shor’s algorithm, that is, the factorization of N = 15.
The numerical procedure is based on a time-dependent solution of the multiparticle Schrödinger equation.
The near-ideal algorithm performance and the large estimated fidelity indicate the efficiency of the protocol
implemented, which also is almost insensitive to small destabilizing effects during quantum computation.

DOI: 10.1103/PhysRevA.83.012302 PACS number(s): 03.67.Ac, 73.63.Nm

I. INTRODUCTION

Quantum computers can efficiently solve some problems
that are unaffordable on classical computers, and processing
the information encoded in quantum systems can be extremely
powerful for particular tasks. Specifically, quantum-mechanics
effects such as entanglement and wave-function superposition
turn out to be fundamental building blocks, and they allow
for the quantum computational speedup over classical compu-
tation. Shor’s algorithm [1–4] has undoubtedly been widely
investigated among those illustrating the power of quantum
computation. In fact, it plays a key role in cryptographic
protocols, because it allows one to factorize a composite
number with a computational time that is a polynomial
function instead of an exponential function of the number
itself.

The practical implementation of Shor’s algorithm rep-
resents a challenge for quantum information science. Two
possible physical architectures have been proposed: nuclear
magnetic resonance (NMR) [5,6] and photonic [7–9] systems,
even though some open questions exist in both cases. While
in NMR it is difficult to prepare the qubits in pure states and
control their coherent evolution, thus leading to a controversial
quantum nature of the experiments, photonic systems cannot
be scaled to a larger number of qubits due to their size
and stability limitations. Nevertheless, a recent experimental
demonstration of Shor’s algorithm was obtained by means of
optical waveguides integrated on silica-on-silicon chips. Even
if the efficiency of the single-photon source and detectors still
does not appear to be very good [9], the suggested architecture
is promising for the implementation of large-scale quantum
circuits on many qubits.

No evidence of a compiled version of a quantum factoring
algorithm using electron qubits has been achieved so far. The
approach of using charge carriers in solid-state systems is very
appealing because it not only allows the scalability problem
to be overcome, but it also provides a valid guideline for the
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design of devices easily integrable in the traditional electronic
circuitry. Specifically, the possibility of implementing Shor’s
quantum factoring algorithm on an electronic chip would
certainly represent an essential test to verify the potential of
quantum cryptography in everyday life.

In this paper, we propose and numerically simulate a
compiled version of Shor’s algorithm. Electronic quantum
logic gates in one-dimensional (1D) semiconductor channels
are used to realize the necessary processes and to produce
multiparticle entanglement and multipath interference. In
particular, we have considered the fully coherent surface-
acoustic-wave (SAW) assisted electron transport in couples
of GaAs quantum wires [10], with the qubit defined by
the localization of a single carrier in one of the coupled
channels [11].

Quantum-wire systems have been shown to be suitable to
produce bipartite entangled states [12] and to perform quantum
teleportation [13]. Here, the numerical implementation of the
quantum factoring algorithm can be much more demanding in
comparison with the previous works [12,13], due to the higher
number of the simulated quantum logic operations over many
qubits. Specifically, we design the quantum circuits of the
modular exponentiation execution for the easiest meaningful
instance of Shor’s algorithm, that is, the factorization of
N = 15 for two different co-primes C = 11 and C = 2
(defined in Sec. II), corresponding to the periods r = 2
and r = 4, respectively. The circuit performing the modular
exponentiation function is brought to a form different from
the one given in the literature [1,4]. This procedure allows
one to move on toward simpler networks of electron quantum
gates, and it aims at future research leading to a scalable full
realization of Shor’s algorithm in quantum-wire devices. In our
implementation the inverse quantum Fourier transformation
(QFT) is not present since it is not necessary for any order-2l

circuit (with l ∈ N), as shown in the literature [7]. For sake
of completeness, a description of the circuit realizing the
inverse QFT in a quantum-wire network has been given
elsewhere [14].

This paper is organized as follows. In Sec. II we illustrate the
theoretical features of Shor’s algorithm, while the description
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of the physical implementation in a quantum-wire device
and the discussion of the numerical approach adopted are
given in Sec. III. In Sec. IV we show the results obtained
from the numerical simulations of two quantum circuits for
the factorization of N = 15 corresponding to two different
parameter choices. Comments on the results and final remarks
are made in Sec. V.

II. SHOR’S ALGORITHM

The strategy to find a nontrivial prime factor of the
positive integer N is described in the following. A random
co-prime C is chosen, i.e., N and C have no common factors.
Euler’s theorem states that there exists an integer r such that
Cr = 1 mod N (that is, Cr − 1 is an integer number multiple
of N ), with 1 � r < N . The number r is called the order of
C mod N . Provided that the latter is even, then it follows that
Cr − 1 = (Cr/2 − 1)(Cr/2 + 1) = 0 mod N and this implies
that N is a divisor of the product (Cr/2 − 1)(Cr/2 + 1). By
assuming that (Cr/2 �= −1 mod N ), it follows that N must
have a common factor with both (Cr/2 ± 1). Therefore, this
implies that the factors of N are given by the greatest common
divisor of N and (Cr/2 ± 1), which can be efficiently computed
by means of Euclid’s classical algorithm. It is worth noting that
in order to guarantee the algorithm validity the two conditions
stating that r is even and (Cr/2 �= −1 mod N ) must be
satisfied. These conditions are met with high probability for N

odd, except in the case where N is a prime power (N = pα with
p a prime). Thus, the smallest composite integer N that can be
successfully factored by Shor’s method is N = 15. If N is an
even number or a prime power, other classical methods should
fruitfully be applied for the factorization instead of Shor’s
method.

Shor’s algorithm needs quantum computation only in
the evaluation of the order r . The quantum order-finding
routine commonly uses two registers of qubits [1,3]: the
argument register with n = 2 log2 N qubits, and the function
register with m = log2 N qubits. Its implementation can be
separated into three distinct steps. The first one is the register
initialization corresponding to

|0〉⊗n|0〉⊗m �−→ 1√
2n

(|0〉 + |1〉)⊗n |0〉⊗m−1|1〉

= 1√
2n

2n−1∑
x=0

|x〉|0〉⊗m−1|1〉, (1)

where the argument register is prepared by means
of the Hadamard transformations in an equal
superposition of all n-qubit computational bases
|0(1)x1〉|0(1)x2〉 · · · |0(1)xi

〉 · · · |0(1)xn
〉. In the second step, also

known as modular exponentiation, the function Cx mod N

is implemented on the function register, while the argument
register remains in x. The global state is thus given by

1√
2n

2n−1∑
x=0

|x〉|Cx mod N〉. (2)

The state of Eq. (2) is highly entangled and exhibits the
so-called massive parallelism; i.e., the execution entangles in
parallel all the 2n input values with the corresponding values of

Cx mod N , although the algorithm has run only once [3,15].
Finally, the inverse QFT is applied on the argument register
yielding the state

1

2n

2n−1∑
z=0

2n−1∑
x=0

e2πxz/2n |z〉|Cx mod N〉, (3)

where, due to the interference, only the terms |z〉 with

z = a2n/r (4)

have a significative amplitude. Here, a is a random integer
ranging from 0 to r − 1. Thus, if one performs measurements
on the outcome of the argument register, one would get
a2n/r for some a, and the order r can be deduced after
the classical procedure with probability greater than 1/2
(see Ref. [3]).

The modular exponentiation, that is, the evaluation of
Cx mod N for 2n values of x in parallel, is the most demanding
part of the algorithm. This can be performed by using the
identity x = xn−12(n−1) + · · · + x121 + x020, where xk are the
binary digits of x. From this, it follows that

Cx mod N = C2(n−1)xn−1 · · ·C2x1Cx0 mod N

= C2(n−1)xn−1 · · · [C2x1 [Cx0 mod N ] mod N ]

· · · mod N ]. (5)

This means that we first multiply 1 by C mod N , if and
only if x0 = 1; then we multiply the result by C2 mod N if
and only if x1 = 1 and so forth, until we finally multiply by
C2(n−1)

mod N if and only if xn−1 = 1. Therefore, the modular
exponentiation consists of n serial multiplications modulo
N , each of them controlled by the qubit xk . The factors
C,C2, . . . ,C2(n−1)

mod N can be found efficiently on a classical
computer by repeated squaring.

As noted above, Shor’s factorization algorithm fails if
N is even or a prime power, and the smallest compos-
ite integer N that can be successfully factored by means
of Shor’s method is N = 15. Even if N is small, this
compiled version of Shor’s algorithm displays a great po-
tential for a future realization of a large-scale quantum
algorithm.

With N = 15, the minimum size of the function and ar-
gument registers must be m = log2 [15] = 4 and n= 2m = 8,

respectively. The algorithm would then require at least 12
qubits. However, the following comments allow us to reduce
the number of qubits necessary for the purpose of a proof-
of-principle demonstration. A co-prime C with 15 is one
element of the set 2, 4, 7, 8, 11, 13, and 14. As shown in
Table I, it comes from repeated squaring that C4 mod 15 = 1
for all valid C. In turn, this implies that only two bits x0

and x1 are needed for the controlled multiplications. As a
consequence, the multiplications by C4,C8, . . . are trivial, and
all the multiplications, except the ones by C and C2, can be left
out. For C = 4,11,14, C2 mod 15 = 1 and only the first bit x0

is relevant. These considerations account for a reduction of the
size of the argument register, which can finally be constituted
by no more than two qubits (n = 2). By adding this latter result
to the 4 qubits of the function register, only 6 qubits are needed
instead of 12, as previously found.
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TABLE I. The table displays Cx mod 15 for all C < 15 co-prime
with 15 and for values of x which are powers of 2. Note that
C4 mod 15 = 1 for all valid C.

C

2 4 7 8 11 13 14

0 1 1 1 1 1 1 1
x 1 2 4 7 8 11 13 14

2 4 1 4 4 1 4 1
4 1 1 1 1 1 1 1

Shor’s factorization algorithm for the number 15 turns
out to be particularly simple because it does not require the
implementation of the inverse QFT in the quantum circuit.
As shown in the literature [7], the latter is not necessary for
any circuit of order 2l and it can be replaced by a classical
processing which also inverts the order of the computed
quantum bits of the argument register.

In this work we implement Shor’s quantum factoring
algorithm and check it against two co-primes, C = 11 and C =
2, that are representative parameters for the system at hand.

A. C = 11

This parameter choice represent an “easy case” since the
modular exponentiation can be simplified to the multiplication
of the initial function register state, |y〉 = |0y3 0y2 0y1 1y0〉 = 1,
by C = 11 controlled only by x0 [6].

In the left panel of Fig. 1 a compiled version of the quantum
circuit for C = 11, using the inverse QFT, is displayed. At
first, both registers are initialized: Each qubit of the argument
is prepared by Hadamard gates in a superposition of 0 and
1, and the function register state is set to |y〉 = 1, so that the
global state |�C=11〉 of the system is

|�C=11〉 = 1
2

(∣∣0x1 0x0

〉 + ∣∣0x1 1x0

〉 + ∣∣1x1 0x0

〉
+ ∣∣1x1 1x0

〉)∣∣0y3 0y2 0y1 1y0

〉
. (6)

Then, the modular exponentiation is performed: The con-
trolled multiplication of 1 by 11 is equivalent to the controlled
addition of 10 to 1. The latter is implemented in the quantum
circuit by two controlled-NOT (CNOT) gates: one between x0

and y1 and one between x0 and y3. It is worth noting that the
qubits y0 and y2 evolve trivially during computation. Thus the

state of the system takes the form

|�C=11〉 =
3∑

x=0

|x〉|11x mod 15〉

= 1

2

(∣∣0x1 0x0

〉∣∣0y3 0y2 0y1 1y0

〉 + ∣∣0x1 1x0

〉∣∣1y3 0y2 1y1 1y0

〉
+ ∣∣1x1 0x0

〉∣∣0y3 0y2 0y1 1y0

〉 + ∣∣1x1 1x0

〉∣∣1y3 0y2 1y1 1y0

〉)
.

(7)

This means that a Greenberger-Horne-Zeilinger (GHZ) entan-
gled state

|�〉 = 1√
2

(∣∣0x0 0y3 0y1

〉 + ∣∣1x0 1y3 1y1

〉)
(8)

is created between qubit x0 of the argument register and qubits
y3 and y1 of the function registers.

The final step is represented by the inverse QFT. The right
panel of Fig. 1 shows a compiled version of the quantum
circuit without using the inverse QFT. Note that in this case
also qubit x1 is redundant: The corresponding Hadamard gate
is unnecessary and does not need to be implemented. Here,
the initial state is 1√

2
(|0x1 0x0〉 + |0x1 1x0〉)|0y3 0y2 0y1 1y0〉 and

the modular exponentiation yields 1√
2
(|0x1 0x0〉|0y3 0y2 0y1 1y0〉 +

|0x1 1x0〉|1y3 0y2 1y1 1y0〉).
The outcomes of the measurement on the inverted argument

qubits x0 and x1 give then 00 or 10 with equal probability.
Once this result is known, one can obtain the order r of
C mod N from Eq. (4). While the output 00 corresponds to a
failure, the output 10 allows one to determine the period r =
22/2 = 2 and represents a successful implementation of Shor’s
algorithm.

B. C = 2

Since the number of gates needed to perform the modular
exponentiation is greater than the case of C = 11 [6], the
choice of C = 2 represents a difficult case. In fact, the
modular exponentiation is given by the multiplication of
|y〉 = 1 by 2 controlled by x0 and by the multiplication of the
obtained result by 4 controlled by x1. The left panel of Fig. 2
shows the quantum circuit for the case at hand. The network
for the modular exponentiation is composed of two CNOT

followed by two controlled SWAP (CSWAP) gates; the first two
correspond to the addition of 1 to |y〉 = 1 controlled by x0,
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FIG. 1. (Color online) Left: Outline of the quantum circuit for quantum factorization of 15 for C = 11, using the inverse QFT. [8] Right:
Outline of the quantum circuit for quantum factorization of 15 for C = 11, not using the inverse QFT.
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FIG. 2. (Color online) Left: Outline of the quantum circuit for quantum factorization of 15 for C = 2, using the inverse QFT and evaluating
2x mod 15 in the function register. Right: Outline of the quantum circuit for quantum factorization of 15 for C = 2, not using the inverse QFT
and evaluating log2[2x mod 15] in the function register. The two circuits correspond to the ones examined in Ref. [7].

while the CSWAP gates multiply the result by 4 controlled by
x1. The modular exponentiation leads to the state

∑3
x=0 |x〉|2x

mod 15〉= 1
2 (|0x1 0x0〉|0y3 0y2 0y1 1y0〉 + |0x1 1x0〉|0y3 0y2 1y1 0y0〉 +

|1x1 0x0〉|0y3 0y2 1y1 0y0〉 + |1x1 1x0〉|1y3 0y2 0y1 0y0〉).
Nevertheless, a different compilation of the quantum circuit

can be realized [7], and it is reported in the right panel
of Fig. 2. By means of the latter, it is possible to evaluate
log2 [2x mod 15] in the function register in place of 2x mod 15,
thus reducing the number of function qubits from log2 [15] = 4
to log2 {log2 [15]} = 2. This compilation maintains all the
features of the algorithm originally proposed [3], and it still
does not make use of the inverse QFT, as in the previous case.
Following this scheme, the initialization of the system leads to
the state

|�C=2〉= 1
2

(∣∣0x1 0x0

〉 + ∣∣0x1 1x0

〉 + ∣∣1x1 0x0

〉 + ∣∣1x1 1x0

〉)∣∣0y1 0y0

〉
,

(9)

meaning that the argument register is kept in the usual
equally weighted coherent superposition of all possible ar-
guments, while the initial function register state is |y〉 = 0.
If we apply the procedure described in Eq. (5) to evaluate
log2 [2x mod 15], it can be easily shown that the modular
exponentiation reduces to the sum of log2 [21 mod 15] = 1
to |y〉 = 0 controlled by x0 and of log2 [22 mod 15] = 2 to
the obtained result controlled by x1. These operations are
implemented in the quantum circuit reported in the right panel
of Fig. 2 by means of two CNOT gates: one between x0 and
y0 and another between x1 and y1. It is worth noting that in
this case the algorithm is very simple since it consists of only
two networks of gates acting on independent qubit pairs. After
modular exponentiation the state of the system takes the form

|�C=2〉 = 1
2

(∣∣0x1 0x0 0y1 0y0

〉 + ∣∣0x1 1x0 0y1 1y0

〉
+ ∣∣1x1 0x0 1y1 0y0

〉 + ∣∣1x1 1x0 1y1 1y0

〉)
= 1

2

(∣∣0x1 0y1

〉 + ∣∣1x1 1y1

〉)(∣∣0x0 0y0

〉 + ∣∣1x0 1y0

〉)
, (10)

that is, the product of two entangled Bell pairs, thus confirming
the manifestation of entanglement between the two registers
of the algorithm. The inverse QFT is not necessary and it
can be replaced by its classical counterpart, which also swaps
the output quantum bit of the argument register. The two-bit
outputs for the case under investigations are 00, 01,10, and 11.
The second and the fourth outcomes allow the evaluation of
the order r = 4, which efficiently yields the factors 3 and 5

via Euclid’s classical algorithm; the first one corresponds to a
failure mode and, lastly, the third one leads to trivial factors.

III. THE PHYSICAL IMPLEMENTATION
AND THE NUMERICAL APPROACH

Here, we describe the implementation of Shor’s algorithm
in a specific semiconductor nanostructure. It consists of a
number of couples of GaAs quantum wires where surface
acoustic waves (i.e., sinusoidal piezoelectric potential) propa-
gate and trap charged carriers into their moving minima, letting
one particle fill in each minimum [16]. The so-called flying
qubits are realized by means of the states |0〉 and |1〉, encoded
through the localization of a single electron in one of the
two 1D channels [11]. Here, the SAWs are used to inject and
drive the electron thanks to their efficiency in preventing the
natural spatial spread of the wave function [17] and in making
the carriers more immune to the decohering effects [18].
Moreover, in this investigation the carrier transport is assumed
to be fully coherent.

As shown in the literature [19,20], such a system is able
to provide the universal set of gates useful for realizing
any quantum computational network. Specifically, the basic
building blocks are Rx(θ ), R0(1)(φ), and T (γ ) [21]. The former
two gates implement one-qubit logical operations, whereas the
latter is a two-qubit gate.

Rx(θ ) acts as an electronic beam splitter and can be
materialized through a coupling window between the two
wires of the qubit [22]. Its matrix representation on the basis
{|0〉,|1〉} is given by

Rx(θ ) =
(

cos θ
2 i sin θ

2

i sin θ
2 cos θ

2

)
. (11)

R0(1)(φ) is an electronic phase shifter obtained by inserting
a potential barrier in the wire 0(1), thus inducing a delay phase
φ in the propagation of wave function. Its action is described
in the one-qubit basis by

R0(φ) =
(

eiφ 0

0 1

)
and R1(φ) =

(
1 0

0 eiφ

)
. (12)

T (γ ) is a conditional phase gate exploiting the Coulomb
interaction between two electrons. It consists of a region in
which the carriers propagate along two different wires close
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enough to give rise to an effective interaction able to delay both
particles. The matrix representation of T (γ ) in the two-qubit
basis {|00〉,|01〉,|10〉,|11〉} is

T (γ ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 eiγ 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (13)

The phases θ , φ, and γ of these quantum gates depend upon
the physical and geometrical parameters of the systems such
as velocity, amplitude and wavelength of the SAW potential,
strength of the electron-electron interaction, coupling window
length, and shape of the potential barrier. In order to perform
any transformation of the many-qubit state, an appropriate
tuning of these parameters in a given network of Rx(θ ),
R0(1)(φ), and T (γ ) gates is required.

In the compiled versions of Shor’s algorithm illustrated in
the right panels of Figs. 1 and 2, corresponding to C = 11
and C = 2, respectively, the two logical operations involved
are only the Hadarmad H and CNOT gates. In terms of Rx(θ ),
R0(1)(φ), and T (γ ), these operations can be reworked as [14]

H = R0

(
3π

2

)
Rx

(
π

2

)
R0

(
π

2

)
R1(π ) = 1√

2

(
1 1

1 −1

)
(14)

and

CNOT = R
(2)
0

(
3π

2

)
R(2)

x

(
3π

2

)
T (1,2)(π )R(2)

x

(
π

2

)
R

(2)
0

(
π

2

)

×R
(1)
1 (π ) = 1√

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ . (15)

The numerical implementation of the quantum circuits de-
scribed in the previous section is extremely challenging due to

the large number of basic building blocks needed to realize the
H and CNOT gates. Furthermore, the experimental realization
of such devices would also certainly meet serious obstacles
stemming from the difficulty of preserving the coherent evolu-
tion of the qubits during a number of logical operations, from
decoherence effects due to interactions with the environment,
as well as from possible structural defects induced by the
processes of fabrication and tuning of each quantum gate.
The theoretical and experimental implementation of two-qubit
quantum circuits by means of a minimum amount of operations
has been widely discussed in the literature [23,24]. Different
protocols have been proposed, ranging from the special perfect
entanglers [23] to the use of a given tunable entangling
interaction [24]. Here, we propose in the followings a scheme
suitable to perform the quantum factoring algorithm in devices
formed by semiconductor quantum wires with a minimal
number of the fundamental gates Rx(θ ), R0(1)(φ), and T (γ ).
The proposed implementation satisfies the main requirements
of Shor’s algorithm as originally formulated [1,3]. In fact,
“massive parallelism” is maintained, since entanglement is
created between argument and function registers, and the
binary output of the argument qubits are unchanged, as will
be shown in the following. In the left and right panels of
Fig. 3 we report the quantum-wire networks implementing
the circuits displayed in the right panels of Figs. 1 and 2,
respectively.

In the first case, corresponding to C = 11, the network
implemented reads

R(x0)
x

(
π

2

)
R(y1)

x

(
π

2

)
T (x0,y1)(π )R(y1)

x

(
π

2

)
R(y3)

x

(
π

2

)

×R
(y3)
0 (π )T (y3,x0)(π )R(x0)

1 (π )R(y3)
x

(
π

2

)
, (16)

where the superscripts of the quantum gates indicate which
qubit they act on. The three-qubit output state is

1√
2

( − ∣∣0x0 0y3 0y1

〉 + i
∣∣1x0 1y3 1y1

〉)
. (17)
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FIG. 3. (Color online) Left: Sketch of the physical system used to factorize N = 15 with C = 11, corresponding to the quantum circuit
displayed in the right panel of Fig. 1. The beam splitter Rx of the qubit x0 mimics the initialization procedure, that is, the equal splitting of
electron wave function of the qubit x0 in the two wires. The next two sets of gates, first RxT Rx acting on {x0,y1} and then RxR0T R1Rx on
{x0,y3}, play the role of two CNOT gates creating the maximum entanglement of the qubits {x0,y1,y3} in the modular exponentiation step. For
sake of clarity the qubits y0 and y2 evolving trivially during the computation have not been reported. Right: Sketch of the physical system used
to factorize N = 15 with C = 2, corresponding to the quantum circuit displayed in the right panel of Fig. 2. In the initialization procedure two
gates Rx act on the couple of the argument register qubits {x0,x1} and split each of them in an equal superposition of the |0〉 and |1〉 states. The
modular exponentiation consists of two networks RxT Rx , each operating onto {x0,y0} and {x1,y1} mimicking the action of two CNOT gates.
Note that here, for brevity, the phases of the quantum gates involved in the networks and explicitly indicated in Eqs. (16) and (18), are omitted.
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For C = 2 the global logical transformation can be written as

R(x0)
x

(
π

2

)
R(y0)

x

(
π

2

)
R(x1)

x

(
π

2

)
R(y1)

x

(
π

2

)
T (x0,y0)(π )T (x1,y1)

× (π )R(y0)
x

(
π

2

)
R(y1)

x

(
π

2

)
(18)

and, after being applied to the input state |0x1 0x0 0y1 0y0〉, it
yields

1
2

(∣∣0x1 0y1

〉 − ∣∣1x1 1y1

〉)(∣∣0x0 0y0

〉 − ∣∣1x0 1y0

〉)
. (19)

In both cases, the degree of the entanglement created between
the qubits of the argument and the function register is equal
to the one of the standard formulation of Shor’s quantum
factoring algorithm [1,3]. While for C = 11 the output state is
GHZ-like (i.e. the maximum amount of quantum correlations
is built up among three qubits), when C = 2 the four-qubit state
is the product of two entangled Bell pairs. Furthermore, the
reduced density matrices of the argument qubits correspond
to the ones calculated from the quantum states of Eqs. (8)
and (10). In turn, this implies that the binary output of the
algorithm, i.e., the outcome measurements on the argument
register, be identical.

The networks of the gates described in Eqs. (16) and
(18) have been simulated by solving numerically the time-
dependent Schrödinger equations for three and four electrons
injected in the GaAs quantum-wire devices of Fig. 3. While for
C = 2 the four-particle dynamics reduces to the time evolution
of a pair of separable two-particle systems, when C = 11, a
solution of the Schrödinger equation for the whole three-carrier
wave function is required [25]. To minimize the computational
burden of the two reported cases, a semi-1D approach has been
used to investigate the time evolution of the system in place of a
two-dimensional (2D) computational scheme. This approach
was already introduced to simulate a teleportation protocol
in a quantum-wire device [13]. According to this simplified
scheme, the direction y of the particles along the wires is
fully included in the simulation (y being discretized with a
point-grid resolution of �y = 1 nm), while the two variables
describing the longitudinal direction x and identifying the wire
where the carriers are localized can only assume one of the
two values, 0 or 1.

Though the numerical procedure adopted here does not
allow simulation of the gate Rx(θ ), which would require
a full 2D analysis, it does make it possible to move from
a time-dependent Schrödinger equation for a multivariable
wave function �(X,Y,t) (seven unknowns for the device with
C = 11 and nine when C = 2) to many coupled Schrödinger
equations of the following kind:

ih̄
∂

∂t
�X(Y,t) =

(
− h̄2

2m
∇2

Y + VX(Y,t)

)
�X(Y,t), (20)

where X ≡ (xx0 ,xy0 ,xx1 ,xy1 , . . .) and Y ≡ (yx0 ,yy0 ,yx1 ,

yy1 , . . .). Specifically, when C = 11 a system of eight
coupled equations is obtained, while for C = 2 two
independent systems of four equations are found since the
qubit pairs {x0,y0} and {x1,y1} are independent. In both
cases a Crank-Nicholson finite difference scheme [26] has
been applied to get a numerical solution. The potential
term VX(Y,t) appearing in Eq. (20) sums up the SAW
time-dependent potential, the Coulomb interaction between

electrons, and the static potential profile. The simulations
presented here make use of a sinusoidal potential mimicking
a SAW of amplitude and wavelength equal to 20 meV and
200 nm, respectively, and propagating with a sound velocity
vs = 3.3 × 103 m s−1. Screening effects have been included
in the Coulomb potential between the carriers by inserting
an exponential damping term [27] with a Debye wave vector
of 0.2 nm−1.

In order to numerically implement the networks described
in Eqs. (16) and (18), one must first find the suitable geomet-
rical parameters of the device for the gates R0(1)(φ) and T (γ )
giving the required value π of the phases φ and γ . To this aim,
we have performed a number of simulations, testing different
geometries for the phase shift and the conditional phase
gate. The phase φ is found to depend on the height and the
length of the potential barrier. The values of these parameters
obtained from the optimization procedure are 2.82 meV
and 8 nm, respectively, corresponding to a delay phase φ of
0.92π , which is good enough for our purposes, as will be
shown in the next section. It is worth noting that the barrier
height is significantly smaller than the amplitude of the SAW
potential, this making the spatial spreading of the electron
wave packet negligible and letting it be entirely transmitted
through the barrier. The main geometrical parameters affecting
the phase γ of the conditional phase gate are the length of the
coupling region and the distance between the coupled wires.
Their optimal values used in the numerical implementation
of the algorithm are 150 and 5 nm, respectively. They lead
to a γ value of about 0.88π , which allows us to simulate
satisfactorily the two-qubit logical operation of a CNOT-like
gate. By applying the described geometry for T (γ ), both the
tunneling effects between the two wires and the reflection
phenomena in the coupling region are negligible.

From a computational point of view, the numerical simula-
tion of the T (γ ) gate is more challenging than that of the phase
shift R0(1)(φ). While the latter involves a one-particle potential,
the former exploits a two-particle interaction that builds up an
amount of quantum correlations between the wire degrees of
freedom of the particles, as expected. However, it also creates
an undesired entanglement between the variables defining the
position of the carriers along the wires. As a consequence,
the evaluation of the effects of the controlled phase gate on
the multiparticle wave function is a demanding task because it
implies that a number of two-particle simulations must be
combined together to obtain the time-evolved state of the
overall system.

The Rx(θ ) gate has not directly been simulated; neverthe-
less, its action has been taken into account by means of the
transformation matrix of Eq. (11), validated by the results of
appropriate 2D simulations [20].

IV. RESULTS

We first present the results obtained for C = 11 and then
those for C = 2.

A. C = 11

Figure 4 shows the density matrix describing the qubits
of the argument and function register, {x0,y1,y3}, at three
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FIG. 4. (Color online) The density matrix of the qubits {x0,y1,y3} evaluated at three different time steps: (a) input, (b) initialization
procedure, and (c) after the modular exponentiation. Note that these matrices have been obtained from the full density matrices of the electrons
of the qubits {x0,y1,y3} by integrating over the variables defining the position of three carriers along the channels. Here the moduli of the
density matrix elements are plotted.

different stages: input, initialization procedure, and modular
exponentiation. For sake of simplicity, we do not consider
the x1, y0, and y2 qubits that evolve trivially during the
computation. Knowledge of the joint state of both registers
after modular exponentiation is essential for the estimation
of the device performance. In particular, we find that the
output quantum state corresponds to the GHZ-like entangled
state |�〉 of Eq. (17) with a good approximation. For a more
quantitative evaluation of the reliability of the algorithm, we
have also calculated the fidelity F = 〈�|ρout|�〉, where ρout

is the output density matrix of the full system. The high
value found, F = 0.97, evidences the very good efficiency
of the implementation. Such a result is certainly related to the
fact that our numerical simulations have been performed by
setting the device temperature at 0 K, that is, by neglecting
any effect of decoherence induced by the environment on
the carrier transport properties. In particular, this means that
the electron-phonon interaction has not been included in the
simulations. These assumptions are physically sound when
we take into account that the experimental investigations of
the low-dimensional structures used as the basic blocks for
our device are usually performed at very low temperatures
[10,22]. Moreover, one of the pros of our results certainly
relies on the high fidelity value, which has not been obtained
under ideal geometries for the R0(1)(φ) and T (γ ) gates. Once
more, this off-ideality situation is close to the experimental
conditions.

The density matrix of the argument register after modular
exponentiation is displayed in Fig. 5. Specifically, we show
the reduced density matrix ρ{x0,x

′
0}(y,y) of the electron of qubit

x0, without the redundant qubit x1. The output of the quantum
circuit is the logical state probability, that is, the probability
of finding the electron of the qubit x0 in the wire 0 or 1. This
is described by the integral over y of the diagonal elements of
ρx0,x

′
0
(y,y). The off-diagonal terms are very small, thus proving

that the argument register becomes a full quantum statistical
mixture because of its entanglement with the function register.
To better quantify the amount of the quantum correlations
created between x0 and {y1,y3}, we evaluate the linear entropy
εL of the qubit x0 as [28] εL = 2(1 − Trρ2

r ), where the factor 2
stems out from the normalization condition and ρ2

r is the square
of the reduced density matrix ρ{x0,x

′
0}(y,y) of the electron of

the qubit x0 integrated over y. We find that εL = 0.999 and
therefore a maximal correlation between the two registers of
the quantum circuit is built up, which unambiguously proves
the quantum nature of the simulated circuit, as required by

Shor’s algorithm. Once the logical state probabilities of the
qubit x0 are known, the latter are combined with the qubit x1

in the zero state and then, as required, the order of the argument
bits is inverted. This procedure allows one to obtain the binary
output of the circuit already discussed in Sec. II A, namely
00 and 10. The first is found with a probability of 50,1% and
represents the expected failure of Shor’s algorithm, whereas
the second is obtained with a 49,9% probability and leads
to a successful determination of the order r . As theoretically
expected [1,3], failure and success have equal probabilities.
These outputs indicate an almost ideal performance of the
quantum algorithm.

B. C = 2

The numerical investigation of the compiled version
of Shor’s algorithm with C = 2 and the evaluation of
the function log2[2x mod 15] in the function register required
the evaluation of the time evolution of all of the qubits of the
registers: x0, x1, y0, and y1. The density matrix describing the
global system is displayed in Fig. 6 at three different time steps.
The output quantum state describes, with a fidelity of 0.89, the
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FIG. 5. (Color online) Density matrix ρ{x0,x′
0}(y,y) of the electron

of qubit x0 after the modular exponentiation. The diagonal elements
describe the density probability of finding the electron at the point y
along wire 0 or 1. Here the moduli of ρ{x0,x′

0}(y,y) are plotted. Note
that the curves reported in the left panels refer to the left ordinate
axes, while the ones reported in the right panels refer to the right
ordinate axes.
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FIG. 6. (Color online) The density matrix of the qubits {x0,x1,y0,y1} evaluated at three different time steps: (a) input, (b) initialization
procedure, and (c) after the modular exponentiation. Note that these matrices have been obtained from the full density matrices of the electrons
of the qubits {x0,x1,y0,y1} by integrating over the variables defining the position of three carriers along the channels. Here the moduli of the
density matrix elements are plotted.

product of two maximally entangled Bell pairs, as theoretically
expected. The argument register outputs are reported in Fig. 7,
where the reduced density matrix ρ{x0,x

′
0,x1,x

′
1}(y,y,y′,y′) of

the couple of the electrons of qubits {x0,x1} is displayed. The
argument register is almost maximally mixed as a consequence
of the entanglement with the qubits {y0,y1}, as the large value

of the linear entropy εL = 0.976 confirms. The binary output
of the algorithm, namely one among the possible two-bit
responses 00, 01, 10, and 11, is obtained by considering the
probabilities of the logical state of the qubits {x0,x1} and then
inverting their order. The second and the fourth terms yield
r = 4, which gives correctly the factors 3 and 5 once processed
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FIG. 7. (Color online) Density matrix ρ{x0,x′
0,x1,x′

1}(y,y,y′,y′) of the couple of electrons of qubit {x0,x1} after the modular exponentiation.
The diagonal elements describe the density probability of finding the two electrons at the points y and y′ along wire 0 or 1. Here the moduli of
ρ{x0,x′

0,x1,x′
1}(y,y,y′,y′) are plotted.
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in the classical Euclid’s algorithm; in contrast, the first value
corresponds to a failure mode whereas the third leads to trivial
factors. All of the outcomes have exactly the same probability
of happening, which consequently means that the routine
has a success rate of 50% like the previously discussed case
of C = 11.

Although the binary outputs of the argument registers
clearly indicate that the algorithm performance is nearly ideal
both for C = 11 and C = 2, the efficiency of the quantum
networks is slightly different in the two implementations
investigated, as evidenced by the estimated fidelity and degree
of entanglement between the registers. More specifically,
the quantum circuit performance gets worse moving from
C = 11 to C = 2. Such a behavior, at first sight, appears
to be surprising, due to the larger number of one- and
two-qubit quantum gates numerically simulated in the former
implementation. A possible explanation could amazingly bring
up the small errors inherent in the tuning of the quantum gates.
In fact, the flaws of the one- and two-qubit logical operations
could counterbalance each other, with a net effect of a higher
efficiency of quantum circuits.

V. CONCLUSIONS

Shor’s algorithm highlights the potential power of quan-
tum computation and nowadays its realization in scalable
structures represents one of the main challenges of quantum
information science. Only in recent years have experimen-
tal demonstrations of this algorithm been given in some
physical scenarios ranging from NMR to photon qubits.
Nevertheless, the quantum nature of the processes and/or the
scalability of the investigated systems in these approaches are
questionable.

In this paper we have introduced and numerically simulated
an implementation of the easiest meaningful example of
Shor’s algorithm, that is, the factorization of N = 15, through
co-primes C = 11 and C = 2. The idea we have proposed
exploits the coherent SAW-assisted transport of electrons in
networks of coupled quantum wires and has great potential in
view of its integrability with conventional microelectronics
and of its scalability to more complex systems containing
many qubits. Quantum information is processed by means
of a sequence of one- and two-qubit gates, materialized by
means of an electronic beam splitter and phase shifter and a
Coulomb coupler, respectively. Their experimental realization
in semiconductor quantum wires is very challenging since
it requires the use of frontier semiconductor technology.
Only in the past few years have prototype blocks mimicking
single-qubit rotations in a couple of 1D channels been
experimentally demonstrated [22,29,30]. In particular, the
switching of coupled quantum-wire qubit characteristics has
been explored [22]. Furthermore, Fischer et al. controlled the
coupling between two modes of a couple of 1D channels,
obtained by exploiting the two minima of the conduction-band

edge in the growth direction of a GaAs 2D electron gas [30] or
two vertically coupled 2D electron gases [29]. No experimental
evidence of two-qubit operation in quantum-wire networks
has been achieved so far. On the other hand, the coherent
manipulation of charge states in two spatially separated double
quantum dots integrated in a GaAs-AlGaAs heterostructure
has been realized [31,32]. Specifically, two-qubit opera-
tions (swap and controlled rotation) have been successfully
implemented.

We stress that the protocol here proposed for the order-
finding routine at the heart of Shor’s algorithm represents
a “nonstandard” implementation of the quantum circuits as
commonly used in the literature for quantum factorization
[1,4]. Such an implementation keeps the basic features of
the original algorithm (i.e., “massive parallelism” given by
the entanglement between the quantum registers and binary
output) and also allows for a simple network with a lower
number of fundamental gates. This makes the numerical
simulation of the presented protocol less demanding and could
also have interesting perspectives on the full-scale realization
of Shor’s algorithm.

The high efficiency of the quantum processes simulated is
shown by the large values obtained for fidelities. Furthermore,
the success rate of the algorithm is close to its ideal value,
in agreement with recent experimental investigations [7].
The algorithm performance is even more noteworthy if we
consider the good but not ideal geometry of the logic gates
and compare our data with those of the near-ideal case. This
behavior is a clear signature of the robustness of the algorithm,
which is also able to accommodate small, but nonnegligible
errors coming from the fabrication and tuning of the quantum
gates. The capability of taking into account small deviations
from ideality is certainly a plus, which makes the algorithm
compare favorably to any of its experimental implementations.
In fact, it offers the opportunity to let the device work
correctly even in the presence of unavoidable environmental
decoherence effects, which are always present even at low
temperatures.

Since the recent developments in nanostructure fabrication
opened new scenarios in scalable electronic quantum compu-
tation [10,29,33], the promising results presented here indicate
a fruitful guideline for research in quantum information
science. Specifically, this work highlights a peculiar physical
architecture which could become, in the near future, a powerful
means to implement a broader variety of quantum algorithms
and therefore to fully exploit the whole potential of quantum
computation.
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