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Effective method of calculating the non-Markovianity N for single-channel open systems
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We propose an effective method which can simplify the optimization of the increase of the trace distance
over all pairs of initial states in calculating the non-Markovianity N for single-channel open systems. For the
amplitude-damping channel, we can unify the results of Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009)] in the
large-detuning case and the results of Xu et al. [Phys. Rev. A 81, 044105 (2010)] in the resonant case; furthermore,
for the general off-resonant cases, we can obtain a very tight lower bound of N . As another application of our
method, we also discuss N for the non-Markovian depolarizing channel.
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I. INTRODUCTION

Inevitable interaction with the external environment may
lead to the phenomenon of decoherence for open quantum
systems. In general, the assumption of Markovian approxi-
mation usually was applied to dynamical evolution of sys-
tem. However, recently people found that the Markovian
processes without memory and non-Markovian processes
with memory can lead to distinctly different effects on
decoherence and disentanglement of open systems. Thus, the
non-Markovian dynamics have become increasingly important
and are extensive studied in both discrete-variable [1–9]
and continuous-variable [10–15] systems. It has been found
that the non-Markovian effect of environment can extend
significantly the entanglement time of the qubits [1] and has
been experimentally observed [7]. Because of the importance
of the non-Markovian effect of environment, some authors
[16–19] have developed some measures to detect the non-
Markovianity of open systems from different points of view.
Breuer et al. [17] proposed a computable measure N to
detect the non-Markovianity of open systems. The idea is
based on the distinguishability of quantum states, which
results from information flow between the open system and
its environment. Rivas et al. [18] also proposed a measure of
non-Markovianity, which is based on the fact that negative
rates are linked to whether entanglement between the system
and an ancilla can increase. Lu et al. [19] defined a measure
of non-Markovianity using quantum Fisher information flow.
We know that evaluation of N requires optimization of the
total increase of the trace distance over all pairs of initial
states, which is very difficult to accomplish. In Ref. [17],
Breuer et al. considered a two-level system interacting with a
reservoir which possesses the Lorentzian spectral property, and
in the large detuning case they found by numerical simulation
the pair of initial states ρ1(0) = |e〉〈e| and ρ2(0) = |g〉〈g|
which optimize the total increase of the trace distance. (It
should be noted that in Ref. [17] they use |+〉 and |−〉
instead of |e〉 and |g〉 to represent the excited and ground
states, respectively.) Later, for the same two initial states,
Li et al. [20] obtained the analytical expression of the trace
distance D(ρ1(t),ρ2(t)) = |h(t)|2. Very recently, for the same
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model in the resonant case, Xu et al. [21] found two different
initial states which optimize the total increase of the trace
distance by using an analytical method and the corresponding
trace distance D(ρ1(t),ρ2(t)) = |h(t)|. It should be noted that
in Ref. [21] they use b(t) instead of h(t) to represent the
amplitude damping of the excited state |e〉. It is intriguing
that these two results are quite different; that is, in these two
cases the two initial states which make the optimization are
different, and the corresponding trace distance is also different.
Because the optimization is very difficult to accomplish, until
now we have not seen any reports about the non-Markovianity
for the general off-resonant case. In Refs. [17,21], the authors
separately dealt with the optimization by different methods,
one numerical and the other analytical. For the same model,
only for different parameter regimes, the results are quite
different; therefore, a unified understanding of these results
is in demand.

In this paper, we propose an effective method which can
easily optimize the increase of the trace distance over all
pairs of initial states in calculating the non-Markovianity N
for single-channel open systems. For the amplitude-damping
channel, we analytically derive the results of Ref. [17] in
the large-detuning case and the results of Ref. [21] in the
resonant case; furthermore, in the general off-resonant cases,
we can obtain a very tight lower bound for N . Thus, a unified
understanding of the results of Refs. [17] and [21] is given. As
another application of our method, we also discuss N for the
non-Markovian depolarizing channel.

The paper is organized as follows. In Sec. II, we introduce
our method. The non-Markovian amplitude-damping channel
and the non-Markovian depolarizing channel are examined by
our method in Sec. III. Finally, we give the conclusion of our
results in Sec. IV.

II. METHOD OF OPTIMIZING THE TOTAL INCREASE
OF TRACE DISTANCE

Recently, Breuer et al. [17] proposed a measure to detect
the non-Markovian behavior of quantum processes in open
systems based on the distinguishability of quantum states. The
trace distance D describing the distinguishability between the
two states is defined as [22]

D(ρ1,ρ2) = 1
2 tr|ρ1 − ρ2|, (1)
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where |M| =
√

M†M and 0 � D � 1. If D = 0, the two
states are the same, and if D = 1, the two states are totally
distinguishable.

Considering a quantum process �(t),ρ(t) = �(t)ρ(0),
where ρ(0) and ρ(t) denote the density operators at time t = 0
and at any time t > 0, respectively, then the non-Markovianity
N is defined as

N (�) = max
ρ1,2(0)

∫
σ>0

dtσ (t,ρ1,2(0)), (2)

where σ (t,ρ1,2(0)) is the rate of change of the trace distance
defined as

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t),ρ2(t)). (3)

As we known that σ (t,ρ1,2(0)) � 0 corresponds to all dynam-
ical semigroups and all time-dependent Markovian processes,
a process is non-Markovian if there exists a pair of initial states
and at certain time t such that σ (t,ρ1,2(0)) > 0. Physically, this
means that for non-Markovian dynamics the distinguishability
of the pair of states increases at certain times.

In view of Eq. (3), the non-Markovianity N also can be
written as the following form:

N (�) = max
ρ1,2(0)

∑
n

[
D

(
ρ1

(
τmax
n

)
,ρ2

(
τmax
n

))
−D

(
ρ1

(
τmin
n

)
,ρ2

(
τmin
n

))]
, (4)

where τmax
n and τmin

n correspond to the time points of the local
maximum and minimum of D(ρ1(t),ρ2(t)), respectively.N (�)
can be calculated as follows: One first derives the increment
of the trace distance over each time interval [τmin

n ,τmax
n ] for

any pairs of initial states, then sums up the total contributions
of all intervals, and finally performs the maximization for all
pairs of initial states.

Generally, it is very difficult to make the maximization in
Eq. (4). In this paper, we want to find easy ways to maximize
the increase of trace distance. Our idea is this: First, we find
the two specific initial states which make the maximization
of the quantity Nn(�) at each time interval. The Nn(�) is
defined as the difference between the local maximum and
local minimum of the trace distance for arbitrary time interval
[τmin

n ,τmax
n ]. That is,

Nn(�) = max
ρ1,2(0)

[
D

(
ρ1

(
τmax
n

)
,ρ2

(
τmax
n

))
−D

(
ρ1

(
τmin
n

)
,ρ2

(
τmin
n

))]
. (5)

Apparently, it is much easier to find the two initial states which
make the maximization in Eq. (5) than to find the two initial
states which make the summation in Eq. (4) maximal. Then,
for a specific non-Markovian channel we try to prove that the
two initial states we found can also make the summation in
Eq. (4) maximal. Generally, it is not easy to prove this. If it
cannot be proved, we still believe that the pair of initial states
which make the increase of the trace distance in single time
interval maximal will also optimize the summation in N . Of
course, this is not rigorous. If we are strict enough, at least in
this case, we can find a lower bound of N (�), and we argue
that this lower bound is tight. We show in the following that
this method is very effective.

III. APPLICATIONS

Based on this idea, we can calculate the non-Markovianity
N for the non-Markovian amplitude-damping channel and the
non-Markovian depolarizing channel.

A. Non-Markovian amplitude-damping channel

We consider a two-level system (qubit) interacting with
a zero-temperature reservoir. The Hamiltonian of the total
system under the rotating-wave approximation is given by
(h̄ = 1)

Ĥ = ω0σ̂+σ̂− +
N∑

k=1

ωkâ
†
kâk +

N∑
k=1

(gkσ̂−â
†
k + g∗

k σ̂+âk), (6)

where σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| are the Pauli raising and
lowering operators for the two-level system, respectively; ω0

is the Bohr frequency of the two-level system; âk and â
†
k are

the annihilation and creation operators for reservoir mode k;
ωk is the frequency of the mode k of the reservoir; and gk is
the coupling constant. The Hamiltonian of Eq. (6) can describe
various systems. For a concrete discussion, we take a two-level
atom interacting with the reservoir formed by the quantized
modes of a high-Q cavity. The dynamics of the reduced density
matrix for the two-level atom can be written as [23]

ρS(t) =
(

ρS
ee(0)|h(t)|2 ρS

eg(0)h(t)

ρS∗
eg (0)h∗(t) 1 − ρS

ee(0)|h(t)|2
)

(7)

in the basis {|e〉,|g〉}, where the superscript S represents the
two-level atom. Corresponding h(t) denotes the amplitude of
the upper level |e〉 of the atom initially prepared in |e〉 and
satisfies the following integrodifferential equation:

d

dt
h(t) = −

∫ t

0
dt1f (t−t1)h(t1), (8)

where the kernel f (t − t1) = ∫
dωJ (ω) exp[i(ω0 − ω)(t − t1)]

is related to the spectral density J (ω) of the reservoir. The
model describes the damping of a two-level atom in a cavity.
In this paper, we restrict ourselves to the case in which the
atom-cavity system has only one excitation and suppose that
J (ω) takes the Lorentzian spectral density [23] with detuning,
namely

J (ω) = 1

2π

γ0λ
2

(ω0 − δ − ω)2 + λ2
. (9)

Here δ = ω0 − ωc is the detuning of the center frequency of the
cavity ωc and the Bohr frequency of the two-level atom ω0, the
parameter λ defines the spectral width of the coupling, which
is associated with the reservoir correlation time by the relation
τB = λ−1, and the parameter γ0 is related to the relaxation
time scale τR by the relation τR = γ −1

0 . Therefore, the analytic
expression of h(t) can be obtained as

h(t) = e−(λ−iδ)t/2[cosh(dt/2) + (λ − iδ) sinh(dt/2)/d] (10)

with d =
√

(λ − iδ)2 − 2γ0λ.
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Based on the Hermiticity and unit trace of a physical density
matrix, any pair of initial states can be defined as [21]

ρS
1 (0) =

(
α β

β∗ 1 − α

)
,

(11)

ρS
2 (0) =

(
µ ν

ν∗ 1 − µ

)
,

with |β|2 � α(1 − α),|ν|2 � µ(1 − µ) corresponding to the
semipositivity of a density matrix, β,ν ∈ C,0 � α,µ � 1, and
α,µ ∈ R. Thus, the evolution of the corresponding density
matrix can be obtained:

ρS
1 (t) =

(
α |h(t)|2 βh(t)

β∗h∗(t) 1 − α |h(t)|2
)

,

(12)

ρS
2 (t) =

(
µ |h(t)|2 νh(t)

ν∗h∗(t) 1 − µ |h(t)|2
)

.

The combination of Eqs. (1) and (12) immediately provides
the expression of the trace distance at any time t � 0,

D
(
ρS

1 (t),ρS
2 (t)

)=
√

|h(t)|4(α − µ)2 + |h(t)|2|β − ν|2, (13)

which has been obtained in Ref. [21]. It is noted that the
maximization of trace distance in the resonant case has
been given in Ref. [21]; however, that method cannot be
extended to the general off-detuning case because the condition
|h(τmin

n )| = 0 cannot always be guaranteed at each local
minima. Using Eq. (5), we can easily achieve the maximization
of Nn analytically, namely the optimization of the trace
distance difference between the local maximum and local
minimum in the time interval [τmin

n ,τmax
n ], by choosing two

specific initial states. According to Eqs. (5) and (13), Nn can
be written as

Nn = max
ρ1,2(0)

[∣∣h(
τmax
n

)∣∣√∣∣h(
τmax
n

)∣∣2
(α − µ)2 + |β − ν|2

− ∣∣h(
τmin
n

)∣∣√∣∣h(
τmin
n

)∣∣2
(α − µ)2 + |β − ν|2]. (14)

When t = 0, |h(0)| = 1, and from Eq. (13), D =√
(α − µ)2 + |β − ν|2 � 1. Furthermore, the condition is

equivalent to these parameterized conditions (α − µ) =
r cos θ,β − ν = reiφ sin θ (r � 1,θ ∈ [0,2π ] and φ ∈ [0,π ]).
Substituting these parameterized conditions into Eq. (14) and
considering that the maximization is over all pairs of initial
states, we can determine that the maximization condition
requires

√
(α − µ)2 + |β − ν|2 = 1 corresponding to r = 1.

Then the problem becomes the maximization of the following
N o

n (θ ):

N o
n (θ ) = ∣∣h(

τmax
n

)∣∣√∣∣h(
τmax
n

)∣∣2
cos2θ + sin2θ

− ∣∣h(
τmin
n

)∣∣√∣∣h(
τmin
n

)∣∣2
cos2θ + sin2θ. (15)

From the equation

∂No
n (θ )

∂θ
= 0, (16)

we can obtain the extrema, which are N o
n1 = A2 − B2

when θ = 0; N o
n2 = A − B when θ = π/2 or θ = 3π/2;

and N o
n3 = A2

√
1−A2

(B2−1)(A2+B2−1) −B2

√
1−B2

(A2−1)(A2+B2−1) when θ =

arccos[
√

−A2+2A4−A6+B2−2B4+B6

(A2−1)(B2−1)(A4−A2+B2−B4) ], where A = |h(τmax
n )|,B =

|h(τmin
n )|, and A > B. So Nn can be represented as

Nn = max
{
N o

n1, N o
n2, N o

n3

}
. (17)

From numerical calculation, we find that for any A and
B satisfying 0 < B < A < 1, N o

n3 is always less than N o
n1

and N o
n2, so Nn = max{N o

n1, N o
n2}. From the definitions of

N o
n1 and N o

n2, we can determine that when 0 � A + B < 1,

N o
n1 < N o

n2; when A + B = 1, N o
n1 = N o

n2; and when A +
B > 1, N o

n1 > N o
n2.

(i) In the resonant case, that is, δ = 0, it is obvious that A +
B = |h(τmax

n )| + |h(τmin
n )| < 1 because B = |h(τmin

n )| = 0
at τmin

n = 2[nπ − arctan(d ′t/2)]/d ′ with n = 1,2,3, . . ., and
d ′ =

√
|λ2 − 2γ0λ|. So, in any time interval [τmin

n ,τmax
n ],Nn =

max{N o
n1, N o

n2} = N o
n2 = A − B = |h(τmax

n )|. For N o
n2,θ =

π/2 or 3π/2 and the two initial states correspond to α = µ and
|β − ν| = 1. Because in this case Nn reaches its maximum
for any n, the same two initial states, that is, α = µ and
|β − ν| = 1, are also the two initial states which make the
summation in Eq. (4) maximal. It is worth noting that these
conditions α = µ,|β − ν| = 1 together with |β|2 � α(1 − α)
and |ν|2 � µ(1 − µ) are equivalent to the conditions α = µ =
1/2,|β| = |ν| = 1/2, and |β − ν| = 1 obtained in Ref. [21],
which can be explained as follows. Our conditions can be
changed into α = µ,|β − ν| = 1,(α − 1/2)2 + |β|2 � (1/2)2

and (µ − 1/2)2 + |ν|2 � (1/2)2. From the geometric point of
view, the new conditions indicate that the two points (α,|β|)
and (µ,|ν|) are in (or on the circumference of) the same
circle

(x − 1/2)2 + |y|2 = (1/2)2, (18)

with x ∈ R and y ∈ C. It is easy to check that the
conditions α = µ and |β − ν| = 1 are just α = µ = 1/2,

|β| = |ν| = 1/2,|β − ν| = 1. In summary, in the resonant case
our results are consistent with the results of Ref. [21].

(ii) In the off-resonant case, that is, δ �= 0,A + B =
|h(τmax

n )| + |h(τmin
n )| may be less than 1, equal to 1, or

more than 1 depending on the values of γ0, λ, and δ. We
have proved that depending on the value of A + B there
are only two pairs of initial states which maximize Nn for
each n. Next, we give our effective and practical method
to calculate N for any fixed parameters γ0,λ, and δ. From
Eqs. (2) and (3), we can use the two pairs of initial states
to obtain N1 and N2, respectively: N1 = ∫

σ1>0 dtσ1(t,θ = 0),
N2 = ∫

σ2>0 dtσ2(t,θ = π/2 or 3π/2). Correspondingly, the
expressions of σ1(t,θ = 0) and σ2(t,θ = π/2 or 3π/2) are
given by

σ1(t)=e−λt {µ[cosh(at) − cos(bt)] + ν sinh(at)−ξ sin(bt)},
(19)

σ2(t)

= e− λt
2 {µ[cosh(at) − cos(bt)] + ν sinh(at) − ξ sin(bt)}

2
√

η sinh(at) + χ sin(bt) + κ cosh(at) + ς cos(bt)
,

(20)

where a and b denote the real part and imaginary part of d,

respectively, µ = 1
2|d|2 (λa2 − λb2 − λδ2 − λ3 − 2abδ), ν =
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FIG. 1. (Color online) NTLD, N1, and N2 as a function of δ,λ =
0.1γ0.

1
2|d|2 (a3 + ab2 − λ2a + aδ2 + 2bδλ), ξ = 1

2|d|2 (b3 + ba2 +
λ2b − bδ2 + 2aδλ), η = 1

2|d|2 (2aλ − 2bδ), χ = 1
2|d|2 (2bλ +

2aδ), κ = 1
2|d|2 (λ2 + δ2 + a2 + b2), ς = 1

2|d|2 (a2 + b2 −
λ2 − δ2), and |d| denotes the absolute value of d. It is worth
noting that Eq. (19) has been obtained in Ref. [20]. We cannot
prove but we believe that one of the two pairs of initial states
we found can also make the optimization in the summation of
Eq. (4); thus, N = max{N1, N2}. If we are strict enough, at
least it is a very tight lower bound (TLD) for the genuine N ,

NTLD = max{N1, N2}. (21)

We plot NTLD, N1, and N2 as functions of detuning δ for
λ = 0.1γ0 in Fig. 1 and NTLD,N1, and N2 as functions of λ for
δ = 0.1γ0 in Fig. 2. From Fig. 1, we can see that there exists a
critical point for δ at which the pair of initial states change from
θ = π/2 or θ = 3π/2 to θ = 0. More specifically, when δ <

δc, NTLD = N2 corresponds to the two initial states θ = π/2
or θ = 3π/2; when δ = δc, NTLD = N1 = N2 corresponds to
the two initial states θ = 0 and θ = π/2 or 3π/2; and when
δ > δc,NTLD = N1 corresponds to the two initial states θ = 0.
Similarly, it can be seen from Fig. 2 that there also exists a
critical point for λ at which the pair of initial states changes
from θ = 0 to θ = π/2 or θ = 3π/2.

It is worth noting that in the large detuning case, by
numerical simulation Breuer et al. [17] have performed the
optimization of the total increase of the trace distance. In

FIG. 2. (Color online) NTLD, N1, and N2 as a function of λ,δ =
0.1γ0.

the large detuning case from Eq. (10), we know A + B =
|h(τmax

n )| + |h(τmin
n )| > 1 for any n = 1,2,3, . . .. Therefore,

we can obtain Nn = max{N o
n1,N o

n2} = N o
n1 = A2 − B2 =

|h(τmax
n )|2 − |h(τmin

n )|2 for any n, and the two initial states
satisfy α − µ = 1 and |β − ν| = 0 corresponding to θ = 0.
Because the two initial states (θ = 0) optimize Nn for any n,
they also optimize the summation in Eq. (4). Similar to the res-
onant case, the optimization conditions including α − µ = 1,
|β − ν| = 0,|β|2 � α(1 − α), and |ν|2 � µ(1 − µ) can be
simplified into α = 1,µ = 0, and β = ν = 0. Evidently, the
two initial states are ρ1(0) = |e〉〈e| and ρ2(0) = |g〉〈g|, which
has been obtained in Ref. [17]. It is noted that the condition is
obtained by numerical simulation in [17], but here we obtain
the same condition using an analytic method. Then we also can
obtain the trace distance D = |h(t)|2 for these two initial states,
which is given by Ref. [20]. In summary, in the large-detuning
case, our results are consistent with the results reported in
Refs. [17,20].

B. Non-Markovian depolarizing channel

As another application of our method, we consider the non-
Markovianity N for a non-Markovian depolarizing channel.
The dynamical property of this system and in particular the
conditions of complete positivity of the map corresponding
to a master equation have been studied in detail by Daffer
et al. [24]. For this model, the time-dependent Hamiltonian
that corresponds to a two-level system subjected to random
telegraphic noise is

H (t) = h̄

3∑
i=1

�i(t)σi, (22)

where �i(t) = aini(t) are independent random variables and σi

are the usual Pauli operators. The term ni(t) has a Poisson dis-
tribution with a mean equal to t/2τi , while ai is an independent
random variable taking the values ±ai . For the time-dependent
Hamiltonian of Eq. (22), the corresponding equation of motion
for the density operator is governed by the von Neumann
equation ρ̇ = −(i/h̄)[H (t),ρ] = −i�k�k(t)[σk,ρ], which has
the following formal solution:

ρ(t) = ρ(0) − i

∫ t

0

∑
k

�k(s)[σk,ρ(s)] ds. (23)

By substituting the formal solution, Eq. (23), into the von
Neumann equation and performing a stochastic average, one
can obtain the following memory kernel master equation:

ρ̇(t) = −
∫ t

0

∑
k

e−(t−t ′)/τk a2
k [σk,[σk,ρ(t ′)]] dt ′, (24)

where the correlation function of the random telegraph signal
〈�j (t)�k(t ′)〉 = a2

k e
−|t−t ′ |/τk δjk contributes to the memory

kernel. It has been pointed out [24] that the system density
operator with an exponential memory kernel obeys a homo-
geneous Volterra equation after averaging over the reservoir
variables and also been proven that when two of ai are zero
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and only one direction has the noise, the map �(ρ) can be
written in Kraus operator form [25], namely

ρ ′(t) = �t (ρ) =
4∑

k=1

A
†
kρAk. (25)

For simplicity, in this paper we consider only the
case of the z direction with noise and x and y di-
rections without noise. Therefore, A1 = 0,A2 = 0,A3 =√

[1 − �(ν)]/2σ3, and A4 = √
[1 + �(ν)]/2I , where �(ν) =

exp(−ν)[cos(µν) + sin(µν)/µ] with µ =
√

(4aτ )2 − 1, and
ν = t/2τ is a dimensionless time. The term a is the coupling
strength of the system with the external environment while
τ determines which frequencies the system prefers most.
For convenience, we let λ = 1/τ , and then �(ν) can be
rewritten as

�(t) =

⎧⎪⎨
⎪⎩
e−λt/2

[
cosh

(
εt
2

) + λ
ε

sinh
(

εt
2

)]
(16a2 < λ2)

e−λt/2
[
1 + λt

2

]
(16a2 = λ2)

e−λt/2
[

cos
(

εt
2

) + λ
ε

sin
(

εt
2

)]
(16a2 > λ2),

(26)

where ε =
√

|16a2 − λ2|.
By using the same two initial states of Eq. (11), from

Eq. (25) we can obtain the evolutions of the two density
matrices:

ρS
1 (t) =

(
α β�(t)

β∗�∗(t) 1 − α

)
,

(27)

ρS
2 (t) =

(
µ ν�(t)

ν∗�∗(t) 1 − µ

)
.

Therefore, the trace distance can be obtained:

D
(
ρS

1 (t),ρS
2 (t)

) =
√

(α − µ)2 + |�(t)|2|β − ν|2. (28)

From Eqs. (5) and (28), Nn can be expressed as

Nn = max
ρ1,2(0)

[√
(α − µ)2 + ∣∣�(

τmax
n

)∣∣2|β − ν|2

−
√

(α − µ)2 + ∣∣�(
τmin
n

)∣∣2|β − ν|2]. (29)

As in Sec. III A, after parameterizing (α − µ) and |β − ν|, the
problem becomes the maximization of the following N o

n (θ ):

N o
n (θ ) =

√
cos2θ + ∣∣�(

τmax
n

)∣∣2
sin2θ

−
√

cos2θ + ∣∣�(
τmin
n

)∣∣2
sin2θ. (30)

Then we can obtain the extrema of N o
n : N o

n1 = 0
when θ = 0 and N o

n2 = A − B when θ = π/2 or 3π/2,
where A = |�(τmax

n )|,B = |�(τmin
n )|, and A > B. Obviously,

Nn = max{N o
n1, N o

n2} = N o
n2 = A − B. Because the pair of

initial states corresponding to θ = π/2 or 3π/2 makes the
increase of trace distance N o

n maximal for any n, it also
makes the summation in Eq. (4) maximal. The condition
θ = π/2 or 3π/2 means α − µ = 0 and |β − ν| = 1, and
similar to the discussion in Sec. III A, the condition together
with |β|2 � α(1 − α) and |ν|2 � µ(1 − µ) is also equivalent
to α = µ = 1/2,|β| = |ν| = 1/2,|β − ν| = 1. The trace dis-
tance after choosing the two initial states can be given as

D = |�(t)|. (31)

It is noted that there is some similarity between the non-
Markovian depolarizing channel and the amplitude-damping
channel. In the non-Markovian depolarizing channel, the
maximal trace distance is a function of the decoherence factor
|�(t)|, while in the amplitude-damping channel it is a function
of the amplitude damping factor |h(t)|. It is very interesting
that the trace distance of the non-Markovian depolarizing
channel for the specific pair of initial states which make the
optimization is very similar to that of the amplitude-damping
channel in the resonant case; that is, for the former, the trace
distance for the specific pair of initial states is equal to the
decoherence factor |�(t)|, while for the latter it is equal to the
amplitude-damping factor |h(t)|. Furthermore, in both cases
the two initial states which make the optimization are the
same.

We can obtain the rate of the change of the trace distance
using Eq. (3):

σ (t,ρ1,2(0)) = �(t) d
dt

�(t)

|�(t)| . (32)

Having these preparations, we can easily calculate the non-
Markovianity N from Eq. (2). We plot N as a function
of a in Fig. 3. From Fig. 3, we can see that there is a
threshold ac = λ/4. When a � ac, N = 0, which means that
the process is Markovian. When a > ac, N increases with a,
which means that the process is non-Markovian. This can be
easily understood: because a represents the coupling strength
of the system and the reservoir, it is obvious that the non-
Markovianity N will become stronger with the increasing of
a in the non-Markovian regime. It is worth noting that recently
Mazzola et al. [26] elucidated that the memory kernel master
equation does not ensure the presence of non-Markovian
behavior in the evolution of dynamics. For example, in
Ref. [26] they have shown that the non-Markovian behavior
does not appear in the memory kernel master equations (4)
and (10) of the same reference. ξM (R,t) and ξP (R,t) are
two functions corresponding to two models, Eqs. (4) and
(10) of Ref. [26], respectively, which play the central role
in the dynamics of the system. It has been proved that ξM (R,t)
and ξP (R,t) are positive, monotonically decreasing functions
under the condition of positivity of the density matrix [27].
Thus, the quantum processes corresponding to Eqs. (4) and
(10) of Ref. [26] are Markovian. However, the model we
used can also be described by the memory kernel master
equation (24), but we clearly see from Eq. (26) that the

FIG. 3. Non-Markovianity N as a function of a.
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function �(t), which plays a central role in our model, is not
a monotonous function with time but is a damped oscillating
function in some parameter regimes. In this case, the quantum
process we consider is non-Markovian.

IV. CONCLUSIONS

We know that the definition of the non-Markovianity N
needs an optimization over all pairs of initial states, and
generally it is very hard to do this. In this paper, we proposed
a method which can simplify this optimization. The main
idea is this: First, we find the pair of initial states which
make the maximization of the difference between the local
maximum and local minimum of the trace distance in arbitrary
nth time interval, and then we try to prove that this pair of
initial states can also optimize the summation over all pairs of
initial states in calculating the non-MarkovianityN . Using this
method, we have analytically obtained the pair of initial states
which make the optimization in Eq. (4) and the corresponding
trace distance for the amplitude-damping channel in both the
resonant case and the large-detuning case, and we have unified
the results of Breuer et al. [17] and Xu et al. [21]. We also have
analytically obtained the pair of initial states which make the
optimization in Eq. (4) and the corresponding trace distance for
the non-Markovian depolarizing channel. Generally, it cannot
be proved that the pair of initial states which maximize the nth

difference between the local maximum and local minimum of
the trace distance also optimize the summation in N . Here,
we argue that the pair of initial states which make the increase
of the trace distance maximal in one time interval will also
optimize the summation in N . We cannot prove this in this
paper, and this needs further investigations. If we are strict
enough, at least we can obtain a very tight lower bound for
N . For example, for the amplitude-damping channel, we have
found only two pairs of initial states depending on the system
parameters which make the increase of the trace distance
maximal in an arbitrary single time interval. Then it is easy
to calculate N for these two pairs of initial states, and the
larger one is the tight lower bound of N . In this paper, we
mainly focus on the single-channel case, and the generalization
to the multichannel case may be a more challenging task.
We have simplified the problem of finding a pair of initial
states which optimize the summation of the increase of
trace distance in many time intervals into a problem of
optimizing the increase of trace distance in just one single time
interval.
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