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We present a general criterion for entanglement of N indistinguishable particles decomposed into arbitrary s

subsystems based on the unambiguous measurability of correlation. Our argument provides a unified viewpoint
on the entanglement of indistinguishable particles, which is still unsettled despite various proposals made mainly
for the s = 2 case. Even though entanglement is defined only with reference to the measurement setup, we find
that the so-called independently and identically distributed states form a special class of bosonic states which are
universally separable.
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I. INTRODUCTION

Since its first recognition in the seminal Einstein-Podolsky-
Rosen (EPR) and Schrödinger papers [1,2], quantum entan-
glement has long been seen as the most distinctive trait of
quantum theory. Notably, it underlies nonlocal correlation
in composite physical systems, invoking various concep-
tual questions on the foundation of physics and, at the
same time, offers a key resource for quantum-information
sciences. In view of this, we find it rather puzzling that
the very notion of entanglement still eludes a formal, let
alone intuitive, understanding, especially when the system
admits no apparent decomposition into subsystems. This
occurs typically in systems of indistinguishable particles
(i.e., fermions or bosons) with which actual realizations of
entanglement—via photons, electrons or composite particles
such as hydrogen atoms—have been implemented mostly
today.

To see the nontrivial nature of entanglement, take, for
example, the familiar N = 2 particle Bell states,

|�〉 = 1√
2

(|0〉1|1〉2 ± |1〉1|0〉2), (1)

with |0〉k and |1〉k being the orthonormal qubit states of
particle k = 1,2. These are prototypical entangled states for
distinguishable particles, but if the particles are indistinguish-
able, the labels k are no longer usable for classifying the
measurement outcomes to define the correlation. A remedy for
this is to consider remotely separated particles by introducing
the position degrees of freedom directly for (1), but this does
not yield any nontrivial correlation, a property known as the
cluster separability [3,4]. Clearly, a physically motivated and
mathematically solid definition of entanglement is needed for
general composite systems including those of indistinguish-
able particles.

Recently, Ghirardi et al. [5,6] gave a possible definition of
separability (nonentanglement) for N -particle systems based
on the criterion that, if one can deduce a complete set of
physical properties (CSP) pertaining to a subsystem, then the
state is separable with respect to the subsystem and the rest.

This criterion derives from the demand that, in a separable
state, all physical quantities in the subsystem have elements of
reality in the EPR sense [1]. Independently, Zanardi et al. [7]
presented a criterion for uncovering a tensor product structure
(TPS) in the Hilbert space upon which entanglement can be
defined. The criterion demands the existence of subalgebras
representing the observables of the subsystems, which are
measurable, independent, and complete to form the entire set
of measurable observables in the system. Yet another criterion
has been proposed by Schliemann et al. [8] and others [9]
particularly for indistinguishable particles using the (Schmidt
or Slater) rank of state decomposition, which is related to the
standard measures of entanglement such as the von Neumann
entropy.

These criteria for (non)entanglement are rather different
from each other and, not surprisingly, do not completely agree
on deciding which states are separable, with an example being
the N = 2 bosonic “independently and identically distributed”
(i.i.d.) state |φ〉1|φ〉2 (for an attempt of reconciliation, see [10]).
More recently, the present authors furnished a criterion for
the decomposition of an N fermionic system into s arbitrary
subsystems [11], where we find that the orthogonal structure
introduced to distinguish the subsystems in [5] corresponds
precisely to the choice of observables with which correlation
is defined. In other words, entanglement can be defined
only relative to the measurement setup and it is highly
nonunique [7]. Under these circumstances, one is naturally
led to ask if there is any coherent picture of entanglement
prevalent among these criteria.

The purpose of this article is to provide a positive answer
to this. Namely, we show that all these criteria can be put
into a larger perspective consisting of two descriptions of the
system, one for the measurement outcomes and the other
for the provisional states of the system. The gap between
the two descriptions, which lies at the root of the apparent
disagreement, can be filled by an isomorphism between
the two, providing a unified viewpoint of entanglement
for indistinguishable particles. Unlike the previous analyses,
entanglement can be treated equally for the fermionic and
bosonic cases here. We also find that the i.i.d. states for general
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N form a special class of bosonic states which are universally
separable irrespective of the choice of measurement setup.

II. ENTANGLEMENT IN MEASUREMENT-BASED
DESCRIPTION

To define entanglement as an attribute to generate a
nontrivial correlation among subsystems, we first need an
appropriate set of physical observables associated with the
subsystems for which the correlation in their measurement
outcomes can be evaluated unambiguously. To discuss the
situation explicitly, we consider the case where the total system
breaks into s subsystems �1, . . . ,�s and assume that to each �i

we have a complete set of commuting observables Ci which are
all implementable in the measurement to determine the state
of the subsystem. Let Li be the set of observables (self-adjoint
operators) containing the set Ci . The collection of states of the
subsystem �i describing the measurement outcomes forms a
Hilbert space Hmes(�i) in which Li is represented irreducibly.
Assuming further that the measurements of the observables
Li can be performed independently for all i = 1, . . . ,s, we
find that the set L of observables in the total system is given
by L = ⊗iLi . Accordingly, the state space of the system
describing the measurement outcomes is given by the tensor
product

Hmes =
s⊗

i=1

Hmes(�i). (2)

The TPS of the total space Hmes in (2) allows us to define the
entanglement by the conventional way, that is, if the measured
state |�〉 ∈ Hmes admits the product form

|�〉 =
s⊗

i=1

|ψi〉�i
, |ψi〉�i

∈ Hmes(�i), (3)

then it is separable; if not, it is entangled. Evidently, since
the separable state (3) yields definite outcomes for the
measurement of observables in a properly chosen set Ci in
|ψi〉�i

for all i, it possesses a CSP [5].
Meanwhile, in the total space Hmes the observable Oi ∈ Li

is expressed by

Ôi =
i−1⊗
j=1

1j ⊗ Oi ⊗
s⊗

j=i+1

1j , (4)

where 1j is the identity operator in Hmes(�j ). The aforemen-
tioned independence is then ensured trivially by

[Ôi,Ôj ] = 0 for i �= j. (5)

The observable Ô ∈ L corresponding to the simultaneous
measurement for the subsystems is then given by

Ô =
s∏

i=1

Ôi =
s⊗

i=1

Oi. (6)

Denoting the set of such operators by T mes ⊂ L, we see
that any Ô ∈ T mes has a factorized expectation value for the
separable state |�〉 in (3):

〈�|Ô|�〉 =
s∏

i=1

〈�|Ôi |�〉. (7)

The properties (5) and (6), together with the implementability
assumption, constitute the formal conditions for realizing a
TPS in [7]. Note that in our measurement-based description,
the TPS appears as a direct consequence of the construction.

III. ENTANGLEMENT IN PROVISION-BASED
DESCRIPTION

The entanglement in the measurement-based description
is related to the measurement outcomes directly, but the
conventional treatment of indistinguishable particles employ
the framework of the provisional Hilbert space of distinguish-
able particles for the description of states with appropriate
restriction required by the statistics of the particles. Here, the
description is not directly related to the measurement out-
comes, and the restricted space of states does not admit a TPS
in any obvious manner. In physical terms, the measurement
outcomes of observables, such as spin, cannot be attributed to
those of a particular particle due to the indistinguishability, and
the formal structure of the state fails to signify the correlation
as exemplified by (1). To fill the gap, we need a prescription
to bridge the two descriptions.

For definiteness, let us label the N particles by the integer
set N = {1,2, . . . ,N}. Each of the particles is characterized
by an n-level state, i.e., the state space of the kth particle is
Hk

∼= Cn for all k. Let {|ei〉} be a complete orthonormal basis
in Cn. By the isomorphism among the constituent spaces Hk ,
any pure state |�〉 in the provisional space H = ⊗

k∈N Hk of
the total system can be written as

|�〉 =
∑

i1,i2,...,iN

�i1i2...iN

N⊗
k=1

∣∣eik

〉
k
, (8)

where �i1i2...iN ∈ C and {|eik 〉k} is the complete orthonormal
basis in Hk isomorphic to {|ei〉}.

To incorporate the indistinguishability of the particles,
consider an element σ ∈ SN of the symmetric group SN

associated with the permutation k· → σ (k). In H, the element
is represented by a self-adjoint operator πσ with

πσ |�〉 =
∑

i1,i2,...,iN

�i1i2...iN

N⊗
k=1

∣∣eik

〉
σ (k). (9)

From πσ , both the symmetrizer and the antisymmetrizer are
defined as

S = 1

N !

∑
σ∈SN

πσ , A = 1

N !

∑
σ∈SN

sgn(σ )πσ , (10)

where sgn(σ ) is the signature of the permutation σ . The
Hilbert space of the total system of N bosons (fermions) is
the subspace of H consisting of symmetric (antisymmetric)
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states. Putting X = S for bosons and X = A for fermions,
they are

HX = [H]X := {X |�〉||�〉 ∈ H}. (11)

To introduce the decomposition into subsystems in the total
system, we consider a partition � of the integer set N into
nonempty and mutually exclusive sets �i ⊆ N ,

� = {�i}si=1,

s⋃
i=1

�i =N , �i ∩ �j = ∅ for i �= j. (12)

For specifying the subsystems of indistinguishable particles,
only the cardinality |�i | of �i matters. Note that there is
no apparent TPS in HX with respect to �, and we need
to somehow find an embedding of the measurement-based
description in the provision-based description.

This embedding is handled usually by considering the
positions of particles to gain a fictitious distinction between
the particles. For the distinction to be unambiguous, the
measurements of the subsystems should be performed re-
motely from each other, and this amounts to introducing an
orthogonal decomposition in the one-particle Hilbert space
(after accommodating the position degrees of freedom). More
generally, the embedding requires an orthogonal structure V

which is a set of subspaces Vi ⊂ Cn mutually orthogonal to
each other with respect to the inner product of Cn,

V = {Vi}si=1, Vi ⊥ Vj for i �= j. (13)

Together with the orthogonal complement,

V0 = V1 ⊕ V2 ⊕ · · · ⊕ V ⊥
s , (14)

the set V furnishes an orthogonal decomposition of Cn. The
physical idea behind this is that these orthogonal spaces cor-
respond to mutually independent measurement of subsystems
such that, given a measurement setup, the subsystem �i is
susceptible only for the measurement of particles k ∈ �i

residing in Vi . If we denote the subspace Vi in Hk by
Vi(Hk) ⊂ Hk , then the actual Hilbert space describing the
measurement outcomes for �i is given by

HX (�i,Vi) =
[ ⊗

k∈�i

Vi(Hk)

]
X

. (15)

Here, as in (11), the index X attached to [∗] implies that
it is the subspace of ∗ invariant under X associated with
the symmetry group SK with K being the cardinality of
∗, and in (15) we have K = |�i |. Clearly, HX (�i,Vi) is the
actual space of states determined from the measurement and,
therefore, corresponds to Hmes(�i) in the measurement-based
description (2) where the state |ψi〉�i

∈ HX (�i,Vi) is identified
with |ψi〉�i

∈ Hmes(�i).
From the description for the subsystems, we obtain the

Hilbert space of the total system by

HX (�,V ) =
[

s⊗
i=1

HX (�i,Vi)

]
X

. (16)

Note that, due to the (anti)symmetrization X , the resultant
space HX (�,V ) has no TPS with respect to the decomposition
� and, hence, no obvious correspondence with Hmes in (2).

HX (Γ, V )
s

i=1

HX (Γi, Vi)

∼=

fX

s

i=1

Hmes(Γi)

HX

HX (Γ, V )⊥

FIG. 1. Diagrammatical representation of the spaces mentioned
in (17) and (22). In the total spaceHX , we find the subspaceHX (�,V )
isomorphic to ⊗iHX (�i,Vi) which has a TPS. The latter is then
identified with the space Hmes describing the measurement outcomes.

In spite of this, the two spaces can be made isomorphic based
on the identificationHX (�i,Vi) ∼= Hmes(�i) mentioned above.
Indeed, it is attained, with this identification, by the map

fX : Hmes ∼=
s⊗

i=1

HX (�i,Vi) �→ HX (�,V ), (17)

defined by

fX

(
s⊗

i=1

|ψi〉�i

)
=

√
MX

s⊗
i=1

|ψi〉�i
, (18)

with the normalization factor M := N !/
∏s

i |�i |!. Obviously,
the map fX is surjective by construction, and to see the
injectivity, we note that, thanks to the orthogonal structure
V in (13), the inner product is invariant under the map
[12]. It follows that ‖ ⊗i |ψi〉�i

‖ = ‖√MX ⊗i |ψi〉�i
‖, which

ensures the injectivity of the map and hence the isomorphism
(see Fig. 1).

The isomorphism (17) induces the correspondence between
the observables in the two spaces. If Oi are the observables in
HX (�i,Vi) for i = 1, . . . ,s, then the observable in HX (�,V )
for simultaneous measurement reads

Õ = MX
(

s⊗
i=1

Oi

)
X . (19)

The set of all such operators defines a subset T (�,V )
of observables in HX (�,V ). With the identification of the
observables Oi between HX (�i,Vi) and Hmes(�i), the induced
isomorphism for the observables corresponding to (18) is given
(by abusing the symbol) by

fX

(
s⊗

i=1

Oi

)
= MX

(
s⊗

i=1

Oi

)
X . (20)

This also implies the isomorphism between T mes and T (�,V )
through the correspondence Ô ↔ Õ.
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In the provision-based description, the criterion on the
entanglement of indistinguishable particles then emerges as
follows. Given an arbitrary (normalized) state |�〉 ∈ HX , we
first decompose it as

|�〉 = |�(�,V )〉 + |�(�,V )⊥〉, (21)

according to the orthogonal decomposition,

HX = HX (�,V ) ⊕ HX (�,V )⊥. (22)

Since |�(�,V )⊥〉 has a vanishing support for the observ-
ables in T (�,V ) and is filtered out by the measurement,
the only part significant for correlation is |�(�,V )〉. Thus,
for studying correlations in the measurement outcomes by
ignoring the events which are not detected in the setup, one
uses the renormalized state ‖|�(�,V )〉‖ = 1. We now see that
if the observable part takes the form

|�(�,V )〉 =
√

MX
s⊗

i=1

|ψi〉�i
, (23)

then for any Õ ∈ T (�,V ) we have the factorization

〈�|Õ|�〉 =
s∏

i=1

〈�|Õi |�〉, (24)

in analogy with (7). Since the converse is also true, we learn
that the state |�〉 is separable if and only if the part |�(�,V )〉
in (21) admits the (anti)symmetrized direct product form (23);
if not, it is entangled. In more simple terms, to examine the
separability of a given state |�〉 ∈ HX , we just concentrate
on the observable part |�(�,V )〉 and then strip it off the
projection X (and perform necessary renormalization) to
obtain, via the identification in Fig. 1, the corresponding state
|�mes(�,V )〉 ∈ Hmes describing the measurement outcomes
directly. In the case (23) we find |�mes(�,V )〉 = ⊗s

i=1|ψi〉�i
,

which is factorizable and hence separable. As is evident from
the explicit dependence on V , the entanglement of the state
is determined only relatively with respect to the measurement
setup.

Generalization of our argument to mixed states is straight-
forward. Given a density matrix ρ on HX , one can decompose
it as

ρ =
(

ρ(�,V ) ∗
∗ ρ(�,V )⊥

)
, (25)

where ρ(�,V ) and ρ(�,V )⊥ are (unnormalized) density
matrices on HX (�,V ) and HX (�,V )⊥, respectively. By virtue
of the isomorphism fX , the separability criterion for the mixed
distinguishable systems [13] can be utilized for the density
matrix ρmes(�,V ), which is defined from f −1

X (ρ(�,V )) with a
suitable rescaling to fulfill Tr ρmes(�,V ) = 1. We then find that
a mixed state ρ on HX is separable under our measurement
setup specified by � and V if ρmes(�,V ) admits the form

ρmes(�,V ) =
∑

α

pα

∣∣�mes
α

〉 〈
�mes

α

∣∣, (26)

where |�mes
α 〉 ∈ Hmes are separable pure states and {pα}

satisfies
∑

α pα = 1 and pα � 0.
It should be clear by now that since a state of indistin-

guishable particles, either pure or mixed, can be mapped to

a state in Hmes, the entanglement of the state can be studied
in terms of the standard entanglement measures developed for
distinguishable particles. This will be demonstrated next.

IV. MEASUREMENT SETUP DEPENDENCE
OF ENTANGLEMENT: EXAMPLES

To evaluate explicitly the dependence of entanglement
on the measurement setup we choose, let us consider the
case of N = 2 fermions, each possessing n = 4 dimensional
constituent space, given in the state

|�〉 =
√

2A|e1〉1|e3〉2 ∈ HA. (27)

We wish to examine if, and to what extent, the state is entangled
under the partition � = {{1},{2}} when our setup is “rotated”
among the set of basis {|e1〉,|e4〉} and {|e2〉,|e3〉}. To this end,
we adopt the orthogonal decomposition (which defines the
measurement setup) V = {V1,V2} with

V1 = span{|e′
1〉,|e′

2〉}, V2 = span{|e′
3〉,|e′

4〉}, (28)

where

|e′
1〉 = c|e1〉 + s|e4〉, |e′

2〉 = −s|e3〉 + c|e2〉,
(29)

|e′
3〉 = c|e3〉 + s|e2〉, |e′

4〉 = −s|e1〉 + c|e4〉,
and we have used the shorthand c = cos θ , s = sin θ to express
the rotation with angle θ . According to the decomposition (21),
the measurable part turns out to be

|�(�,V )〉 = A(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2), (30)

up to a constant. We then map it to the corresponding
normalized state in Hmes as

|�mes(�,V )〉 = 1√
c4 + s4

(c2|e′
1〉1|e′

3〉2 − s2|e′
2〉1|e′

4〉2). (31)

The amount of entanglement may be evaluated by the (squared)
concurrence,

C(|�mes(�,V )〉) = 2[1 − Tr1(Tr2|�mes〉〈�mes|)2]

= 4

(tan2 θ + cot2 θ )2
, (32)

and the result is depicted in Fig. 2. We find that the state (27) is
strictly separable at θ = nπ/2 and maximally entangled at θ =
(n + 1/2)π/2 for integer n, and it can take any intermediate
values C in between.

As a second example, we consider the case of N = 2 bosons
with n = 6 prepared in the state,

|�〉 = 1√
6

6∑
i=1

|ei〉1|ei〉2 ∈ HS . (33)

As before, we study the entanglement for the partition � =
{{1},{2}} when the rotated family of entanglement setups are
considered, which are now provided by

V1 = span{|e′
1〉,|e′

2〉,|e′
3〉}, V2 = span{|e′

4〉,|e′
5〉,|e′

6〉}, (34)

with

|e′
i〉 = U |ei〉, U ∈ U(6). (35)
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FIG. 2. (Color online) Concurrence C of |�mes(�,V )〉 as a
function of the angle θ . The variation shows that the state undergoes
the change from complete separation to maximal entanglement by
the adjustment of the setup angle θ .

Analogously to Eq. (31), we can find the corresponding
state |�mes(�,V )〉 in Hmes. This time, however, instead of
simply evaluating the concurrence we study the extent of
variation in the state |�mes(�,V )〉 that can arise under distinct
measurement setups obtained by altering the unitary matrix
U in (35). To do this, we first implement the Schmidt
decomposition for the state |�mes(�,V )〉 as

|�mes(�,V )〉 =
3∑

i=1

λi |e′′
i 〉1|e′′

i+3〉3,

3∑
i=1

λ2
i = 1, (36)

where {|e′′
i 〉}3

i=1, {|e′′
i 〉}6

i=4 are the Schmidt bases {|e′′
i 〉}3

i=1,
{|e′′

i 〉}6
i=4 each defined within the measurable subspaces V1, V2.

We then observe the distribution of states, which is invariant
under local unitary operations from the distribution of Schmidt
coefficients. Figure 3 shows the values of λi for i = 1,2
obtained by a random generation of U , which suggests that
by tuning U properly the state (33) can furnish virtually any
possible states which can be discriminated by the Schmidt
coefficients.

FIG. 3. Distribution of the Schmidt coefficients of the state (36)
with the ordering λ1 � λ2 � λ3 (λ3 is not shown because it can be
determined from the other two) obtained under random setups of
measurement for the state (33) provided by 106 distinct unitaries U .
The diagonal lines represent λ1 = λ2 and λ2 = λ3, whose intersection
corresponds to the maximally entangled state. The points fill out
basically the entire region of the triangle, although in our random
generation the density becomes scarcer for states which are highly
entangled.

Despite the relative nature of entanglement with respect to
the measurement setup, there exists a special class of states in
the bosonic case which are separable under all measurement
setups. These are the i.i.d. pure states |�〉 ∈ HS defined by

|�〉 =
N⊗

k=1

|φ〉k, |φ〉k ∈ Hk. (37)

To see the universal separability of the state, we decompose
|φ〉k according to Eqs. (13) and (14) as

|φ〉k =
s∑

i=0

|ϕi〉k, |ϕi〉k ∈ Vi(Hk). (38)

Plugging this into Eq. (37), we obtain Eq. (21) with

|�(�,V )〉 =
√

MS
s⊗

i=1

|ψi〉�i
, (39)

where

|ψi〉�i
∝

⊗
k∈�i

|ϕi〉k. (40)

Since the part |�(�,V )〉, if nonvanishing, belongs to the class
Eq. (23), we see that the i.i.d. states (37) are separable. Further,
since this is true for any choice of (�,V ), the separability holds
irrespective of the measurement setup. Interestingly, one finds
that for N = 2, n � 4, the converse is also true: states which
are universally separable must be the i.i.d. states.

V. CONCLUSION AND DISCUSSIONS

In summary, we have presented a general criterion for
entanglement of an indistinguishable N -particle system de-
composed into s subsystems based on the unambiguous
measurability of correlation. The point is that, although the
Hilbert space HX of the system does not admit a TPS,
one can find a subspace HX (�,V ) ⊂ HX which has a TPS
and is directly related to the space Hmes describing the
measurement outcomes. Since Hmes has a common structure
with the space of distinguishable particles, our approach
allows us to treat indistinguishable particles on an equal
basis with distinguishable ones. Consequently, the handling of
states without considering the effect of (anti)symmetrization
practiced regularly in quantum optics is found to be safe as
long as it deals with the space Hmes.

The structure of Hmes also implies that the standard
measures of entanglement devised so far can be used equally
for the indistinguishable case; for instance, the monotonicity
of entanglement measures with respect to local operations
and classical communications (LOCC) is preserved under
the mapping fX . This is shown by observing that all in-
gredients of LOCC for distinguishable particles [14] have
their counterparts in HX (�,V ) provided by the application
of fX . Since positive operator valued measurements (POVM)
can be built from some of the ingredients of local op-
erations and classical communication (LOCC) (Naimark’s
theorem [4]), the mapping fX induces the analogs of local
POVMs in HX (�,V ).

As stated in the Introduction, for bosonic systems the
characterization of separability has not been done uniquely in
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the literature, and in fact it is mentioned in [10] (Theorem 3.6)
that there are states which are separable from the criterion
of [5,6] but entangled from that of [8]. We observe, however,
that the theorem used is based on a unitary transformation
between two different bases of the one-particle state space,
which amounts to a change in the orthogonal structure V in
our language. As explicitly shown in the previous section,
such a change gives rise to states with different amounts of
entanglement observed in the altered settings, and in this sense
one can regard the apparent discrepancy as just a reflection of
the relative nature of entanglement.

Finally, we mention that our approach can also be applied,
rather trivially, to a system consisting of both bosons and
fermions. Indeed, we may first treat bosons and fermions
separately in the provisional spaces HS and HA in our
approach, and then combine them together to form the total
provisional space HS ⊗ HA. Since HS and HA have their own

isomorphism fS and fA defined from the orthogonal structures
equipped with them, it is evident that through the combination
of f −1

S and f −1
A we obtain the corresponding state space which

has a TPS and can be identified with the total measurement
space Hmes. This reasoning can be extended in principle to
more complex systems consisting of several distinct species
of fermions and bosons, e.g., those describing interactions
between matter and gauge mediators such as photons and
gluons.
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Phys. Rev. A 64, 022303 (2001); K. Eckert et al., Ann. Phys.
(NY) 299, 88 (2002).
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