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Comparing different non-Markovianity measures in a driven qubit system
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We consider two recently proposed measures of non-Markovianity applied to a particular quantum process
describing the dynamics of a driven qubit in a structured reservoir. The motivation for this study is twofold:
on one hand, we study the differences and analogies of the non-Markovianity measures, and on the other hand,
we investigate the effect of the driving force on the dissipative dynamics of the qubit. In particular we ask if
the driving force introduces new channels for energy and/or information transfer between the system and the
environment or if it amplifies existing ones. We show under which conditions the presence of the driving force
slows down the inevitable loss of quantum properties of the qubit.
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I. INTRODUCTION

The inevitable interaction of a quantum system with
its environment leads to dissipation of energy and loss of
quantum coherence [1,2]. Unfortunately these phenomena can
fundamentally limit the potential of quantum technologies,
whose power is based on quantum effects [3]. In suitable
surroundings, however, the quantum system may temporarily
regain some of the previously lost energy and/or information
due to non-Markovian effects in the system dynamics. This is
one of the reasons why the study of non-Markovian quantum
dynamics has received an increasing amount of interest in the
last several years [4]. It is surprising, then, that the definition
of non-Markovianity still remains elusive and, in some sense,
controversial.

Markovianity is well defined for classical stochastic pro-
cesses: a stochastic process has the Markov property if the
probability distribution for the future states of the process
depends only on the present state. Loosely speaking, de-
pendence on past states should then be a characteristic trait
of non-Markovian processes. The mathematical definition of
non-Markovianity does not, however, translate easily into
the widely used language of density matrices and master
equations in quantum physics. In the case of an open quantum
system evolution described by a Lindblad master equation
[5,6] one can find a stochastic description for the system
dynamics, e.g., with the Monte Carlo wave function method,
where future dynamics of individual quantum trajectories
only depend on their present states [7,8]. In this spirit some
physicists have attributed non-Markovianity to the breakdown
of the semigroup property [9] or a generalization thereof,
the divisibility property [10]. However, finding a stochastic
description that corresponds to more general master equations
is not, in general, a straightforward task [11].

With the aim of extending the concept of non-Markovianity
to more general quantum dynamics, efforts have been made to
clarify the very definition of non-Markovianity in the context
of open quantum systems and to quantify the amount of
non-Markovianity in a given quantum process. One viewpoint
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associates non-Markovianity to dynamical dependence on past
evolution. This may mean either dependence of the evolution
on all past states of the system, as in the memory kernel
approach [12,13], or dependence of the asymptotic state of the
system on its initial state [14]. Yet another definition equates
non-Markovianity with a partial recovery of previously lost
information [15–17]. It is worth stressing that the definitions
of non-Markovianity are generally not the same, nor are they
mutually exclusive, and that they may agree perfectly about
the non-Markovian character for some models and disagree
about others [18].

In this paper we consider two recently proposed measures
of non-Markovianity introduced by Rivas, Huelga, and Plenio
(RHP) [10] and by Breuer, Laine, and Piilo (BLP) [15]
and apply them to a quantum process describing the short
and intermediate time-scale dynamics of a driven qubit in a
structured reservoir [19,20]. The comparison allows us, on one
hand, to elucidate the differences and analogies between the
non-Markovianity measures in a physically interesting model
and, on the other hand, to gain new understanding of the effect
of the driving force on dissipative dynamics. For the sake of
concreteness in the rest of the paper we refer to the case of a
laser-driven atom. All the conclusions, however, are valid for
any driven two-state system. Due to the presence of the driving
force, the commonly used secular approximation does not
always hold, especially in the short non-Markovian time scales.
The importance of the nonsecular terms has been recently
demonstrated in the context of superconducting circuits in
Refs. [21,22].

The article is organized as follows. In Sec. II we introduce
our model, namely, the driven qubit, and the master equation
describing its dynamics in a structured environment. In
Secs. III and IV we introduce and study the RHP and BLP
measures of non-Markovianity using this model. In Sec. V
we compare the non-Markovian properties of a driven qubit
with those of a nondriven qubit and finally, in Sec. VI, we
summarize the results and present our conclusions.

II. THE DRIVEN QUBIT

We consider a qubit with energy separation ωA (h̄ = 1),
driven by a laser of frequency ωL almost resonant with the
transition frequency of the qubit: |�| = |ωA − ωL| � ωA. The
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qubit is embedded in a zero-T environment. The strengths of
the interaction between the qubit and the laser and between the
qubit and the environment are quantified by the Rabi frequency
� and the coupling constant α, respectively. We assume that
� � ωA, a condition that is typically satisfied in quantum
optical situations. When α is the smallest relevant frequency,
that is, the qubit couples weakly to the reservoir, the dynamics
of the qubit is given by the following local-in-time completely
positive master equation, derived by one of us in Ref. [19]:

dρ(t)

dt
= −i[H,ρ(t)] + DS(t)ρ(t) + DNS(t)ρ(t), (1)

where the unitary evolution of the qubit is generated by the
system Hamiltonian

H = ω

2
σz, ω =

√
�2 + �2, (2)

and the dissipative terms have been divided into a secular con-
tribution DS and a nonsecular contribution DNS. Introducing
the shorthand notation

L[A(t),γ (t)] = γ (t)
(
A(t)ρ(t)A†(t) − 1

2 [A†(t)A(t),ρ(t)]
)
(3)

to describe a Lindblad-type decay channel with a jump
operator A(t) and a corresponding decay rate γ (t), we can
express the dissipative terms as

DS(t)ρ(t) = C2
+L[σ−,γ+(t)] + C2

−L[σ+,γ−(t)]

+C2
0L[σz,γ0(t)], (4)

DNS(t)ρ(t) = �−(t){C−C0[σ+ρ(t)σz − σzσ+ρ(t)]

+C+C−[σ+ρ(t)σ+ − σ+σ+ρ(t)]}
+�+(t){C+C0[σ−ρ(t)σz − σzσ−ρ(t)]

+C+C−[σ−ρ(t)σ− − σ−σ−ρ(t)]}
+�0(t){C−C0[σzρ(t)σ− − σ−σzρ(t)]

+C+C0[σzρ(t)σ+ − σ+σzρ(t)]} + H.c., (5)

where C± = (� ± ω)/2ω, C0 = �/2ω and H.c. denotes
Hermitian conjugation. The master equation is given in the
dressed state basis |ψ±〉 = ±√

C±|e〉 + √
C∓|g〉, where |e〉

and |g〉 are the excited and ground states of the qubit. The
decay rates in DNS and DS are connected via the relation

�ξ (t) =
[
γξ (t)

2
− iλξ (t)

]
, (6)

where γξ ,λξ ∈ R and ξ ∈ {−,0,+}. For the sake of con-
creteness we focus on a qubit embedded in a reservoir
with a Lorentzian spectral density J (ω) = α/(2π ) λ2/[λ2 +
(ω − ω0)2], where ω0 is the center frequency and λ is the
width of the Lorentzian. For this case the decay rates in Eqs.
(4) and (5) take the form [20]

γξ (T ) = α2

2
(
1 + q2

ξ

) (1 − e−T cos qξT + e−T qξ sin qξT ),

(7)

λξ (T ) = α2

1 + q2
ξ

(−qξ + e−T qξ cos qξT + e−T sin qξT ),

where T = λt and qξ = s − ξp, again with ξ = {−,0,+}.
Different dynamical regimes are defined in terms of the
parameters

s = ω0 − ωL

λ
, p = τC

τS

= ω

λ
. (8)

The parameter s quantifies the detuning between the qubit
and the center frequency of the Lorentzian. The parameter p

expresses the relationship between the reservoir correlation
time scale τC = λ−1 and the typical system time scale
τS = ω−1 and it determines the border between secular and
nonsecular regimes. Note that here we refine the typical
textbook notion of the secular approximation, which requires
that the typical time scale of the system is negligible in
comparison with the relaxation time scale and results in a
coarse-graining of the relaxation dynamics. Since in this work
we are interested in the short time-scale dynamics we assume
a stronger condition, namely, that the typical time scale of the
driven qubit is much smaller than the other time scales and, in
particular, the reservoir correlation time scale τC . We call the
limit τS � τC the strong secular limit.

A. Strong secular limit

When p � 1 the secular approximation holds and the
nonsecular dissipation term DNS can be neglected from
Eq. (1). Consequently, in the language of Markovian [7,8] and
non-Markovian [23,24] quantum jumps, the master equation
comprises three Lindblad-like terms describing phase flips and
jumps between the eigenstates of the driven qubit, with the
direction of the jump (regular or reversed) depending on the
sign of the corresponding decay rate (positive or negative).
We have shown in Ref. [20] that, in the secular regime, the
decay rates γ±(t) always oscillate, taking temporarily negative
values, whereas γ0(t) is positive for small values of s and has
periods of negativity when s >∼ 3.6.

B. Nonsecular limit

In the opposite regime, defined by p � 1, we have to
consider the full master equation including the nonsecular
terms to obtain a proper description of the short time-
scale dynamics. However, in this limit the decay rates take
a simpler form. More precisely, γ±(t) ≈ γ0(t) ≡ γ (t) and
λ±(t) ≈ λ0(t) ≡ λ(t), and again γ (t) is positive for small
values of s and takes temporarily negative values when s >∼ 3.6,
while λ(t) � 0 for all times t . With this approximation the
master equation can be cast into a remarkably simple form
with a single Lindblad-type decay channel:

dρ(t)

dt
= −i[H + H ′,ρ(t)] + L[A,γ (t)], (9)

where the jump operator is

A = C−σ+ + C+σ− + C0σz (10)

and the additional term in the coherent evolution is

H ′ = λ(t)C0(C+ − C−)(σ− + σ+). (11)
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III. SEMIGROUP AND DIVISIBILITY

Historically non-Markovianity has been closely associated
with deviations from the Lindblad master equation. The
completely positive trace preserving (CPTP) map �: ρ(0) �→
ρ(t) = �(t)ρ(0) corresponding to a Lindblad master equation
always satisfies the semigroup property �(t + s) = �(t)�(s).
For example Wolf, Eisert, Cubitt, and Cirac propose to call a
map Markovian if it is a CPTP map satisfying the semigroup
property [9]. The master equation (1) for the driven qubit in any
structured reservoir is not in the Lindblad form due to the time
dependency of the decay rates and therefore the dynamical
map is not an element of a single-parameter semigroup and
Markovian in this sense.

The measure for non-Markovianity proposed by Rivas,
Huelga, and Plenio is based on a property of maps more
general than the semigroup property, namely, divisibility [10].
The CPTP map �(t + τ,0) is divisible if it can be written
as a decomposition of two CPTP maps, �(t + τ,t) and
�(t,0):

�(t + τ,0) = �(t + τ,t)�(t,0). (12)

When the dynamical map is homogenous in time, �(t + τ,t) =
�(τ,0) ≡ �(τ ), Eq. (12) reduces to the semigroup property.

RHP define a map to be Markovian exactly when it
is divisible. This amounts to requiring that �(t + τ,t) be
completely positive. It is shown in Ref. [10] that the quantity

g(t) = lim
ε→0

‖�(t + ε,t) ⊗ I |φ〉〈φ|‖ − 1

ε
� 0 (13)

is strictly positive if and only if � is indivisible and hence g(t)
identifies non-Markovian processes, according to their defini-
tion. Here |φ〉 = 1√

d

∑d
i=0 |i〉|i〉, where d is the dimension of

the quantum system; in our case |φ〉 = (|11〉 + |00〉)/√2 is the
maximally entangled Bell state. The quantity g(t) gives rise to
a measure for non-Markovianity defined as

NRHP(�) = I
I + 1

, I =
∫

dsg(s), (14)

with the property that NRHP ∈ [0,1]. The lower and upper lim-
its correspond to Markovian and maximally non-Markovian
maps, respectively.

For the local-in-time master equation dρ(t)/dt = L(t)ρ(t)
the dynamical map, in the limit ε → 0, is formally given
by �(t + ε,t) = exp[L(t)ε]. Consequently, RHP propose
that, in this case, one may check the non-Markovianity
of the dynamical process by means of a simplified
quantity:

g(t) = lim
ε→0

‖{I + ε[L(t) ⊗ I]}|φ〉〈φ|‖ − 1

ε
. (15)

A. Secular regime

A direct calculation of Eq. (15) in the case of a driven qubit
in the strong secular regime gives

g(t) = C2
+P [γ+(t)] + C2

−P [γ−(t)] + 2C2
0P [γ0(t)]

2
, (16)

where we define the auxiliary function P : P (x) = 0 when x �
0 and P (x) = −x when x < 0. In general, whenever any of

the decay rates is negative, divisibility is lost. In the Lorentzian
case this is, indeed, the situation in the secular regime where
γ±(t) < 0 always for some periods of time. Thus we prove
that according to RHP the dynamics of the driven qubit in
the secular regime and in the Lorentzian case is always non-
Markovian.

B. Nonsecular regime

In the nonsecular regime we find

g(t) = (C2
+ + C2

− + 2C0)P [γ (t)]

2
, (17)

that is, the dynamics is indivisible and hence non-Markovian
according to RHP whenever the decay rate γ (t) takes temporar-
ily negative values. Again the result is valid for any reservoir,
in the weak coupling limit. Specifically, for a laser-driven
qubit in a Lorentzian reservoir divisibility is broken whenever
s = (ω0 − ωL)λ >∼ 3.6; that is, the laser and the atom are
sufficiently detuned from the center of the Lorentzian, as
discussed in Sec. II.

IV. INFORMATION BACKFLOW

As a second measure of non-Markovianity we consider the
one proposed by Breuer, Laine, and Piilo in Ref. [15]. The BLP
measure aims at identifying non-Markovian dynamics with
certain dynamical physical features of the system-reservoir
interaction, rather than with the mathematical properties
of the dynamical map of the open system. In particular,
BLP define non-Markovian dynamics as a time evolution
for the open system characterized by a temporary flow of
information from the environment back into the system. This
regain of information manifests itself as an increase in the
distinguishability of pairs of evolving quantum states. Hence,
the dynamical map � is non-Markovian according to BLP if
there exists a pair of initial states, ρ1(0) and ρ2(0), such that for
some time t the distinguishability of ρ1(t) and ρ2(t) increases;
that is,

σ (ρ1,ρ2,t) = d

dt
D[ρ1(t),ρ2(t)] > 0, (18)

where D(ρ1,ρ2) = 1
2‖ρ1 − ρ2‖ is the distinguishability of ρ1

and ρ2, with ‖A‖ =
√

AA† being the trace distance, and
ρ1/2(t) = �(t,0)ρ1/2(0). When the distinguishability of two
states increases information flows from the environment back
to the system and vice versa. With this definition one can
quantify the amount of non-Markovianity in the quantum
process as follows

NBLP(�) = max
ρ1,2(0)

∫
σ>0

dtσ (ρ1,ρ2,t); (19)

that is, NBLP gives the maximum amount of information that
can flow back to the system for the given process.

All divisible maps continuously reduce the distinguishabil-
ity of quantum states; that is, for a divisible � we getNBLP = 0.
Hence the connection between the BLP and RHP measures is
the following: if a map is Markovian according to RHP, it is
Markovian also according to BLT. The converse is, in general,
not true.
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A. Secular regime

A straightforward application of Eq. (18) to the solution of
the master equation (1) in the secular regime gives

σ (t) = −e−2�(t)�′(t)(δx2 + δy2) + e−2�(t)�′(t)δz2

2
√

e−2�(t)(δx2 + δy2) + e−2�(t)δz2
, (20)

where δx = x1(0) − x2(0), δy = y1(0) − y2(0), and δz =
z1(0) − z2(0) are the differences in the x, y, and z components
of the Bloch vector representations of ρ1(0) and ρ2(0),
respectively, and

�(t) = 1

2

∫ t

0
ds

[
C2

+γ+(s) + C2
−γ−(s) + 4C2

0γ0(s)
]
,

(21)

�(t) =
∫ t

0
ds[C2

+γ+(s) + C2
−γ−(s)].

The expression in Eq. (20) is valid for a generic structured
reservoir and the non-Markovian properties of the driven qubit
strongly depend on the choice of the environment. We now
focus on the Lorentzian case. Let us choose a pair of initial
states such that δz = 0. Then the sign of σ only depends on
�′(t) = C2

+γ+(t) + C2
−γ−(t). Recall from Sec. II that in the

secular regime γ±(t) have negative periods for all possible
parameter values. Then σ (t) > 0 always for some periods of
time. Therefore, in the secular regime the process describing
the dynamics of a driven qubit in a Lorentzian reservoir is
always non-Markovian according to BLP.

It is worth stressing that although the BLP and RHP
measures both agree that the dynamics of the driven qubit
in a Lorentzian reservoir is non-Markovian, the result need
not hold when the driven qubit is embedded in some other
structured reservoir. Indeed, negativity of one of the decay
rates does not guarantee that σ (t) > 0, although it immediately
breaks the divisibility. It is therefore natural to ask if we
can find some general parameter regions when the dynamics
of the driven qubit is Markovian according to BLP, but
non-Markovian according to RHP. It turns out that the question
is nontrivial from many points of view. For one, showing that
the reduced dynamics of an open system is non-Markovian
according to BLP is simple in comparison to showing that
the dynamics is Markovian, since the former case amounts
to finding one pair of initial states whose distinguishability
increases for some time interval, while the latter case requires
that distinguishability always decreases for all possible pairs of
states. Such an optimization procedure is possible in practice
only numerically, making it hard to identify the parameter
regimes for which the system is non-Markovian according to
BLP. Note that the BLP non-Markovianity quantifier depends
strongly on the spectral density of the environment via linear
combinations of the three decay rates and their integrals;
so identifying the parameters for which the two measures
deviate requires the specification of the environmental spectral
density and involves extensive numerical study with several
free parameters. So far we have been unable to find instances
where the two measures disagree for the model considered
here.

B. Nonsecular regime

In the nonsecular regime the master equation (1) is not, in
general, solvable analytically and we can evaluate the quantity
σ only numerically. We can, however, consider the special case
of resonance between the atom and the laser. In this case the
master equation is solvable and we find

σ (t)= − γ (t)e−2
∫ t

0 dsγ (s)[(δx2 − δz2) + 2δy2]
√

2
√

(δz2 + δx2) + e−2
∫ t

0 dsγ (s)[(δx2 − δz2)+2δy2]
.

(22)

Thus in the resonant nonsecular case the process is non-
Markovian according to BLP if and only if γ (t) < 0 for some
time t . Numerical studies of the off-resonant case � �= 0
indicate that this result holds more generally, that is, in the
nonsecular regime NBLP(t) = 0 if and only if γ (t) � 0.

V. LASER-INDUCED NON-MARKOVIANITY

In this section we compare the non-Markovian character of
the driven dissipative qubit and the analytically solvable model
of an unperturbed dissipative qubit when both are embedded
in a Lorentzian reservoir [1,25]. The master equation for the
qubit in a Lorentzian reservoir, in the special case when the
qubit is in resonance with the Lorentzian, ωA = ω0, is

dρ(t)

dt
= γ (t)

{
σ−ρ(t)σ+ − 1

2
[σ+σ−,ρ(t)]

}
, (23)

where, in contrast to the master equation of Eq. (1), the
operators are in the bare state basis {|e〉,|g〉}. The time-
dependent decay rate is

γ (t) = 2αλ sinh(dt/2)

d cosh(dt/2) + λ sinh(dt/2)
, (24)

where d = √
λ2 − 2αλ. Applying this model to Eqs. (18) and

(15) and introducing the quantity �(t) = ∫ t

0 dsγ (s), we get

σ (t) = −γ (t)[2e−2�(t)δz2 + e−�(t)(δx2 + δy2)]

4
√

e−2�(t)δz2 + e−�(t)(δx2 + δy2)
, (25)

g(t) = 1
2P [γ (t)]. (26)

Equations (25) and (26) show that, in absence of the driving
laser, the dynamics is non-Markovian for both the RHP and the
BLP measures if and only if γ (t) < 0 for some time t ∈ R+.
This happens exactly when λ < 2α, that is, when the qubit
couples strongly to the environment.

Consider now a situation where the qubit couples weakly
to the Lorentzian reservoir and the transition frequency of the
qubit is resonant with the center of the Lorentzian. The analysis
above shows that, without the driving laser, the dynamics of
the qubit is Markovian according to both RHP and BLP. If,
instead, we drive the qubit with a laser, the results obtained in
Secs. IV and III show that we can induce non-Markovianity
in the system dynamics when the laser parameters are suitably
chosen. More precisely, the laser should couple to the qubit in
such a way that the condition p � 1 holds; that is, we are in
the secular regime. The secular regime can be achieved with
a large enough Rabi frequency � and/or when the laser—
and consequently the atom—are sufficiently detuned from the
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center of the Lorentzian. When this happens the laser interferes
with the dynamics of the dissipative qubit so much that it can
temporarily reverse the flow of information from the qubit to
the environment.

VI. DISCUSSION AND CONCLUSIONS

We have studied the non-Markovian character of a driven
qubit in a structured reservoir in different dynamical regimes,
using two different non-Markovianity measures, and we have
analyzed the effect of the driving laser on the non-Markovian
properties of the dissipative qubit.

In the secular regime both measures confirm that the dy-
namics of the driven qubit is always non-Markovian when it is
embedded in a Lorentzian reservoir. However, in general, this
need not be the case and deviations between the two measures
could be discovered when the driven qubit is embedded in
another reservoir. So far we have been unable to find a spectral
density for which the two measures disagree. This might be
an indication that there are no realistic physical situations
where the deviation appears, even if the two mathematical
definitions do not rule it out. It remains an interesting open
question whether the two non-Markovianity measures always
agree in the case of a driven qubit embedded in a generic
structured reservoir; indeed, in general, deviations between the
two measures are neither characterized nor well understood to
date.

In the nonsecular regime the non-Markovianity measures
agree perfectly. In this regime the appearance of non-
Markovian features is strongly dependent on the way the laser
is coupled to the qubit. Neither the presence of the structured
reservoir nor the presence of the driving laser is sufficient
to guarantee non-Markovianity in the system dynamics in
the nonsecular regime. In Sec. V we investigated the origins
of these non-Markovian effects by comparing driven and
nondriven qubits in a Lorentzian reservoir; it was shown
that non-Markovian effects are not possible without a strong
driving laser and/or detuning between the driving laser and the
center frequency of the Lorentzian distribution. This discovery
has a clear physical interpretation; only a strong enough
driving laser can induce a feedback of information from the
environment into the system. In fact, non-Markovianity in
the nonsecular regime occurs in the far off-resonant case. Far
off-resonance dynamics is usually associated with the presence
of virtual processes which may be at the origin, in this case,
of the backflow of information.
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