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The operator-sum decomposition of a map from one density matrix to another has many applications in quantum
information science. To this mapping there corresponds an affine map which provides a geometric description of
the map of the density matrix in terms of the polarization vector representation. This has been thoroughly explored
for qubits since the components of the polarization vector are measurable quantities (corresponding to expectation
values of Hermitian operators) and also because it enables the description of map domains geometrically. Here
we extend the operator-sum–affine-map correspondence to qudits, briefly discuss general properties of the map
and the form for some particular cases, and provide several explicit results for qutrit maps. We use the affine
map and a singular-value-like decomposition to find positivity constraints that provide a symmetry for small
polarization vector magnitudes (states which are closer to the maximally mixed state), which is broken as the polar-
ization vector increases in magnitude (a state becomes more pure). The dependence of this symmetry on the
magnitude of the polarization vector implies the polar decomposition of the map cannot be used as it can for the
qubit case. However, it still leads us to a connection between positivity and purity for general d-state systems.
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I. INTRODUCTION

The study of maps of density operators to density operators
has become an active area of research in quantum information
theory. They are used to describe open-system evolution. In
particular, they are used for describing noise, methods noise
and, in some cases, as indicators of entanglement [1,2]. All
of these uses are very important in the study of quantum
information processing.

General maps of density operators to density operators
were studied by Sudarshan, Mathews, and Rau (SMR) [3]
in 1961. They provided a method for describing open-system
evolution and referred to such maps as “dynamical maps.”
This name is particularly appropriate for describing noise
since detailed properties of the environment causing the noise
are usually unknown. They showed that these maps can be
written in what is called an operator-sum representation (OSR).
Kraus later considered completely positive maps [4]. The
assumption of complete positivity is sometimes a useful, but
not a necessary assumption for open-system evolution. The
physical implications of the complete positivity assumption
have recently been discussed at length in the literature [5–10].
Such work is not only important for quantum error correction
and the description of noise in quantum systems [11], but
also for quantum control more generally (see Refs. [12,13] for
recent reviews of quantum control theory and applications).

Studies of maps of qubits have been extensive. Some
notable discussions are found in Refs. [14,15], where they
describe a geometric picture of the spaces of states of qubits
and the ranges of maps of qubits. This is done using the Bloch
vector, or polarization vector parametrization of the density
operator [16–18] and an affine mapping of the polarization
vector. This affine map is essentially equivalent to the OSR, but
is described geometrically, leading to constructions which are
sometimes helpful tools for visualization as well as analysis.

The subject of noise in quantum systems governs most of
the discussion of such maps in Ref. [14], and this will also be
the case here. The discussions in Refs. [14,15] are based on

the Bloch-vector parametrization of the density operator. The
generalization of the Bloch vector is known as the generalized
Bloch vector, coherence vector, or polarization vector. Since
the dimension of this vector grows with the dimension
of the Hilbert space as d2 − 1, where d is the dimension
of the Hilbert space, the simple three-dimensional picture
(for d = 2) becomes more difficult to use and one loses the
ability to visualize the entire space. However, the polariza-
tion vector parametrization has several appealing properties.
(i) The components of the polarization vector are measurable
quantities; they are proportional to the expectation values of
Hermitian operators. (ii) The trace condition (the trace of
the density operator must be one) and the Hermiticity of the
density operator become apparent in this picture. (iii) The
positivity of the density operator can be expressed in terms of
the components of the density operator and the magnitude of
the polarization vector is directly related to its purity [19,20].
(iv) The Casimir invariants, quantities which are invariant
under all unitary operators, are easily written in terms of the
polarization vector [19]. (v) A tensor product basis may be used
so that subsystems of interest are manifest [17,19]. Clearly,
these are not entirely independent properties. However, they
are useful properties. For these reasons, this picture, which
generalizes the Bloch equations, is becoming more widely
used in both theory and experiment. This begs the question,
which we partially answer: How can we fully utilize this
picture?

In this paper we discuss the generalization of affine maps
of the polarization vector to systems with d dimensions.
We provide explicit expressions for the affine map of the
polarization vector in terms of the OSR elements. This
representation of the map of the polarization vector is an
affine transformation since it generally contains linear and
translational terms. Our explicit calculation provides a direct
link between the OSR, pioneered by SMR [3] and the affine
map picture as is done in Refs. [14,15] for qubits. We
discuss the possibility of extending the description of the
positivity domain for qubits [15] to d-dimensional systems
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and find a continuous symmetry-breaking description which
describes the inability of one to apply a simple singular value
decomposition (SVD) to all density operators. This symmetry
breaking provides a picture which compliments the work of
Kimura and Kossakowski describing the positivity domains
for density operators of d-state systems [21] but treats it in a
different way.

Specifically, in Sec. II, a brief review of the derivation of
the general OSR from the dynamical map is given, along with
a brief review of the polarization vector parametrization of
the density operator. In Sec. III the form of the affine map is
derived from the OSR and some properties of the affine map
are given. In Sec. IV physical examples of noise are given to
show how the polarization vector changes for some important
types of noise. We then examine a particularly important basis
for the operators comprising the OSR in Sec. V. Having
established the relation between the OSR and affine map,
we show how one can find the affine map directly from
the corresponding dynamical map in Sec. VI. Section VII
contains a review of the SVD of the affine map for qubits
and our attempted generalization. Finally, concluding remarks
and future directions are discussed in Sec. VIII.

II. BACKGROUND

In this section we provide background for what follows.
This primarily follows the results of Ref. [3].

A. Dynamical maps and the SMR decomposition

As did Ref. [3], consider a general mapping from one
Hermitian matrix to another of the form

ρ ′ = Aρ, (1)

or more explicitly,

ρ ′
r ′s ′ = Ar ′s ′,rsρrs . (2)

Since the density matrix is required to be Hermitian ρ = ρ†

and positive semidefinite, ρ � 0, and have trace one Trρ = 1,
the mapping A must have the following properties in order for
it to map density operators to density operators:

Asr,s ′r ′ = (Ars,r ′s ′ )∗, (3)

which ensures Hermiticity, and

x∗
r xsAsr,s ′r ′ys ′yr ′ � 0, Arr,s ′r ′ = δs ′r ′ , (4)

which ensures positivity and the trace condition, respectively.
SMR then introduced a matrix B, related to A by relabeling,
such that

Brr ′,ss ′ ≡ Asr,s ′r ′ . (5)

This matrix has the following properties:

Brr ′,ss ′ = (Bss ′,rr ′ )∗, (6)

corresponding to Eq. (3), and

z∗
rr ′Brr ′,ss ′zss ′ � 0, Brr ′,rs ′ = δr ′s ′ , (7)

which corresponds to Eqs. (4).
In this article we allow the map to be more general and

only require the Hermiticity condition, Eq. (3) or, equivalently,

Eq. (6). Since B satisfies this Hermiticity condition, it can be
considered a Hermitian matrix and as such it is diagonalizable
using a spectral decomposition, or eigenvector decomposition.
Letting ηk be the eigenvalues of B, the spectral decomposition
can be written as

Brr ′,ss ′ =
∑

k

ηkξ
(k)
rr ′ ξ

(k)†
s ′s . (8)

This is also sometimes written with indices suppressed as
follows:

B =
∑

k

ηkCkC
†
k, (9)

where (Ck)rr ′ = ξ
(k)
rr ′ are eigenvectors of B and ηk its eigen-

values. This is shown in detail in [7]. The Ck , as well as the
density operator itself, may be written as a matrix or a vector.

If the ηk are all positive, they may be absorbed into the C’s to
arrive at the familiar form of the operator-sum decomposition:

ρ ′ =
∑

k

AkρA
†
k, (10)

where Ak = √
ηkCk [22].

B. Polarization vector representation
of the density operator

Before we present the polarization representation of density
operators, it is important to provide our conventions. These
are contained in Ref. [19] which follow Refs. [18,23].
However, they are not completely standard; see for exam-
ple [16,17,20] for other conventions. A density operator
on a d-dimensional Hilbert space Hd will be represented
using the identity matrix plus a set of traceless Hermitian
matrices {λi}, i = 1,2, . . . ,d2 − 1. These have the normal-
ization condition Tr(λiλj ) = 2δij , the commutation relations
[λi,λj ] = 2ifijkλk , where the fijk are the totally antisymmetric
structure constants, and anticommutation relations {λi,λj } =
4
d

1lδij + 2dijkλk , where dijk are the totally symmetric d-tensor
components. The sum over repeated indices is to be understood
unless otherwise stated. However, in some cases the sum is
displayed explicitly for emphasis. These three relations may
be summarized using the following equation:

λiλj = 2

d
1lδij + dijkλk + ifijkλk. (11)

The density operator can now be written as

ρ = 1

d
(1l + b�n · �λ), (12)

where b = √
[d(d − 1)/2]. The “dot product” is a sum over

repeated indices,

�a · �b = aibi =
d2−1∑
i=1

aibi . (13)

It is worth noting that any complete set of d2 − 1 mutually
trace-orthogonal Hermitian matrices can serve as a basis and
can be chosen to satisfy the conditions given here. One may
consult, for example, Refs. [24,25] for other conventions. The
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components of the polarization vector �n are proportional to the
expectation values of the set of Hermitian observables �λ:

ni = d

2b
Tr(λiρ). (14)

Therefore, these are directly measurable quantities which can
be used to completely specify any state, pure or mixed.

Pure states have the properties that

�n · �n = 1 and �n � �n = �n, (15)

where the “star” product is defined by

(�a � �b)k = 1

d − 2

√
d(d − 1)

2
dijkaibj . (16)

For later use, a “cross” product between two polarization
vectors can also be defined by

(�a × �b)k = fijkaibj . (17)

The set of mixed states can be specified in terms of a set of
positivity conditions [19,20].

III. AFFINE MAPS FROM THE OSR

In this section we obtain the affine map of the polarization
vector in terms of the components of the OSR of the dynamical
map. However, we begin with a general case, as is done in
Ref. [15], and restrict to particular classes of maps which are
often physically relevant. Furthermore, we do not restrict to
completely positive maps. The affine map thus provides a
final connection between these three different forms of the
map: the dynamical map A (or equivalently B), the OSR, and
the affine map.

A. Explicit form for the affine map

Let the operator-sum decomposition for a map from one
density operator to another be given by

ρ ′ = �(ρ) =
∑

k

ηkCkρC
†
k . (18)

Following Ref. [15], which treats the qubit case, the Ck can be
represented by (complex) linear combinations of the {λi} as

Ck = v0k1l + �vk · �λ, (19)

where v0k , vik ∈ C.
The following identity is used repeatedly in our derivations:

(a1l + �u · �λ)(b1l + �w · �λ)

=
(

ab + 2

d
�u · �w

)
1l

+
(

a �w + b�u + i �u × �w + 1

c
�u � �w

)
· �λ, (20)

where the definitions Eqs. (16) and (17) were used along with
the definition

c =
√

d(d − 1)

2

1

d − 2
. (21)

Two special classes of maps are particularly important,
unital maps and trace-preserving maps. They are defined by

(i) � is called unital if �(1l) = 1l,
(ii) � is called trace preserving if ∀ ρ, Tr[�(ρ)] = Tr(ρ).
If the map is unital, then by explicit calculation using

Eq. (18), ∑
k

ηk

[
|v0k|2 + 2

d
�vk · �v∗

k

]
= 1, (22)

and∑
k

ηk

(
v0k �v∗

k + v∗
0k �vk + i�vk × �v∗

k + 1

c
�vk � �v∗

k

)
= 0. (23)

Similarly, if the map is trace preserving, then an explicit
calculation shows that∑

k

ηk

[
|v0k|2 + 2

d
�vk · �v∗

k

]
= 1, (24)

and∑
k

ηk

(
v0k �v∗

k + v∗
0k �vk + i�v∗

k × �vk + 1

c
�v∗
k � �vk

)
= 0. (25)

Note that if the map is either unital or trace preserving, then
the condition given in Eq. (22) [equivalently, Eq. (24)] holds.

To provide the explicit form of the map, we first use
Eqs. (18), (19), and (20), so that

�(ρ) =
∑

k

ηkCkρC
†
k

=
∑

k

ηk(v0k1l + �vk · �λ)
1

d
(1l + b�n · �λ)(v∗

0k1l + �v∗
k · �λ)

(26)

can be rewritten and the identity and �λ parts treated separately.
First, consider the identity part. The coefficient of the

identity can be written in the following form:∑
k

ηk

[
1

d

(
|v0k|2 + 2

d
�vk · �v∗

k

)

+ 2b

d2

(
v∗

0k �vk + v0k �v∗
k + i�v∗

k × �vk + 1

c
�v∗
k � �vk

)
· �n

]
.

(27)

If the map is unital, using Eqs. (22) and (23), the coefficient
of the identity reduces to

1

d
+ 4ib

d2

∑
k

ηk(�v∗
k × �vk) · �n. (28)

If the map is also trace preserving, subtracting Eq. (23) from
Eq. (25) implies that the coefficient of the identity is 1/d.

Now let us consider the nonidentity part of the map.
Denoting the result of the map by ρ ′, we have

�(ρ) = ρ ′ = 1

d
(1l + b �n′ · �λ). (29)

Viewing the map as an affine map of the coherence vector �n,

�n �→ �n′ = T �n + �t, (30)

so the components of �n′ are given by

n′
q = Tpqnp + tq . (31)
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Thus, after some rearrangement, the map can be written as

1

d

∑
k

ηk

(
v∗

0k �vk + v0k �v∗
k + i�vk × �v∗

k + 1

c
�v∗
k � �vk

)
· �λ

+ 1

d

∑
k

ηk

{
b|v0k|2�n + 2b

d
(�vk · �n)�v∗

k + ib(v∗
0k �vk × �n + v0k �n × �v∗

k ) + b

c
(v0k �n � �v∗

k + v∗
0k �n � �vk)

+ ib

c
[(�vk � �n) × �v∗

k + (�vk × �n) � �v∗
k ] − b(�vk × �n) × �v∗

k + b

c2
(�vk � �n) � �v∗

k

}
· �λ, (32)

where T = ∑
k ηkTk and �t = ∑

k ηk�tk , the latter is zero for a
unital map. The first term in Eq. (32), is

�tk = 1

b

[
v∗

0k �vk + v0k �v∗
k + i�vk × �v∗

k + 1

c
�v∗
k � �vk

]
. (33)

The second term in Eq. (32) represents the action of the
real (d2 − 1) × (d2 − 1) matrix T . (The proof of the reality of
T is given in Sec. III B 1.) The components of the linear part
of the map, which we refer to as the T matrix, may then be
written as

Tpq = 1

d

∑
k

ηk

[(
|v0k|2 − 2

d
v∗

rkvrk

)
δpq

+ 2

d
(vpkv

∗
qk + v∗

pkvqk) + ifrpq(v∗
0kvrk − v0kv

∗
rk)

+ drpq (v∗
0kvrk + v0kv

∗
rk) − idrpqfsrt v

∗
tkvsk

+ (dqsrdrtp + dqtrdspr − dqprdstr )vtkv
∗
sk

]
. (34)

It is worth emphasizing that the T matrix and the vector
�t specify an affine map of the polarization vector. We also
note that the map is linear when �t = 0. This is equivalent to
the dynamical map, A (or B) specified in Sec. II, and also
the operator-sum decomposition. Thus, we have provided a
mapping of a vector to a vector which corresponds to a general
mapping of a density operator to a density operator. However,
the positivity of the result has not yet been established. The
next question which we answer in part is the following: What
are the properties of this map? We are able to provide partial
answers to this broad question for both the general map and
some particular cases of interest.

B. Properties of the associated linear map

In this section we show that the linear term in the affine map,
that is, the T matrix, is real. Although this must be true, it is
shown explicitly since it is not obvious from the expression
Eq. (34). In addition, we provide general conditions for the
matrix to be symmetric.

1. The T matrix is real

It is not clear that the third to the last term in the square
brackets ([ ]) in Eq. (32), which mixes star and cross products,
is real. If we can show that this is real, then we will have shown

that T is real since the other terms are obviously real. Let us
consider whether

+ ib

c

∑
k

ηk{[(�vk � �n) × �v∗
k ] · �λ + [(�vk × �n) � �v∗

k ] · �λ} (35)

is equal to its complex conjugate.
To provide a sufficient condition, let us first consider a term

with a given k. From the identity, Eq. (A3),

dijmfmln + djlmfmin + dlimfmjn = 0, (36)

we can form the following identities with any vectors �a,�b,�c,�λ.
(Here we use �λ as the basis for the Lie algebra, but in these
identities, it could be any vector.) First, we contract the left-
hand side of Eq. (36) with aibj clλn and find

[(�a � �b) × �c] · �λ + [(�b � �c) × �a] · �λ + [(�c � �a) × �b] · �λ = 0.

(37)

For the next identity, we contract Eq. (36) with ajblcnλi to
obtain

[(�b × �c) � �a] · �λ + �λ · [�c × (�a � �b)] + [(�a × �c) � �b] · �λ = 0.

(38)

For our purposes, it is relevant to note the following sym-
metries in the indices. The identity is invariant under the
interchange of the following pairs of indices (l,i), (i,j ), (l,j )
so that these are the only two different types of identities when
we distinguish �λ as a set of basis elements.

We use this second identity [Eq. (38)] to rewrite the first of
the two terms in Eq. (35). First, note that

[�v∗
k × (�vk � �n)] · �λ + [(�n × �v∗

k ) � �vk] · �λ
+ [(�vk × �v∗

k ) � �n] · �λ = 0. (39)

Now the first term in this equation is the same (up to sign) as
the first of the two terms in Eq. (35). This allows us to rewrite
Eq. (35), less a multiplicative factor of ib/c, as

[(�n × �v∗
k ) � �vk] · �λ + [(�vk × �v∗

k ) � �n] · �λ[(�vk × �n) � �v∗
k ] · �λ.

(40)

We now want to show that the complex conjugate of the
coefficient of �λ is real by showing it is equal to itself
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(z∗ = z ⇒ z is real). Let us take the complex conjugate of
the coefficient recalling that �n is real:

[(�n × �vk) � �v∗
k ] · �λ + [(�v∗

k × �vk) � �n] · �λ + [(�v∗
k × �n) � �vk] · �λ.

(41)

The first term is the negative of the third term above, the
second is the negative of the second above, and the third is the
negative of the first due to the change of sign of the factor ib/c

in Eq. (35). Therefore, the two are equal due to the overall
minus sign in this latter expression and so the coefficient
is real and this part of the map is real. To prove that this
sufficient condition is also necessary, we use the fact that there
exists a minimal decompostion of the map such that each Tk

is independent and can always be put in minimal form [26].
Then, since the ηk are real, this condition is also necessary
when the map is in minimal form. �

2. Conditions for T to be a symmetric matrix

The importance of this stems from the fact that a symmetric
matrix can be decomposed in a polar decomposition,1

S = ODO, (42)

where S is a real symmetric matrix and O is orthogonal. We
show this to be true for a given k and the generalization follows
from the sum

∑
k ηkTk .

The only antisymmetric term in the expression for T is

T (a)
pq =

∑
k

ηkifrpq(v∗
0kvrk − v0kv

∗
rk). (43)

Therefore, for T to be symmetric, we require this term to
vanish.

Again, let us first consider the necessary condition that
each term given by a fixed k vanishes independently. Since
the matrices (fpq)r form a representation of the Lie algebra
of SU(d), the only way for this to to happen is if all vector
components, indexed by r , vanish independently. This implies
that we must have

v∗
0kvrk = v0kv

∗
rk. (44)

There are several ways in which this can happen. Any of the
following is sufficient to ensure that T is symmetric:

(i) For each k, the v0k and vrk are all real (implying all
Ck are Hermitian) or all imaginary (implying all Ck are anti-
Hermitian).

(ii) For a given k either v0k = 0, or vrk = 0, ∀ r . (Note
�vrk = 0 for all r is rather trivial because then Ck ∝ 1l.)

(iii) vrk = vsk, ∀ k,∀ r,s, and v0k = vrk . Note that the vec-
tors can be different for each k, but all have the same
components for each k. They are also not required to be real.

We also believe that, except for cancellation of terms with
different k, this set is exhaustive, meaning some combination
of these is required for the symmetry of the T matrix, at least
for the minimal decomposition.

1See also Sec. VII for further discussion.

IV. EXAMPLE CHANNELS

Here we consider some examples of maps which are of
special interest. These are far from exhaustive and we will
consider other examples in future applications.

A. Ck Hermitian

When the Ck are Hermitian, the T matrix is symmetric,
as shown in the previous section. Here we provide explicit
expressions.

Consider a map with Ck = C
†
k so that the Ck are Hermitian,

or sometimes called self-adjoint. Then Ck can be expressed as

Ck = (v0k1l + vikλi), (45)

with v0k,vik ∈ R.
Since the components of T [Eq. (34)] are real, the matrix

components of the affine map for Hermitian Ck are

(Tk)pq = |v0k|2δpq + 2

d
(�vk)p(�vk)q + 2v0kdrpq (�vk)r

− ftprfrsq (�vk)t (�vk)s + dtprdrsq(�vk)t (�vk)s , (46)

where the third and fifth terms in Eq. (34) vanish since v0k,�vk

are real. This is symmetric (in p and q) since the first two
terms clearly are symmetric and the latter two can be shown
to be symmetric by renaming the dummy indices s and t , and
cyclicly permuting the indices on c and d, viz.,

ftprfrsq (�vk)t (�vk)s = fsprfrtq(�vk)s(�vk)t
= frspftqr (�vk)s(�vk)t
= ftqrfrsp(�vk)t (�vk)s . (47)

Therefore, if the Ck are Hermitian, then the map Tpq is real
and symmetric in p and q.

The affine part of the transformation reduces to

�tk = 1

b

(
2v0k �vk + 1

c
�vk � �vk

)
. (48)

B. Ck unitary

This case is explored further in the next section, where
numerous reasons are given for the special consideration.
Here we provide an explicit expression for the T matrix and
note that �t is zero for this case. One case of interest is when
the map is given by �(ρ) = ∑

k ηkUkρU
†
k , where

∑
k ηk = 1

and ηk > 0.
Consider a map with CkC

†
k = 1l = C

†
kCk . Then Ck can be

expressed as

Ck = (v0k1l + vikλi), (49)

with the following constraints:(
|v0k|2 + 2

d
�vk · �v∗

k

)
= 1, (50)

and

0 =
(

v0k �v∗
k + v∗

0k �vk + i�vk × �v∗
k + 1

c
�vk � �v∗

k

)

=
(

v0k �v∗
k + v∗

0k �vk + i�v∗
k × �vk + 1

c
�vk � �v∗

k

)
. (51)
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This implies separately that

0 =
(

v0k �v∗
k + v∗

0k �vk + 1

c
�vk � �v∗

k

)
(52)

and

0 = �vk × �v∗
k . (53)

This implies that Tk reduces to

(Tk)pq = |v0k|2δpq + 2

d
(�vk)p(�v∗

k )q

+ i[v∗
0kfrpq (�vk)r − v0kfrpq(�v∗

k )r ]

+ [v0kdrpq (�v∗
k )r + v∗

0kdrpq (�vk)r ]

+ i[dsprfrtq(�vk)s(�v∗
k )t + drsqftpr (�vk)t (�v∗

k )s]

− ftprfrsq (�vk)t (�v∗
k )s + dtprdrsq (�vk)t (�v∗

k )s . (54)

C. Qutrits

In this section we provide explicit example channels
which are relevant for physical problems involving three-state
systems. See also Refs. [25,27] and references therein.

1. Qutrit depolarizing channel

In general the effect of the depolarizing channel on a density
operator is to cause a uniform shrinking of the polarization
vector �n. This is written as

ρ = 1

d
(1 + b�n · �λ) → ρ ′ = 1

d
(1 + bp�n · �λ), (55)

where p is the shrinking factor (see, for example, [28] and
references therein).

The effect of the depolarizing channel on the coherence
vector is such that it uniformly shrinks each component of �n
by a common factor. It can be readily verified that if we let

C0 = √
1 − x1, (56)

and

Ck =
√

3x/16 λk, k = 1,2, . . . ,8 (57)

we then have
∑8

k=0 CkC
†
k = 1, �t = 0, (T0)pq = (1 − x)δpq ,

and (Tk)pq = (x/8)δkpδkq + (3x/16)(dkprdrkq − fkprfrkq) for
k = 1,2, . . . ,8. The coherence vector is thus transformed
according to

�n �→ T �n =
∑

k

Tk �n = (1 − 9x/8)�n. (58)

Thus, the shrinking factor is p = 1 − 9x/8.
It is interesting to note that the depolarizing channel,

for pure state inputs, has a Schmidt decomposition for all
dimensions d [28].

2. Qutrit phase-damping channel

Analogous to the qubit phase-damping channel, the effect
of the phase-damping channel on a three-state system is such
that it leaves the diagonal components of �n unchanged while
uniformly shrinking the off-diagonal components. When the
operators Ck are chosen to be

C0 = √
1 − x 1l, (59)

C1 =
√

3x/20 (1l + λ3), C2 =
√

3x/20 (1l − λ3), (60)

and

C3 =
√

3x/20 (1l + λ8), C4 =
√

3x/20 (1l − λ8), (61)

it can be shown that
∑4

k=0 CkC
†
k = 1l, �t = 0, (T0)pq = (1 −

x)δpq , (T1)pq = µ+
3 , (T2)pq = µ−

3 , (T3)pq = µ+
8 , and (T4)pq =

µ−
8 , where

µ±
l ≡ 3x

20

[
δpq + 2

3
δplδql ± dlpq − flprflqr + dlprdlqr

]
.

(62)

When ηk = 1 for ∀ k the matrix T shrinks the off-diagonal
components of the coherence vector by a factor of 1 − 3x/5;
that is,

ni �→
{
ni, for i = 3,8,

(1 − 3x/5)ni, otherwise.
(63)

In the last expression we have taken the usual convention of
labeling the diagonal elements of the basis as 3 and 8.

3. Off-diagonal channel

Let us now define

C0 = √
1 − x 1l (64)

and

Ck =
√

x/4 λk, for k = 1,2,4,5,6,7. (65)

These values of k correspond to the off-diagonal generators of
SU(3). It can be verified that this particular OSR transforms
the coherence vector according to

ni �→
{

(1 − 3x/2)ni, for i = 3,8,

(1 − x)ni, otherwise,
(66)

when ηk = 1 for ∀ k. In this case, the diagonal components
of �n shrink faster with x than the off-diagonal components.
If instead ηk = (−1)k , the mapping given by T = ∑

k(−1)kTk

[again �t = ∑
k(−1)k�tk = �0] affects the components of �n in

such a way as to shrink them according to

ni �→

⎧⎪⎨
⎪⎩

(1 − 3x/2)ni, for i = 1,4,6,

(1 − x/2)ni, for i = 2,5,7,

(1 − x)ni, for i = 3,8.

(67)

The components of �n associated with the real off-diagonal
elements (λi, i = 1,4,6) shrink with x faster than those
associated with the imaginary off-diagonal elements (λi, i =
2,5,7). The diagonal components are reduced in magnitude
at an intermediate rate. The values assigned to the ηk have a
significant effect on the evolved state, as clearly illustrated by
this example.

4. Trit flip channel

For qubits, the bit flip channel acts in such a way as to flip
the basis state |1〉 to |2〉 and vice versa. For qutrits there are
three basis states, which can be labeled as |1〉, |2〉, and |3〉.
To describe the effect of flipping one of these basis states to
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another in terms of an affine mapping of the polarization vector
let us first define the following pure-state density matrices:

ρ1 =

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠, ρ2 =

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠, ρ3 =

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠.

(68)

Now the effect of flipping from the state |1〉 to |2〉 is equivalent
to the density operator ρ1 evolving to ρ2. This can be achieved
by the transformation C(1,2)ρ1C

†
(1,2) = ρ2, where

C(1,2) =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠ . (69)

Notice that C(1,2) is an element of the Gell-Mann basis for
SU(3). The affine map associated with this transformation has
a linear part as well as a nonzero translational part, specifically,

T(1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (70)

and

t(1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (71)

Note that since C(1,2)ρ2C
†
(1,2) = ρ1, the affine map associated

with the flip |2〉 → |1〉 is the same as the preceding one. Simi-
larly, one can show that the transformation C(1,3)ρ1C

†
(1,3) = ρ3,

with

C(1,3) =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠ , (72)

is equivalent to the affine mapping

T(1,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1/
√

3

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1/
√

3 0 0 0 0 −2/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(73)

and

t(1,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1/2
√

3

0

0

0

0

−1/6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (74)

Since C(1,3)ρ3C
†
(1,3) = ρ1, the mapping associated with T(1,3)

and t(1,3) will yield the transition |3〉 → |1〉. For the flips |2〉 ↔
|3〉, the associated OSR decomposition has the term C(2,3) with

C(2,3) =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠ . (75)

This leads to an affine mapping of the form

T(2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/
√

3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 1/
√

3 0 0 0 0 −2/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(76)

and

t(2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−1/2
√

3

0

0

0

0

−1/6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (77)

012301-7



MARK S. BYRD, C. ALLEN BISHOP, AND YONG-CHENG OU PHYSICAL REVIEW A 83, 012301 (2011)

V. A PREFERRED BASIS: Ck UNITARY
AND ORTHOGONAL

It is often the case that a preferred basis for the Ck is chosen.
One important case is when the Ck are both orthogonal and
unitary. This choice corresponds to a nice error basis [29]
and applies to the so-called generalized Pauli matrices which
are formed from Ck given by Um,n = XmZn, m,n = 0,1,2,
where X|j 〉 = |j + 1mod d〉, Z|j 〉 = wj |j 〉, w = e2πi/3, and
{|j 〉}2

j=0 is an orthonormal basis. We also note that it can be
applied to decoupling controls which form a discrete subgroup
of the unitary group, but in that case the Hamiltonian is
modified rather than the density operator.

Since the case where the Ck are unitary and orthogonal is
a particularly important case, we show that when the Ck are
orthogonal, unitary, and belong to a discrete subgroup of the
unitary group, the trace of pairs of unequal Tk must be −1
between elements of the set.

Let {Uk} be such a set which also forms a subset of a
fundamental irreducible representation of a discrete subgroup
of the unitary group, that is, U

†
k Uk = 1l, and the set of Uk

can be extended to form a discrete subgroup of the unitary
group, and Tr(UiU

†
j ) = 0 for i �= j . Then, since U

†
j Ui is a

group element, the trace corresponds to the character of the
product. The character, for an irreducible representation, is
the same for each element in a class and, in this case, the
class has character equal to zero. However, the character can
be different for different representations. Note that the corre-
sponding T matrix is an orthogonal matrix since it belongs
to the adjoint representation of the group which is a real
(d2 − 1)-dimensional representation. This follows from the
equation

UkρU
†
k = Uk

1

d
(1l + b�n · �λ)U †

k

= 1

d

(
1l + b

∑
ij

ni(Rk)ij λj

)
, (78)

where Uk ∈ U (d) and Rk is in the adjoint representation of the
group. In this case Tk corresponds to Rk , and Uk is the same
group element as Rk but in a different representation.

Since Tr(U †
i Uj ) = 0, and Ui ⊗ Uj is in the tensor prod-

uct of the representation of U (d) ⊗ U (d), we can write
Tr(U †

i ⊗ U
†
j Uk ⊗ Ul) = 0 and this is the product of the two

representations. If we take the complex conjugate of the
first of these two representations (to obtain the conjugate
representation), we find that the product, which is equal to
the direct sum of the real (d2 − 1)-dimensional representation
and the trivial one, must be zero. Since the trace of the sum
is the sum of the traces, and the trivial representation has
character (trace) 1, the other must have trace −1. Therefore,
if the Ck are unitary and orthogonal and the set of these
can be extended to form a group, then the corresponding
Tk have the traces of the products all equal to −1, viz.,
Tr(CiC

†
j ) = 0 ⇔ Tr(T T

i Tj ) = −1, ∀ i �= j .
As mentioned earlier, this result is important for error

prevention and control methods. It is also generally important
for translating between the OSR and the affine map when this
basis is chosen.

We now briefly discuss how one would obtain the
affine map directly from the dynamical map, showing
that the OSR is in fact not a necessary intermediate
step.

VI. AFFINE MAP FROM THE DYNAMICAL MAP

It is fairly straightforward to show that the affine map
can be obtained directly from the dynamical map. In this
case, a convenient basis is the set of matrices which form
a basis for the general linear group GL(n,C). Such a basis
is defined by the set of matrices with a 1 in the ith column
and j th row and zeros everywhere else, denoted {Eij }.
From Eq. (2), the two bases may be converted from one to
another using, for example, the correspodence between the
raising and lower operators of the group and the Hermitian
basis. To be specific, one would expand ρ = ∑

r,s ρrsErs

and use the corresponding Hermitian basis 	rs = Ers + Esr

and 	′
rs = i(Ers − Esr ), as well as linear combinations of

the identity and Cartan algebra elements, to expand the
diagonal matrices (see, for example, [30] and references
therein).

Thus, we have given the following correspondences: dy-
namical maps → OSR → affine map and dynamical map →
affine map. Note, however, that the OSR is not unique—not
for completely positive matrices [14] nor for those that are
not completely positive [26]. Therefore, the set of Tk matrices
is also not unique and thus converting from one picture to
another is not a one-to-one transformation. The dynamical
map is essentially unique, as is the T matrix as well as the
minimal decomposition of the map.2

VII. SINGULAR VALUE DECOMPOSITION

In the analysis of maps of qubit density operators, suf-
ficient conditions for the positivity of maps follows from
positivity conditions described by the Bloch-sphere [15,31].
The maps, represented as an affine map of the vector, can
be decomposed in terms of a SVD, which greatly simplifies
the analysis [15]. Here we discuss a decomposition which is
similar to the SVD of the affine map for qubits but applies
to a d-dimensional system when d > 2. This turns out to be
much more complicated for d-state systems than it is for a
two-state system. The reason, as explained in detail in what
follows, is that there are restrictions on the “rotation” part of
the map (that part which does not change the magnitude of
�n). The restrictions are determined by the “shrinking” part of
the map (that part which can reduce the magnitude of one
or more components of �n) and differ for different shrinking
matrices. Thus, we are seeking an answer to the following
question: To what extent can we generalize the results of
qubits to qudits with d > 2? Our results provide conditions
under which a SVD may be performed, as well as restrictions
to its use. This provides some insight into the geometry of the
space.

2This lack of uniqueness is explained in [26]. See also references
therein.
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A. SVD for affine qubit maps

Before presenting our results for qudits, we review the basic
idea for qubits as used in Ref. [15]. Let an arbitrary initial
density matrix be given by

ρ = 1
2 (1l + �n · �σ ) (79)

and acted on by

�(ρ) = 1
2 (1l + �n′ · �σ ). (80)

This map can be described by an affine map of the polarization
vector,

�n′ = T �n + �t . (81)

In what follows we let �t = 0 and discuss T . The translation
may be treated separately.

For two-state systems, maps can be diagonalized by means
of a SVD. This is because any real N × N matrix M can be
written as

M = O1DO2, (82)

where Oi ∈ SO(N ) and D is a diagonal matrix with the entries
being called the singular values. For qubit maps N = d2 − 1
is 3 and an action of U ∈ U (2) on the density operator is
equivalent to an SO(3) matrix acting on the polarization vector
�n. To see this, we write

UρU † = 1

2

(
1l +

∑
ij

niRijσj

)
, (83)

where R ∈ SO(3). Thus, acting before and after a map enables
one to choose a preferred basis for the map. This basis can
be chosen so that T is diagonal since choosing R and R′
appropriately enables us to put T into a diagonal form using
D = RT R′. This set of diagonalized maps can be considered
a double coset space of the elements of the set of maps.

For future reference it is relevant to note that, for a positive
map, the matrix D cannot increase the magnitude of �n or any
component of �n. (Again, we are taking �t = 0.) In general,
for the SVDs we consider here, we will refer to the D part
(diagonal part) as the “shrinking factor” since, for a positive
map, it can decrease, but not increase, the magnitude of the
polarization vector. The parts O will be called “rotations,”
although the maps can clearly be physically achieved in many
different ways.

B. SVD For qutrits

Here we discuss the case of qutrits. The generalization
to qudits is qualitatively quite similar. We know that for a
mapping from pure states to pure states, the map is a unitary
transformation. That is, any map from a pure state to a pure
state can be written as a unitary transformation. The unitary
transformation acts on the density operator to produce an affine
map which has the form T ∈ Ad [SU(3)] ⊂ SO(8). That is,
the T matrix is an element of the adjoint representation of
SU(3), which is a subset of SO(8). It clearly does not span the
space of SO(8) in the way that SU(2) covers SO(3) since the
dimension of SU(3) is 32 − 1 = 8 and the dimension of SO(8)
is 8 · 7/2 = 28 (see also Ref. [32]).

For an even simpler case, consider a map which acts as a
depolarizing channel together with a “rotation.” In this case
there is a uniform shrinking factor such that each component
of the polarization vector is reduced by the same factor p < 1
(see, for example, [28] and references therein). For qutrits,
when p � 1/2, the map has a SVD with

T = O1DO2, (84)

where Oi ∈ SO(8). Any matrix in SO(8) is allowed since any
direction for the polarization vector leads to a positive density
matrix output as long as the shrinking factor is p � 1/2
and uniform. This follows from the positivity conditions in
Refs. [19,20].

For there to exist a SVD for maps which have 1/2 < p < 1,
the SVD cannot either be the SVD for p < 1/2 nor can it be the
SVD for pure states. The SVD for these intermediate values
of p must have some elements Oi ∈ SO(8) that cannot be
arbitrary elements of SO(8), but come from a restricted set
which depend on the shrinking factor. However, they are also
not restricted only to the set of matrices in SU(3) ⊂ SO(8),
they form a larger set. The question is, what is that set and how
do we find the values?

Whereas the general problem is quite complicated, we can
make some general statements about the allowable rotations.
Let us consider the algebra of SU(3) ⊂ SO(8). For pure
states, the set of allowable rotations are only those which
are in SU(3), and at the other extreme, all rotations in SO(8)
are allowable when the magnitude of the polarization vector
|�n| � 1/2, as discussed earlier. Thus, the SO(8) symmetry is
much larger than the SU(3) symmetry and it could be said
that the symmetry is broken continuously by the increasing
magnitude of the polarization vector. Such considerations
are important for a variety of reasons. Most notably, the
“good quantum numbers” are labels for states which are
carriers of an irreducible representation of a group (see, for
example, [33]). Thus symmetries determine simultaneously
measurable quantities for a quantum system and thus enable
us to specify a state as well as we can. When a symmetry
is broken, the symmetry for the system is reduced and the
set of good quantum numbers changes, indicating a change
in allowed states of the system. In this description of the
allowable states, one possible symmetry-breaking construction
which could be used for broken symmetries is the following
subgroup chain:

SO(8) ⊃ SO(6) × SO(2) ∼= SU(4)/Z2 × U(1) ⊃ SU(3).

Note, however, that the restricted symmetry arises from
positivity conditions on the density operator. This positivity
condition is associated with purity of the system and thus
also its entropy. This relation is only direct for two-state
systems, however, since there are two positivity constraints for
three-level systems and more for higher-dimensional systems,
whereas the entropy for a d-state system is a single function
which depends on d − 1 parameters.

The explicit parametrization of the rotation matrices can
be obtained from the exponentiation of the algebraic elements
given in Appendix B. There we have expressed the algebraic
elements of SO(8) in terms of the algebraic elements of SU(3).
This embedding of the SU(3) rotations into the set of SO(8)
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FIG. 1. (Color online) Plot showing the region of positivity when
the initial pure state |2〉 is allowed to experience a uniform shrinking
p and rotation of angle θ by the matrix f28 (see Appendix B).
The quantity S3 = 1 − 3�n′ · �n′ + 2(�n′ � �n′) · �n′ is graphed vertically
since for this initial pure state the condition S3 � 0 is necessary and
sufficient for positivity.

rotations specifies the unitary part of the transformation. We
do not provide the explicit parametrizations in each of the
regimes, but do discuss an example.

As an illustrative example, we consider the case where
a qutrit is initially in the pure state |2〉 (let |1〉, |2〉,
and |3〉 represent the basis states of a three-state system).
The coherence vector associated with the density matrix
|2〉 〈2| is given by �n = (0,0, − √

3/2,0,0,0,0,1/2)T , where
the third and eighth components are associated with the
diagonal generators of SU(3), that is, |1〉 〈1| − |2〉 〈2| and
1/

√
3(|1〉 〈1| + |2〉 〈2| − 2 |3〉 〈3|), respectively. If the compo-

nents of �n experience a rotation due to, say, the orthogonal
matrix f28 (see Appendix B), and shrink in magnitude by the
factor p, the evolved state �n′ = p exp (−iθf28)�n may or may
not correspond to a positive-semidefinite matrix. Since the
initial state was pure, the necessary condition for positivity is
S3 = 1 − 3�n′ · �n′ + 2(�n′ � �n′) · �n′ � 0 (see Refs. [19,20]).

In Fig. 1 we plot the region of positivity as a function
of the parameters θ and p. The figure shows that while
S3 = 0 initially (p = 1,θ = 0), this quantity quickly becomes
negative as the state begins to rotate without shrinking. The
figure also shows how the initial state becomes positive
again as θ increases to multiples of 2π/3 while no shrinking
has occurred. When the components of the initial coherence
vector uniformly shrink such that p � 1/2, we see that any
rotation about the matrix f28 leads to a positive density
operator.

C. Arbitrary dimensions

The general case is straightforward to infer. There is a
ball at the center of the space of density operators which
has a spherical symmetry in which all density operators are
positive, semidefinite. The radius of this ball is 1/(d − 1). At
the other extreme are the pure states which can only be acted

upon by a rotation part consisting of unitary transformations.
The intermediate points have “rotation” matrices which are
restricted and depend on the magnitude and direction of the
polarization vector.

VIII. CONCLUDING REMARKS

We have obtained an expression for an arbitrary affine map-
ping of the polarization vector associated with a d-dimensional
density operator in terms of the components of the OSR of
the dynamical map. This provides a geometric picture, albeit
somewhat abstract, via the polarization vector components
which are measurable quantities. We also described a direct
method for expressing the affine map in terms of the dynamical
map. Some example channels were provided in order to high-
light the connection between particular terms in our expression
and specific operators appearing in the OSR. For the important
case that the OSR components are unitary and orthogonal, we
have shown that the corresponding affine components are real
and have trace −1 between pairs of unequal elements. This is
particularly useful for the generalization of the Bloch equations
since this basis is used for error-prevention methods.

To generalize the methods used for qubit maps, we
discussed the possible generalization of the SVD of qubit affine
maps to higher-dimensional systems. We have found that a
symmetry breaking occurs due to positivity constraints. Thus,
we have given a relation between the physical symmetry, the
purity, and the entropy of the physical system. In this particular
case we have provided the example of the depolarizing
channel, but the generalization is also discussed. In the general
case the positivity conditions are dependent upon both the
magnitude and the direction of the polarization vector and the
rotation matrices and shrinking matrix are dependent upon one
another.

While we have provided some particular expressions for
physically motivated quantum channels (maps), applications
of this work range from information theory to practical
experiments as is the case with the OSR. One example of
the utility is given in Ref. [34], where the robust simulation
of quantum systems with quantum systems was considered. In
addition, the preferred basis given here provides a connection
between quantum error-correcting codes and direct application
thereof. This is due, in part, to the ability to more directly
determine the input and output, and therefore the map itself, for
quantum systems undergoing noisy evolution. In future work
we will use this to try to provide more practical methods for
determining the best combination of error prevention methods
(see [35] for a review).

More generally, we anticipate applications of this could be
more widespread in quantum control. For example, classical
control systems utilizing affine maps may be found in
Jurdjevic’s book, Geometric Control Theory, Chap. 4 [36].
This includes linear systems reachability and constraints. We
also hope that our work will be useful in ways not yet foreseen
by us.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF Grant
No. 0545798 to M.S.B.

012301-10



GENERAL OPEN-SYSTEM QUANTUM EVOLUTION IN . . . PHYSICAL REVIEW A 83, 012301 (2011)

APPENDIX A: IDENTITIES

In this Appendix we provide identities that were used in the
derivations of the preceding expressions.

The commutation relations, anticommutation relations, and
normalization of the matrices representing the basis for the Lie
algebra can be summarized by the following equation:

λiλj = 2

d
δij + ifijkλk + dijkλk, (A1)

where here, and throughout this appendix, a sum over repeated
indices is to be understood.

As with any Lie algebra we have the Jacobi identity:

filmfjkl + fjlmfkil + fklmfijl = 0. (A2)

There is also a Jacobi-like identity,

filmdjkl + fjlmdkil + fklmdijl = 0, (A3)

which was given by Macfarlane et al. [37].
The following identities are also provided in [37]:

diik = 0, (A4)

dijkfljk = 0, (A5)

fijkfljk = dδil, (A6)

dijkdljk = d2 − 4

d
δil, (A7)

and

fijmfklm = 2

d
(δikδjl − δilδjk) + (dikmdjlm − djkmdilm), (A8)

and finally

fpiqfqjrfrkp = −
(

d

2

)
fijk, (A9)

dpiqfqjrfrkp = −
(

d

2

)
dijk, (A10)

dpiqdqjrfrkp =
(

d2 − 4

2d

)
fijk, (A11)

dpiqdqjrdrkp =
(

d2 − 12

2d

)
dijk. (A12)

The proofs of these are fairly straightforward and are omitted.

APPENDIX B: ALGEBRA OF ROTATION MATRICES

In this section we provide the basis elements for the
symmetry breaking from the SO(8) symmetry to the SU(3)
symmetry. A basis for the algebra of SO(8) is given by one
set of matrices and the SU(3) algebraic basis elements are
expressed in terms of that basis using the structure constants
which provide the algebra for the adjoint representation of the
group. This provides the aforementioned embedding of the
group SU(3) into SO(8) by the exponentiation of the algebra.
We emphasize that our choice of basis matrices, for both
SU(3) and SO(8), are not unique. Our choices are simply the
most common. Another choice, which is particularly useful
for studying geometric phases, is given in Ref. [32].

The structure constants for SU(3) are fijk and we write them
in matrix form as (fi)jk; that is, the matrix fi has elements j,k.
Consider the basis for a matrix representation of SO(8) given
by the set of all

mjk = i(|j 〉 〈k| − |k〉 〈j |),
for which j < k = 2, . . . ,8.

For SU(3) we label the matrices 1–8, with elements j,k

corresponding to the eight Gell-Mann matrices. The basis is

f1jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 1
2 0

0 0 0 0 0 − 1
2 0 0

0 0 0 0 1
2 0 0 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f2jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f3jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 0 0 − 1
2 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f4jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 − 1
2 0

0 0 0 0 0 − 1
2 0 0

0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0

√
3

2

0 1
2 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0

0 0 0 0 −
√

3
2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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f5jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 − 1
2 0

0 0 0 1
2 0 0 0 0

0 0 − 1
2 0 0 0 0

√
3

2

0 0 0 0 0 0 0 0

− 1
2 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0

0 0 0
√

3
2 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f6jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1
2 0 0 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 0 0 1
2 0

0 1
2 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0

√
3

2

0 0 0 0 0 0 −
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f7jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 − 1
2 0 0

− 1
2 0 0 0 0 0 0 0

0 − 1
2 0 0 0 0 0 0

0 0 1
2 0 0 0 0 −

√
3

2

0 0 0 0 0 0 0 0

0 0 0 0 0
√

3
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f8jk = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0
√

3
2 0 0 0

0 0 0 −
√

3
2 0 0 0 0

0 0 0 0 0 0
√

3
2 0

0 0 0 0 0 −
√

3
2 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These are clearly basis elements for the adjoint representation
of the algebra which is a subset of the SO(8) algebra.

We now make the connection between the two by writing
the basis elements for SU(3) in terms of the SO(8) basis
elements:

f1 = m23 + 1
2 (m47 − m56), f2 = −m13 + 1

2 (m46 + m57),

(B1)

f3 = m12 + 1

2
(m45 − m67),

f4 = −1

2
(m17 + m26 + m35) +

√
3

2
m58,

(B2)

f5 = 1

2
(m16 − m27 + m34) −

√
3

2
m48,

f6 = 1

2
(−m15 + m24 + m37) +

√
3

2
m78, (B3)

f7 = 1

2
(m14 + m25 − m36) −

√
3

2
m68,

f8 =
√

3

2
(m45 + m67). (B4)

Let us now complete the basis by finding a complete set
of 28 matrices which are orthogonal in the Hilbert-Schmidt
sense and have fi, i = 1, . . . ,8 as members. Considering the
Hilbert-Schmidt to be an inner product, we can immediately
write down a complete set. We will number them in no
particular order. [We can always choose matrices that are
normalized to Tr(mijmkl) = δikδjl .] Let us consider a set
of matrices which span the space m23,m47,m56 when f1 is
included. The set is (for f1)

f9 = 1
2 (m47 + m56), f10 = −(m47 − m56).

Similarly, we group the remaining matrices:

(f2)

f11 = m13 + (m46 + m57), f12 = (m46 − m57),

(f3 and f8)

f13 = m12 − (m45 − m67),

(f4)
f14 = (m17 + m26 + m35) +

√
3 m58,

f15 = m17 − 2m26 + m35,

f16 = m17 − m35,

(f5)

f17 = (m16 − m27 + m34) +
√

3 m48,

f18 = m16 + 2m27 + m34,

f19 = m16 − m34,

(f6)

f20 = (−m15 + m24 + m37) −
√

3 m78,

f21 = m24 + 2m15 + m37,

f22 = m24 − m37,

(f7)

f23 = (m14 + m25 − m36) +
√

3 m68,

f24 = m14 + 2m36 + m25,

f25 = m14 − m25.

Finally, we have the following three:

f26 = m18, f27 = m28, f28 = m38.
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