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We consider a qubit coupled to a nonlinear quantum oscillator, the latter coupled to an Ohmic bath, and
investigate the qubit dynamics. This composed system can be mapped onto that of a qubit coupled to an
effective bath. An approximate mapping procedure to determine the spectral density of the effective bath is
given. Specifically, within a linear response approximation the effective spectral density is given by knowledge
of the linear susceptibility of the nonlinear quantum oscillator. To determine the actual form of the susceptibility,
we consider its periodically driven counterpart, which is the problem of the quantum Duffing oscillator within
linear response theory in the driving amplitude. Knowing the effective spectral density, the qubit dynamics is
investigated. In particular, an analytic formula for the qubit’s population difference is derived. Within the regime
of validity of our theory, a very good agreement is found with predictions obtained from a Bloch-Redfield master
equation approach applied to the composite qubit-nonlinear oscillator system.
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I. INTRODUCTION

The understanding of relaxation and dephasing properties
of qubits due to the surrounding environment is essential
for quantum computation [1]. A famous model to study the
environmental influences on the coherent dynamics of a qubit
is the spin-boson model [2—4], consisting of a two-level system
(TLS) bilinearly coupled to a bath of harmonic oscillators.
Although the bath degrees of freedom can be traced out exactly,
analytical solutions are only possible within perturbative
schemes. First, those perturbative in the coupling of the TLS to
the bath are typically obtained within a Born-Markov treatment
of the Liouville equation for the TLS density matrix [5,6] or
within the path integral formalism [2]. The equivalence of
both methods has been demonstrated under the restriction of
low temperatures and low damping strengths in Ref. [7]. The
second alternative approach is to perform perturbation theory
in the tunneling amplitude of the two-level system. Within the
so-called noninteracting blip approximation (NIBA) [2-4] it
yields equations of motion for the TLS reduced density matrix
that allow it to capture the case of strong TLS-bath coupling.
Reality is, however, often more complex, as the qubit might
be coupled to other quantum systems besides a thermal bath.
For example, to read out its state, a qubit is usually coupled to
a read-out device.

In the following we mostly have in mind the flux qubit
[8] read out by a dc superconducting quantum interference
device (dc SQUID). The latter mediates the dissipation
originating from the surrounding electromagnetic bath and
can be modeled both as a linear or nonlinear oscillator
[8-19]. Recently, the nonlinearity of qubit read-out devices,
for example of a dc SQUID [15-19] or a Josephson bifurcation
amplifier [20-22], has been used to improve the measurement
scheme in terms of a faster read out and higher fidelity.
Specifically, the device was operated in a regime where
the dynamics exhibited bifurcation features typical of a
classical nonlinear oscillator. As demonstrated in, for example,
Ref. [12], the quantum limit is within experimental reach
as well.
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From the theoretical side, there are two different viewpoints
to investigate the dynamics of a qubit coupled to an oscillator,
with the latter in turn coupled to a thermal bath. The first way
is to consider the TLS and the oscillator as a single quantum
system coupled to the bath, while the second is an effective-
bath description where the effective environment seen by
the qubit includes the oscillator and the original thermal
bath. The mapping to an effective bath has been discussed
for the case in which the TLS is coupled to a harmonic
oscillator in Ref. [23]. Specifically, the spectral density of the
effective bath acquires a broadened peak centered around the
frequency of the oscillator. This case has been investigated in
Refs. [24-30] by applying standard numerical and analytical
methods established for the spin-boson model. All those
works showed that the peaked structure of the effective bath
is essential when the eigenfrequency of the TLS becomes
comparable to the oscillator frequency.

So far, the first approach was used in Ref. [31] to describe a
qubit-nonlinear oscillator (NLO) system in the deep quantum
regime. Here the effects of the (harmonic) thermal reservoir
can be treated using standard Born-Markov perturbation
theory. The price to be paid, however, is that the Hilbert
space of the qubit-nonlinear oscillator system is infinite, which
requires, for practical calculations, its truncation, invoking, for
example, low temperatures [31].

In contrast to the above work, we investigate here the case
of a qubit-NLO system, with the latter being coupled to an
Ohmic bath, within an effective-bath description. Due to the
nonlinearity of the oscillator, the mapping to a linear effective
bath is not exact. In this case a temperature and nonlinearity-
dependent effective spectral density well captures the NLO
influence on the qubit dynamics.

This article is organized as follows: In Sec. II we introduce
the model with the relevant quantities. In Sec. III the mapping
procedure is investigated and the effective spectral density
for the corresponding linear case is given. Afterwards, the
mapping procedure is applied to the case of a qubit coupled
to a nonlinear quantum oscillator. As a consequence of the

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.83.012106

CARMEN VIERHEILIG, DARIO BERCIOUX, AND MILENA GRIFONI

mapping, the determination of the effective spectral density
is directly related to the knowledge of the susceptibility of
the oscillator. We show how the susceptibility can be obtained
from the steady-state response of a quantum Duffing oscillator
in Sec. IIIC. In Sec. IV the steady-state response of the
dissipative quantum Duffing oscillator is reviewed and its
susceptibility is put forward. The related effective spectral
density is derived in Sec. V. In Sec. VI the qubit dynamics is
investigated by applying the noninteracting blip approximation
(NIBA) to the kernels of the generalized master equation
which governs the dynamics of the population difference of
the qubit. A comparison with the results of Ref. [31], obtained
within the first approach, is shown. Furthermore, analogies
and differences with respect to the linear case are discussed.
In Sec. VII, conclusions are drawn.

II. HAMILTONIAN

We consider a composed system built of a qubit—the
system of interest—coupled to a nonlinear quantum oscillator
(NLO); see Fig. 1. To read-out the qubit state we couple the
qubit linearly to the oscillator with the coupling constant g
such that, via the intermediate NLO, dissipation also enters
the qubit dynamics. The Hamiltonian of the composed system
reads

Hio = Hs + Hxio + Hsixro + Hxiors + Hs, (D
where
2
A 14 ~
Hs = — + U({9),
"
Hyio = L pry —MQ*$? + gﬁ“
2M Y 2 47’
Hsinro = 894, 2
¢
A i a2
Hnroys = XJ: [ —CcjX;y+ ijwfy },

Here, Hs represents the qubit Hamiltonian, where p is the
particle’s mass and U(g) a one-dimensional double well
potential with minima at g = £q/2. HAnio is the NLO
Hamiltonian, where the parameter & > 0 accounts for the
nonlinearity. When the oscillator represents a SQUID used
to read out the qubit, the oscillator frequency 2 corresponds
to the SQUID’s plasma frequency. The dissipation in the NLO
is modeled in the following by coupling it to an Ohmic bath

g harmonic
“—> —> bath
T Jo)=no

FIG. 1. (Color online) Schematic representation of the composed
system built of a qubit, an intermediate nonlinear oscillator, and an
Ohmic bath.
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FIG. 2. (Color online) Schematic representation of the comple-
mentary approaches available to evaluate the qubit dynamics. In the
first approach one determines the eigenvalues and eigenfunctions of
the composite qubit plus oscillator system [yellow (light gray) box]
and accounts afterwards for the harmonic bath characterized by the
Ohmic spectral density J(w). In the effective-bath description, one
considers an environment built of the harmonic bath and the nonlinear
oscillator [red (dark gray) box]. In the harmonic approximation, the
effective bath is fully characterized by its effective spectral density
Jerr ().

characterized by the spectral density [2]
N 2

=150

j=1 J=]

dw—wj)=nw=Myo. 3)

In the classical limit it corresponds to a white noise source,
where 7 is a friction coefficient with dimensions of mass times
frequency.

In the following, focus will be on the qubit dynamics in
the presence of the dissipative nonlinear oscillator. Namely,
we will study the time evolution of the qubit’s position as
described by

q(t) := Tr{poi(1)q} = Trs{prea(t)q}, “4)

where pior and preq are the total and reduced density operators,
respectively. The latter is defined as

ﬁred = TI'B TrNLO{:alot } P (5)

where the trace over the degrees of freedom of the bath and
of the oscillator is taken. In Fig. 2, two different approaches
to determine the qubit dynamics are depicted. In the first
approach, which is elaborated in Ref. [31], one first determines
the eigenstates and eigenvalues of the composed qubit-
oscillator system and then includes environmental effects
via standard Born-Markov perturbation theory. The second
approach exploits an effective description for the environment
surrounding the qubit and is based on a mapping procedure.
This will be investigated in the next section.

III. MAPPING

The main aim is to evaluate the qubit’s evolution described
by ¢(¢). This can be achieved within an effective description
using a mapping procedure. Thereby, the oscillator and the
Ohmic bath are put together, as depicted in Fig. 2, to form an
effective bath. The effective Hamiltonian

Her = Hs + Hperr (6)

is chosen such that, after tracing out the bath degrees of
freedom, the same dynamical equations for g(#) are obtained
as from the original Hamiltonian Hiy. Due to the nonlinear
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character of the oscillator, an exact mapping implies that
ﬁB off Tepresents a nonlinear environment. We shall show in the
following subsection using linear response theory that a linear
approximation for Hp . is justified for weak coupling g. Then
Eq. (6) describes an effective spin-boson problem where

. 1 . di .\
Hgff = 3 X:: [— +mjw (Xj - mja)2q) } @)

and the associated spectral density is

Jear(@) ”i U0 — ) ®)
efflW) = — w—wij).
2j=1 miw; I

The Hamiltonian (6) with (7) leads to coupled equations of
motion [2,3]:

d2 N R
nq(n) + U’ (q)+Z< ’2 ):Zdjxj,
d

j=1

miXj+mjoiX; =d;

where U'(§) = %U (¢9). By formally integrating the second
equation of motion and inserting the solution into the first

equation, the well-known Langevin equation for the operator
g is obtained. This, in turn, leads to the Langevin equation for

Geri (1) := Tr{perq ()} [2]:
Wit + 1 / dt'ver(t — e + U @) =0, (9)
0

with the effective damping kernel yeg(r — ).

Notice that (...)er indicates the expectation value taken
with respect to Oes, Which is the density operator associated to
FIeff [2]. In Laplace space, defined by

1
0= o [ dry(h) exp(rt),
Tl c

. (10)
y(A) = /0 dty(t) exp(—At),

we obtain from Eq. (9) the equation of motion

A Getr (L) + LA Yerr (W qer(A) 4+ (U'(W)) et = 0. (11)

The real part y/(w) = Re[yer(A = —iw)] of the effective
damping kernel y,(2) is related to the spectral density via [2]

Jeir(w)

ye/ff(w) =

12)

The mapping for the case of zero nonlinearity @ and Ohmic
damping has been discussed in Ref. [23]. There, the influence
of both the intermediate harmonic oscillator and the bath is
embedded into an effective peaked spectral density given by

gyo
_ w2)2 + Myzwz’

low-frequency behavior Je}flfo(a))—s

eff (a)) (13)

M(Q?
showing Ohmic

Tyo/(MQY).
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A. Equation of motion for the nonlinear Hamiltonian

As discussed above, the mapping requires knowledge of
the reduced dynamics of the system described by the variable
q(t). Therefore, we start from the coupled equations of motion
derived from the Hamiltonian H,q given in Eq. (1):

(14a)
(14b)

ng +U'@Q) = —g9,

M3 +np + M +ap’ = —g4 +£@).
According to Eq. (3), n = My is the damping coefficient
and
(0)

g(t)—zc,[ cos(w,z)+nf sm(a),t)] My 8()$(0)

jwj
(15)

is a fluctuating force originating from coupling to the bath. In
order to eliminate y from the first equation of motion, we have
to calculate y[§(¢)] from the second equation.

In the following, we look at equations of motion for the
expectation values resulting from Eqgs. (14a) and (14b); that
is, we look at the evolution of g(¢) := Tr{pgG(¢)} and y(¢) :=
Tr{pw:¥(¢)}. Since we want to calculate y(¢), we turn back to
Eq. (1) and treat the coupling term Hsni0 as a perturbation,
2Y0q0 K h2, where we introduced the oscillator length yy =
Jh/(MS2). Then, the use of linear response theory in this
perturbation is justified, and we find

oo

y(@) = (3(0))o — % f dr'o(t—1"){[$(1),5(t)1)og(G(t"))e0(t")

+0@gd, (16)

where (...)o denotes the expectation value in the absence of
the coupling g, which we assume has been switched on at time
to=0.

Notice that, for a linear system (for example, the damped
harmonic oscillator), the linear response becomes exact, such
that the neglected corrections are at least of order O(@g>).
Moreover, the time evolution of the expectation values is the
same as in the classical case; this fact corresponds to the
Ehrenfest theorem [2]. For nonlinear systems, the expression
in Eq. (16) is an approximation because all orders in the
perturbation are nonvanishing.'

In Laplace space, Eq. (16) yields

Sy(h) = x(ME(G())o + 0@g>), a7

where §y(A) = y(&) — (§(A))o and where x (1) is the Laplace
transform of the response function or susceptibility

xt—1)= —%90 — )@, 5)N)o. (18)

Since g(A) — (G(X))o

follows that

= 0(g), from Eqgs. (14a) and (17) it

urrq() + g x (Mg + 0@g’.g”)
—(U'W) —g(HW))o. (19)

! An extension of the concept of linear response in case of nonlinear
systems is the so-called Volterra expansion, which provides a
systematic perturbation series in the forcing [32].
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That is, we have a normalization of the mass, and a damping-
like term due to the coupled equations of motion. The effect
of the nonlinearity is embedded in the response function .

We assume in the following that in the absence of the
coupling to the qubit the NLO and bath are in thermal
equilibrium, which yields ($(¢))o = O for all times and, thus,
also (3(1))o = 0.

B. Mapping of the equations of motion and generic
form for the effective spectral density

By comparison of Egs. (11) and (19) we can conclude that
they yield the same dynamics if

(U'W))etr = (U' W), (20)
and the effective bath is chosen such that
XA
g7 = Yenr(h). e2))
LA
By comparing the last equations with the relationship (12) and
replacing 1 = —iw, it follows that
Jer(@) = =g x" (@), (22)

where x”(w) is the imaginary part of the susceptibility in
Fourier space. We have now reduced the problem of finding
the effective spectral density to that of determining the
corresponding susceptibility. Notice that, for a linear system,
the classical and quantum susceptibility coincide and are
independent of the driving amplitude! In this case it is possible
to calculate x(w) directly from the classical equations of
motion. For a generic nonlinear system, however, the classical
and quantum susceptibilities differ.

C. Linear susceptibility of a Duffing oscillator

In order to evaluate the linear susceptibility, we solve
the auxiliary problem of calculating the susceptibility of a
quantum Duffing oscillator (DO); that is, of the nonlinear
quantum oscillator in Eq. (2) additionally driven by a periodic
force with driving amplitude F and driving frequency wex. The
corresponding equation of motion is

M3 + 0§+ MQ?§ + a5’ = —FO(t — o) cos(wext) +£(1).

(23)
Application of linear response theory in the driving yields
the equation for the expectation value of the position of the

oscillator:
o0

y(t) = (3()o — %/ dt'o(t—t)([(), 9(t)])o F cos(wext”)

Iy

+ O(F?). (24)

Using the symmetry properties of the susceptibility x (w), we
obtain in the steady-state limit

ysu(t) = tol—ijzloo y@) =P+ F Cos(wext)xl(wex)

+ F sin(@ex) (" (@ex) + O(F?)
= Acos(@ext + @) + O(F). (25)
Here, the presence of the Ohmic bath implies limy,_, o
(¥(t))o = 0. Notice that, due to symmetry inversion of the

NLO, corrections of O(F?) vanish in Eq. (25). In Eq. (25), A
and ¢ are the amplitude and phase of the steady-state response,
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respectively. It follows that x(w) = %exp(—iq&), such that
x"(w) = —% sin ¢.

IV. STEADY-STATE DYNAMICS
OF A DUFFING OSCILLATOR

So far we have reduced the problem of finding the
effective spectral density to the one of determining the
steady-state response of the Duffing oscillator in terms of
the amplitude A and the phase ¢. These quantities were
recently derived in Refs. [33,34], using the framework of a
Bloch-Redfield-Floquet description of the dynamics of the
DO. The results in Ref. [34] are applicable in a wide range
of driving frequencies around the one-photon resonance
regime wex = Q + 3@yg/(4h) = Q; for sufficiently strong
nonlinearities: yoF/(2+/2) < 3@y} /4 < h.

As illustrated in Refs. [33,34], the amplitude and phase
are fully determined by knowledge of the matrix elements of
the stationary density matrix of the Duffing oscillator in the
Floquet basis [see, e.g., Eqs. (67)—(70) in Ref. [34]]. There,
the master equation yielding the elements of the stationary
density matrix is analytically solved in the low-temperature
regime kT < 72 imposing a partial secular approximation,
yielding Eq. (70) of Ref. [34], and restricting to spontaneous
emission processes only. Here, we follow the same line of
reasoning as in Ref. [34] to evaluate the amplitude and phase:
we impose the same partial secular approximation and consider
low temperatures kg7 < h2. However, we include now both
emission and absorption processes; that is, we use the full
dissipative transition rates as in Eq. (64) of Ref. [34]. The
imaginary part of the linear susceptibility x follows from
the thus-obtained nonlinear susceptibility xy; in the limit of
vanishing driving amplitudes:

X " (Wex)

= lim x7, (®
F—>OXNL( ex)

VT (@ex ) (0)* 22

_ |wex | +S21
Ve Q)10 200 (1) +112 + 477 (|wex | —21)?
(26)
where 3
n1(0) = [1 - %ayg} : (27)

For consistency, n}(0) also has to be treated up to first order in
o only.

Moreover, we used the spectral density J(w) = Myw
and the Bose function ng(€) = {coth[he/(RkpT)] — 1}/2,
which determines the weight of the emission and absorption
processes.

V. EFFECTIVE SPECTRAL DENSITY
FOR A NONLINEAR SYSTEM

The effective spectral density follows from Eqgs. (22) and
(26). It reads

Jeff(wex)
=g youm O gits
My2Q2[2n0(Q21)+112n1(0)* + 4M Q2 (|wex | =21

(28)
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FIG. 3. (Color online) Comparison of the effective spectral
density Jen(w) and a Lorentz curve for moderate damping. The
parameters are Q = 1.0, yja/(#) = 0.08, y = 0.0972, and B =
10 2)~".

As in the case of the effective spectral density J5° [Eq. (13)],
we observe Ohmic behavior at low frequency. In contrast to the
linear case, the effective spectral density is peaked at the shifted
frequency 2. Its shape approaches the Lorentzian one of the
linear effective spectral density, but with a peak at the shifted
frequency, as shown in Fig. 3. While in Refs. [33,34], the
amplitude of the oscillator showed an antiresonant-to-resonant
transition depending on the ratio of driving amplitude F and
damping y the effective spectral density, obtained in the limit
F — 0, displays only resonant behavior.

VI. QUBIT DYNAMICS

In the following we derive the dynamics of a qubit coupled
to this effective nonlinear bath. Therefore, we identify the
system Hamiltonian Hs introduced in Eq. (1) with the one of
a qubit, denoted in the following as ﬁTLs- This is verified at
low energies if the barrier height of the double well potential
U(g) is larger than the energy separation of the ground and
first excited levels in each well. In this case, the relevant
Hilbert space can be restricted to the two-dimensional space
spanned by the ground-state vectors |L) and |R) in the left
and right potential well, respectively [2]. We start by defining
the actual form of the qubit Hamiltonian and its interaction
with the nonlinear oscillator and afterwards introduce its
dynamical quantity of interest, which is the population
difference P(t).

A. Qubit
The Hamiltonian of the TLS (qubit), given in the localized
basis {|L),|R)}, is
N h
Hris = —5(8% + Aoy), (29)
where o;, i = x,z, are the corresponding Pauli matrices, the
energy bias ¢ accounts for an asymmetry between the two
wells, and A is the tunneling amplitude. The bias ¢ can be
tuned for a superconducting flux qubit by application of an

external flux @,y and vanishes at the so-called degeneracy
point [35]. For ¢ > A the states |L) and |R) are eigenstates
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of ﬁTLs, corresponding to clockwise and counterclockwise
currents, respectively.
The interaction in Eq. (2) is conveniently rewritten as

Hris_nio = 249 = hgo,(a +a'), (30)

with hg = %qoyo. Likewise, we express the nonlinear-
oscillator Hamiltonian as

Fo = 12 (G + 1)+ &y
NLO = J ) 4y

L1
e (j + 5) + %(a +aly, 31)

where o = &y3/4.

B. Population difference

The dynamics of a qubit is usually characterized in terms of
the population difference P(¢) between the |R) and |L) states
of the qubit:

P(1) := (0;) = Trris{070rea (1)}, (32)
where pr.q(?) is the reduced density matrix of the TLS:
Prea(t) = Tra{pefe(1)}. (33)

It is found after tracing out the degrees of freedom of
the effective bath from the total density matrix, pes(?) =
exp i e’ p(0) expi e’ It follows that, in the two-level
approximation, geg(t) = q—ZUP(t), where geg(?) is the position
operator expectation value introduced in Sec. III.

As we mapped the nonlinear system onto an effective
spin-boson model, the evaluation of the population difference
P(t) of the TLS is possible using standard approximations de-
veloped for the spin-boson model [25,26,28]. Assuming a fac-
torized initial condition Per(0) = prs(0)Z ! exp(—p Hg off)s
the population difference P(¢) fulfills the generalized master
equation (GME) [2,36]

P@t) = —/ dt'[K*(t —tHP()+ K*(t)], t>0, (34)
0

where K*(t —¢') and K%(t —t') are symmetric and anti-
symmetric with respect to the bias, respectively. They are
represented as a series in the tunneling amplitude. Because
neither an analytic nor a numeric solution is available due
to the complicated form of the exact kernel, we impose in
the following the so-called noninteracting blip approximation
(NIBA) [2,3]. Applying the NIBA corresponds to truncating
the exact kernels to first order in A? and is therefore
perturbative in the tunneling amplitude of the qubit. It is
justified in various regimes: It is exact at zero damping,
otherwise it is only an approximation which works at best for
zero bias and/or large damping and/or high temperature [2].
One finds within the NIBA:

K’(1) = A exp[—S(t)] cos[R(1)],

35)
K“(t) = A% exp[—S()] sin[R(1)],
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where S(t) and R(t) are, respectively, the real and imaginary
part of the bath correlation function:
oo
G
Q(t) = S(r) +iR(t) = / dwﬂ
w

0

X |:coth {/%Tw[l — cos(a)t)]} +i sin(a)t):| ,  (36)

where Geg(w) = qg Jete(w)/(rh). In particular, upon intro-
ducing the dimensionless constant ¢ = g?>yn;(0)*/(m Q?), we
obtain

29,
|| +€2
Geii(w) = 262 5————, (37)
7>+ (lo| — Q)?
where we used Qin1(0>=Q+ O(?) and Yy =

[2nn(€21) + 1]y /2. Consequently, the dynamics of the qubit is
fully determined by the knowledge of the correlation function
Q(7) and hence of the effective spectral density derived in
Sec. V. The explicit form of Q(7) for the case of the effective
nonlinear bath is given in Appendix.

C. Analytical solution for the nonlinear peaked spectral density

In this section we derive an analytical formula for the
population difference P(¢) for the symmetric case (¢ = 0),
requiring weak damping strengths y, such that a weak damping
approximation of the NIBA kernels is verified; specifically,
y/(2r ) < 1. As this calculation is analogous to the one
illustrated in detail in Ref. [28], we only define the relevant
quantities and give the main results.

Due to the convolutive form of Eq. (34), this integro-
differential equation is solved by applying a Laplace transform.
In Laplace space it reads

— 1K)

PO="Tow

(38)
where P()\) = fooo dtexp(—At)P(t) and analogously for
KY5(0).

Consequently, the dynamics of P(t) is determined if the
poles of

A+K(O)=0 (39)

are found and the corresponding back-transformation is
applied. We transform the kernels in Eq. (35) in Laplace
space and expand them up to first order in the damping. This
procedure is called the weak damping approximation (WDA)
in Ref. [28]. One obtains

K90) = Azf dt exp(—At) exp[—So(7)]
0

x {cos[Ro(T)I[1 — S1(7)] — sin[Ro(T)]R(7)},
K9 =0, (40)

where the indices {0, 1} denote the actual order in the damping.
Specifically,

S(t) = So(v) + Si(2) + Oy, (41)
R(t) = Ro(t) + Ri(x) + O(y?), (42)
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where the explicit expression of the above correlation functions
is found in Appendix.

With this we are able to solve the pole equation for P(r)
[Eq. (39)] as an expansion up to first order in the damping
around the solutions A, of the noninteracting pole equation;
thatis, A* = A, — yk, +iyv + O(y?),as y/Q < 1. Follow-
ing Nesi et al. [28], the kernel is rewritten in the compact form

K(S)()\) = Z /OO dt exp(—kt){Aﬁ,c cos(nQ2t)[1 — Si(7)]
n=0 0

+ AL sin(n )Ry (1)}, (43)

where

\/ . hBQ
Ape = Aexp(Y/2). | (2—8,.0)(—i)" J,(uo) cosh (n . )

(44)
\/ . (B
Ans = Aexp(Y/2) (2—8n,o)(—z)"Jn(uo)smh<n 3 )
y— sinh(B7$2))
B cosh(BrQ) — 1’
(45)

_ 4¢°n,(0)*
CQQR2nw(Q) + 11

and

u0=i\/Y2—W2=i<

4¢%n,(0)* ) 1
[2n4(21)+11212 ) sinh(BR$2/2)
(46)

To obtain analytical expressions, we observe that, as discussed
in Secs. III and IV, our expression for the effective spectral
density is justified when g/Q < 1 and Bh<2; > 1. In this
regime, the inequality |ug| < 1 holds. As suggested in [28],
this allows effectively a truncation to the n =0 and n = 1
contributions in K*(1), because the argument of the Bessel
functions is small, leading to the following approximations:

4¢%n1(0)°

)

,4¢°n1(0)°
Q2 ’

Af . = AP exp(Y)Jo(u) = A <1

A2 = A?exp(Y)VY2— W2 cosh(BhQ /2) ~ A

where corrections of order O(g*/Q*) have been neglected.
Notice also that, because our theory only accounts for correc-
tions up to linear order in the nonlinearity o, is n,(0)® = 1 —
6(3a/2h2) + O(a?). Solving the undamped pole equation
yields

AL AT+

2 42
o= = 5
A(2)C_Q% 2 A%c 2 Alcz >
i/(_z )+ 2 (a4 8 )
= Q2. (47)
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The last two equations allow the determination of the oscilla-
tion frequency. Finally, within the WDA, the qubit’s population
difference is obtained as

A2 +Q1 _
P(t) = eXp(—yK_t)ﬁ [cos(fz_t)—)gzL sin(Q_t)]

)‘i"‘g% YK+
exp(— t)——| cos(Qt)—— sin(2,.1)],
+ exp( VK+)A%F_)L2|: (241) Q. (+):|
where k1 = k(Ay), which is derived in detail in Eq. (B1) of
Ref. [28].

We consider two possible resonance cases: First, we choose
the resonance condition 2; = Ay, such that the oscillation

frequencies are, to lowest order in g/ <2 and « /€2,
Al,c
2

3
=S2+Ea:|:g(1

Qy =Q1F

(48)

3a
- %> . (49)

As a consequence, we obtain the so-called Bloch-Siegert shift:
Q- — Q4 =2g(1 —3a/2n2), (50)

which has the same form as in Ref. [31]. For comparison
with [31], we also choose as second condition A = 2, such
that, to lowest order in g/ 2 and o /12, we obtain

3 ug
QL =Q+ — 1-—=, 51
+ +2h:Fg( 471&2) (51)
9ag
Q. —-Q,=2g|1-—), 52
+ g( 4719) (52)

which also agrees with the results of [31].

We show in Figs. 4 and 5 a comparison of the analytic
WDA formula Eq. (48), the numerical solution of the NIBA
Eq. (34), denoted by NIBA, and the results obtained in
Ref. [31] from a numerical solution of the Bloch-Redfield
equations and referred to as the TLS-NLO approach. We
observe that the dynamics are dominated by two frequencies
and are well reproduced within all three approaches. In the

1.0F
----- TLS-NLO
! WDA
(U] NIBA
v
Wk g,
e VI A B AR d
&~ 0.0p ‘HH';:'E-"-,."'\,-‘Ef\,/‘.:“!"\.,-"-l.'\ WIS %
NEIRTRIETIR iR :
HERT A
[ 0 ({ [
1
—0.5} I
0 50 100 150

t(units of Q1)

FIG. 4. (Color online) Comparison of the behavior of P(t)
as obtained from the numerical solution of the Bloch-Redfield
equations based on the TLS-NLO approach [Ref. [31]], the numerical
solution of the NIBA equation [Eq. (34)], and the analytical formula
provided in Eq. (48). The chosen parameters are o = 0.02(7€2),
g=018Q,e=0,A=Q,y/27R) =0.0154,and B = 10(A2)~".
The dynamics agree within all three approaches.
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25¢
————— TLS-NLO
20l k WDA
ih NIBA
51 |
i n
= At it
10f 1
st A
80 0.5 1.0 1.5 2.0

 (units of €2)

FIG. 5. (Color online) Corresponding Fourier transform of P(t)
as shown in Fig. 4.

Fourier spectrum, we observe tiny deviations of the resonance
frequencies. They are due to the fact that the coupling strength
g islarge enough that higher orders in the coupling yield a finite
contribution in the effective-bath description. However, as we
derived above when expanding the analytic formula Eq. (47),
we find the same results up to lowest order in the coupling
g and in the nonlinearity o. We emphasize that this small
discrepancy is also seen for the corresponding linear system in
the work of Hausinger et al. [37] when comparing the NIBA
results in Ref. [28] with those of the Bloch-Redfield procedure.
Finally, we also consider the regime where the coupling is
much weaker than the nonlinearity (g < «). Then Eq. (32)
of Ref. [31] has to be expanded differently; in this regime the
results of Eq. (41) in Ref. [31] are not applicable. Rather, a
proper expansion in this regime allows us to neglect O(g?),
or higher if O(a?) is neglected. The transition frequencies,
when choosing 2 = A, follow from Eq. (32) of Ref. [31]
and read

3 1 S
Q=0+ oF E,/9052/h (53)

. (54)
T Q= Q4+ 3a/m.
1.0F
----- TLS-NLO
! WDA
NIBA
r:’ 0.0p
—0.5f
—1.0k . . .
0 50 100 150

t(units of ﬂ‘l)

FIG. 6. (Color online) As in Fig. 4 but for the smaller TLS-NLO
coupling constant g = 0.0018€2.
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100
----- TLS-NLO
80r WDA
NIBA

60}
S
=

40}

20}

0.0 0.5 1.0 1.5 2.0

w (units of Q)

FIG. 7. (Color online) Corresponding Fourier transform of P(t)
shown in Fig. 6.

Alternatively, we can also perform an expansion of Eq. (47)
consistent with this parameter regime and obtain

—Ql =(- -+’ FQ), (55)
such that
Q=Q, Q= =Q+3a/h (56)

The transition frequencies in Egs. (53) and (56) coincide, and
in Figs. 6 and 7 no deviation is observed when comparing the
three different approaches.

D. Influence on the qubit dynamics due to the nonlinearity—a
comparison of the NIBA for linear and nonlinear
effective spectral densities

In this last section we wish to address the effects of the
nonlinearity on the qubit dynamics. The comparison of linear
versus nonlinear case is done at the level of the numerical
solution of the NIBA equation and shown in Figs. 8 and 9. As
already obtained in Ref. [31], we observe that the transition
frequencies are shifted to higher values compared to the linear
case. Specifically, as can be seen from Egs. (49) and (52), the
reduction is linear in . Also as a consequence, the amplitudes
associated with the transitions are modified. Moreover, we
observe a decrease of the vacuum Rabi splitting compared to

1.0
------- linear
[
| 4 &) .
0.5[ 4 B nonlinear
i o A
y :II i I 0
oAk mon h
s RN )
= Pa bl fafih il SRR Al A o
™ 0_0-‘ [ |l||‘: ] ] \:““l \ " 1 J\_||'l L l",\“, ‘I', HAY WY % y_,’ SN IAAN R Ao
}\’\'HH“I 1 ‘I‘,‘Il: VAY,
RN .
RN
i b
—0.5H! I
0.5 t i
i
[}
¥
! . . .
0 50 100 150

t(units of Q1)

FIG. 8. (Coloronline) P(¢) within the NIBA when using the linear
and the nonlinear effective spectral densities, Eqgs. (13) and (28),
respectively. Parameters are « = 0.02(%2) or @ = Orespectively, g =
0.18R,6 =0, y/(2r ) = 0.0154, and B = 10(A2)~".
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FIG. 9. (Color online) Corresponding Fourier transform of P(t)
shown in Fig. 8. The effect of the nonlinearity is to increase
the resonance frequencies with respect to the linear case. As a
consequence the relative peak heights change.

the linear case; see Egs. (50) and (52). Consequently, the effect
of the nonlinearity of the read-out device can be observed in
the qubit dynamics.

VII. CONCLUSIONS

In this work we determined the dynamics of a qubit coupled
via a nonlinear oscillator (NLO) to an Ohmic bath within
an effective-bath description. We investigated an approximate
mapping procedure based on linear response theory, which
is applicable for the case of weak nonlinearities o and
small to moderate qubit-NLO coupling g. We determined
the effective spectral density in terms of the qubit-oscillator
coupling and the linear susceptibility of a nonlinear oscillator.
The susceptibility was calculated for practical purposes from
the periodically driven counterpart of the original nonlinear
oscillator, yielding an analytical expression for the effective
spectral density valid at low temperatures. The spectral density
thus obtained shows resonant behavior. In particular, it has
almost a Lorentzian form for the parameter regime considered
and is peaked at a shifted frequency; namely, at the one-photon
resonance between the ground state and first-excited state
of the nonlinear oscillator. Moreover, this effective spectral
density acquires a temperature dependence and is Ohmic at low
frequencies. Based on the effective spectral density, the qubit
dynamics are investigated within the NIBA approximation.
In addition, an analytical formula for the qubit dynamics
is provided, which describes very well the dynamics at low
damping.

These results were compared to numerical predictions from
Ref. [31], where the Bloch-Redfield equations for the density
matrix of the coupled qubit nonlinear oscillator system (TLS-
NLO) are solved. These latter equations have the same regime
of validity as those of the effective-bath approach; namely,
weak nonlinearities o /A2 < 1, small qubit-nonlinear oscilla-
tor coupling g/ 2 <« 1, and low temperatures kg7 /A2 < 1.
Thus, in this parameter regime, an overall agreement of the
two approaches is expected. Exemplarily, the predictions of
the two approaches were analyzed for two possible coupling
strengths g. We emphasize that parameters like temperature
and damping and especially the strength of the coupling g
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and nonlinearity « determine the appropriate form of the
expansions in the different parameter regimes. Due to the
tunability of the parameters, various qubit dynamics are
possible. Near and at resonance, the same analytical results
are predicted within the two approaches up to first order in
the coupling and nonlinearity. In agreement with Ref. [31],
we observed the following effects due to the nonlinearity: In
the regime g > «/h, a Rabi vacuum splitting is observed.
The transition frequencies of the two dominating peaks are
shifted to larger values compared to the linear case. Also as
a consequence, the amplitudes of the coherent oscillations of
the population difference P(¢) are modified. Moreover, the
Bloch-Siegert shift is decreased due to the nonlinearity. In the
regime g < «/h, only one peak is predicted.

We conclude that, as in case of the corresponding linear
system [28,37], the effective-bath description provides an
alternative approach to investigate the complex dynamics of
the qubit-dissipative NLO system.
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APPENDIX: BATH CORRELATION FUNCTIONS

We now consider the qubit dynamics for the case of the
effective nonlinear bath. Therefore, we determine the actual
form of the correlation functions S(t) and R(t). From Eq. (37)
it follows

S(t) = Xt + Llexp(—yyt)cos(2;7) — 1]

+ Z exp(—y,T) sin(2; 1), (A1)

R(t) =1 —exp(—y T[N sin(2;7)
+ I cos(217)],

(A2)

where
_ 2w ¢cQ?
QR+ vy

)
Yih Q2

2
X=_I,
hp
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I 1
L=—(—
(7m> cosh(Bn2,) — cos(Bhy )
X [§21 sinh(BRS21) — ¥, SIn(BRY )],

1 1
A
<7th> cosh(Bh€21) — cos(Bhy )
X [V sinh(Bh21) 4+ Q sin(Bhy )]

Here, we have neglected the contribution coming from
the Matsubara term, which is verified if the temperature
is high enough [2] [i.e., kgT > hy/(2m)]. Moreover, we
applied in the contributions of the poles lying in the vicin-
ity of £, the approximation: 22, /(22; £iyy,) ~ 1. This
corresponds effectively to the neglect of certain O(y,)
contributions.
The above expressions can be linearized in the damping:

(A3)

S(r) = So(t) + Si(x) + O(y?), (A4)
R(t) = Ro(t) + Ri(v) + O(y?), (A5)
with
So(7) = Y[cos(§2y7) — 1],
Si(t) = At cos(217) + Bt + Csin(2; 1),
(A6)

Ro(t) = Wsin(L2; 1),
Qlf .
Ri(7) = V|:1 —cos(27) — - 51n(S211:):|.

The zeroth-order coefficients in the damping are given by
sinh(Bh2)

cosh(Bh2) — 1’

_ 4¢°n,(0)*

CQQ2nn(20) + 117

and the first-order coefficients are given by

Y=-W
(AT)

A=—yuY,
B = 2V
_hﬁ ,

B + sinh(BAS)
[cosh (BRS2)) — 11 [2nn (1) + 11
Vv 2g2n1(0)4y'
Q2Q
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