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Error probability analysis in quantum tomography: A tool for evaluating experiments
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We expand the scope of the statistical notion of error probability, that is, how often large deviations are observed
in an experiment, to make it directly applicable to quantum tomography. We verify that the error probability
can decrease at most exponentially in the number of trials, we derive the explicit rate that bounds this decrease,
and we show that a maximum likelihood estimator achieves this bound. We also show that the statistical notion
of identifiability coincides with the tomographic notion of informational completeness. Our result implies that
two quantum tomographic apparatuses that have the same risk function (e.g., variance) can have different error
probability, and we give an example in one-qubit-state tomography. Thus by combining these two approaches
we can evaluate, in a reconstruction-independent way, the performance of such experiments more discerningly.
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I. INTRODUCTION

Many applications that make use of “quantumness” to
outperform their classical counterparts have recently been
proposed, especially in the field of quantum information.
One of the main reasons for this increase has been the
dramatic development of experimental technologies, and many
of the proposals have already given rise to experimentally
realizable applications [1]. To confirm whether an apparatus
constructed for an application works well, we need to compare
its performance to a theoretical model. The standard method
used for such a thorough comparison is called quantum
tomography [2]. This paper is concerned mainly with the
question of how to evaluate measurement apparatuses used
in quantum tomography.

The theory of quantum tomography consists of experimen-
tal design methods and reconstruction schemes. The known
parts of the experimental apparatus in a quantum tomographic
experiment (or at least those parts assumed to be known) are
together called the tester. Experimental design methods are
concerned with how good (or bad) the tester is for estimating
the mathematical representation of the tomographic object
(e.g., a quantum state, or a process). Usually the goodness
of the tester is evaluated by the error of the estimation result
from its experimental data set. In real experiments, we cannot
perform an infinite number of trials—we need to estimate the
true tomographic object from a finite number. This estimation
procedure is called an estimator in statistical estimation theory
and a reconstruction scheme in quantum tomography. The error
of the estimation result depends on the reconstruction scheme,
and when evaluating a tester’s performance, we usually focus
on the error in the case in which the best reconstruction scheme
is used.

Evaluating estimation errors on the reconstructed object is
a problem of statistical estimation theory. There are two main
approaches: one is to use a risk function and the other is to
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use error probability. We measure the difference between the
true object and the estimate by a loss function. A risk function
is the average value of the loss function. As the number of
independent, identically distributed (iid) trials increases, it
is known that the error, given by the risk function, of any
unbiased estimator can decrease by at most the Cramér-Rao
bound, and a maximum likelihood estimator achieves the
bound asymptotically [3]. The application of the Cramér-Rao
inequality to quantum tomography was studied in [4–7]. On
the other hand, an error probability is the probability that
large deviations of the loss function are observed. It has
been shown that the error probability can decrease at most
exponentially [8], and under some conditions, the bound is
achieved (asymptotically) by a maximum likelihood estimator
[9]. However, the explicit form of this bound has not been
shown except for the case in which the estimation setting can
be reduced to one parameter estimation or the loss function is a
Euclidean norm [10–13] (in [13], the applicability of the proof
used for a Euclidean norm to more general loss functions
is discussed). In general, the estimated object has multiple
parameters, and the choice of the loss function depends on
the purpose of the experiment. A mean-squared error may
be unsuitable for some situations, especially those arising
in quantum tomography. To be more useful in practice, the
explicit form of the bound is needed in more generality.

In this paper, by using Sanov’s theorem [14,15] from large
deviation theory, we derive the error probability inequality
bounding general loss functions on a finite multiparameter
space. We prove that a maximum likelihood estimator achieves
the equality under some conditions—that are satisfied in
quantum tomography—and give the explicit form of the lower
bound. Our result indicates that two testers with the same value
of their risk functions can be different from an error probability
viewpoint, which allows for more discerning comparisons of
testers in quantum tomography. We also show that the required
conditions for our inequality hold not only for tomography
of quantum states, but also for that of quantum instruments
[16], which includes process and measurement tomography as
specific cases.

In Sec. II, we give an overview of the theory of quantum
tomography using state tomography as an example. In Sec. III,
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we review classical statistical estimation theory, introducing
the necessary aspects of error probability theory. In Sec. IV,
we give the main theorem and some analysis, which includes
an example. In Sec. V, we discuss some open problems, and
we conclude with a summary in Sec. VI. The proof of the main
theorem is given in the Appendix.

II. OVERVIEW OF QUANTUM TOMOGRAPHY

Quantum tomography is classified by the tomographic
object to be reconstructed: state tomography [17–19] treats
density operators, which describe states of quantum systems;
process tomography [20–24] treats linear, trace-preserving,
and completely positive maps, which describe deterministic
state transitions; positive operator-valued measure (POVM)
tomography [25,26] treats POVMs, which are sets of positive-
semidefinite operators describing the probability distribu-
tions obtained by measurements; instrument tomography
[16] treats quantum instruments, which are sets of linear,
trace-decreasing, completely positive maps describing both
probability distributions and state transitions caused by mea-
surements. Here we briefly overview the theory of quantum
state tomography for simplicity.

The purpose of quantum state tomography is to identify
the density operator characterizing the state of the quantum
system of interest. Let H and S(H) denote the Hilbert space
corresponding to the system and the set of all density operators
on H, respectively. We assume that the dimension d = dimH
is finite. A density operator ρ̂ on H can be linearly and
bijectively parametrized by d2 − 1 independent real variables
[27,28], that is, ρ̂ = ρ̂(s), where s is in Rd2−1. Let us define
the set of all parameters S := {s ∈ Rd2−1| ρ̂(s) ∈ S(H)}.
Identifying the true density operator ρ̂ ∈ S(H) is equivalent to
identifying the true parameter s ∈ S. Let � = {�̂x}x∈� denote
the POVM characterizing the tester used in the tomographic
experiment1 where � := {1, . . . ,M}. When the true density
operator is ρ̂(s), the probability distribution ps describing the
tomographic experiment is given by

ps(x) = Tr[ρ̂(s)�̂x], x ∈ �, (1)

where Tr denotes the trace operation with respect to H. (Note
that in Sec. IV C, a different trace operation, tr, is introduced.)
Suppose that we perform N measurement trials and obtain
a data set xN = (x1, . . . ,xN ), where xi ∈ � is the outcome
observed in the ith trial. Let Nx denote the number of times that
outcome x occurs in xN , then fN (x) := Nx/N is the relative
frequency of x for the data set xN . In the limit of N = ∞, the
relative frequency is equal to the true probability ps(x). A tester
is called informationally complete if Tr[ρ̂(s)�̂x] = Tr[ρ̂�̂x]
has a unique solution ρ̂ for arbitrary ρ̂(s) ∈ S(H) [29]. This

1In quantum tomography, it is possible to change the tester used
in the next trial depending on the previous observation results. Such
an experimental scheme is called adaptive, and the rate of decrease
in such a scheme is analyzed in [13]. An experimental scheme that
allows a global measurement on more than one system at once is called
collective. Both of these generalizations constitute significantly more
complicated experiments that are not currently the norm, and are not
treated in this paper.

condition is equivalent to that of the tester POVM � being a
basis for the set of all Hermitian matrices on H. For finite N ,
the relative frequency and true probability are generally not the
same, that is, there is unavoidable statistical error, and we need
to choose an estimation procedure that takes the experimental
result xN to a density operator, that is, a reconstruction scheme.

Reconstruction schemes are concerned with how best to
derive the mathematical representation of the tomographic
object from the obtained experimental data, and are called
estimators in statistical estimation theory, where the analysis of
the estimation precision (or estimation error) is very important.
In actual experiments, there are two sources of imprecision:
statistical errors and systematic errors. As mentioned earlier,
statistical error is caused by the finiteness of the total number of
measurement trials, and is unavoidable in principle. Systematic
error is caused by our lack of knowledge about the tester, that
is, the difference between the true tester and what we believe
to be the true tester. Usually, the effect of the systematic error
is approximated by introducing a model, and is assumed to
be known. Therefore, the analysis of the estimation error is
usually reduced to that of the statistical error. To date, at least
five reconstruction schemes have been proposed, namely linear
[16,17,20,21,25], maximum likelihood [18,23,26], Bayesian
[30–32], maximum entropy [33], and norm minimization [34].
The effect of statistical errors on the reconstructed object
depends on the scheme used, hence the main problem is how to
quantify the effect of the statistical error on the reconstructed
object, and how to do so as rigorously as possible.

It is natural to consider a linear reconstruction scheme,
which demands that we find a d × d matrix ρ̂ l satisfying

Tr[ρ̂ l�̂x] = fN (x), x ∈ �. (2)

However, Eq. (2) does not always have a solution, and
even when it does, although the solution is Hermitian and
normalized, it is not guaranteed that ρ̂ l is positive semidefinite.
A maximum likelihood reconstruction scheme addresses these
problems. The estimated matrix ρ̂ml is defined as

ρ̂ml := argmax
ρ̂∈S(H)

N∏
i=1

Tr[ρ̂�̂xi
]. (3)

It can be shown that when ρ̂ l ∈ S(H), ρ̂ l = ρ̂ml holds. We will
concern ourselves with maximum likelihood reconstructions
here, as we will see that they are optimal in the sense that they
can saturate the bounds we are considering.

III. OVERVIEW OF CLASSICAL STATISTICAL
ESTIMATION

In this section, we introduce the notation and terminology
of classical statistical estimation theory that we use to arrive
at our main results. We also review the necessary aspects of
error probability. For the reader familiar with quantum Fisher
matrices, we justify our use of classical estimation theory, or
the classical Fisher matrix, in Sec. V D.

Let (�,B,P ) be a probability space denoting a sample
space, a Borel algebra of subsets of the sample space, and a
measure that assigns probabilities to those subsets, respectively
[the Borel structure simply assures that combinations of
subsets of events get assigned probabilities in a sensible
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fashion, e.g., P (Y ∪ Z) = P (Y ) + P (Z) for disjoint Y and Z].
Define the N -fold direct product �N := � × · · · × � as the
space of sequences of events. Let xN = {x1, . . . ,xN }, xi ∈ �,

be a sequence of iid observations of the sample space �.
We assume that the sample space is finite (see Sec. V B for
a discussion of infinite spaces). Suppose that the probability
space admits a statistical modelP� = {Pθ ; θ ∈ �} that assigns
a valid probability measure to each parameter θ in � which is
a subset of the k-dimensional Euclidean space Rk , the closure
�̄ is compact, and the interior �o is open. The quantum state
parameter space S from the preceding section is an example
of such a �, where the statistical model is given by Eq. (1).
We assume that each measure Pθ has a probability distribution
{pθ (x)}x∈� satisfying Pθ (Y ) = ∑

x∈Y pθ (x), where Y ∈ B. A
probability measure Pθ and the probability distribution pθ

have a one-to-one correspondence for any θ ∈ �, and we
do not distinguish between P� and {pθ ; θ ∈ �}. Let P(�)
denote the set of all probability distributions with the sample
space �, thenP� ⊆ P(�). Let P (N)

θ denote the N -fold product
probability measure Pθ × · · · × Pθ .

Let g denote a map from the parameter space � to a metric
space �. An estimator of g(θ ) is a set of maps ϕ = {ϕ1,ϕ2, . . .}
(one for each number of trials N ), from observation results xN

to �. Each ϕN (xN ) is called the estimate of xN . A maximum
likelihood estimator θml = {θml

1 ,θml
2 , . . .} of θ is defined as

θml
N (xN ) = argsup

θ∈�

P
(N)
θ ({xN }). (4)

A map D from � × � to R is called a loss function on
� when D satisfies the following two conditions: (i) ∀a,b ∈
�, D(a,b) � 0, (ii) ∀a ∈ �, D(a,a) = 0. We introduce
three additional conditions: (iii) ∀a,b ∈ �, D(a,b) = D(b,a),
(iv) ∀a,b,c ∈ �, D(a,b) � D(a,c) + D(c,b), and (v) ∀a,b ∈
�, D(a,b) = 0 ⇒ a = b. A loss function satisfying condi-
tions (iii) and (iv) is called a semidistance, and a semidistance
satisfying condition (v) is called a distance. For example, let
us define a function g from � to R as g(θ ) = ‖θ‖,θ ∈ �,
where ‖ · ‖ is the Euclidean norm on Rk . Then |g(θ ) − g(θ ′)|
is a semidistance on � (θ,θ ′ ∈ �) and |a − b| is a distance
on R (a,b ∈ R). In general, a loss function is not necessarily
a distance. A loss function satisfying condition (v) is called a
pseudodistance.2 The Kullback-Leibler divergence introduced
below is an example of a pseudodistance that is not also a
distance. If a loss function D on Rk is sufficiently smooth and
it can be approximated by the Hesse matrix Ha up to second
order, then Ha is positive semidefinite for all a ∈ Rk from
condition (i), and if the loss function D is a pseudodistance,
then Ha is positive definite for all a ∈ Rk .

There are at least two methods to evaluate an estimation
error by using a loss function. One is a method using risk
functions. An N -trial risk function D̄(N) is defined as the
expectation value of the loss function between an estimate
and the true object, given by θ ,

D̄(N) := E
(N)
θ [D(ϕN (xN ),g(θ ))], (5)

where E
(N)
θ [f (xN )] = ∑

xN ∈�N pθ (xN )f (xN ) is the expecta-
tion value of a function f on �N . When � = Rl , for any

2The terminology differs depending on the text book.

unbiased estimator (ϕ satisfying E
(N)
θ [ϕN (xN )] = g(θ ) for any

N and θ ∈ �), the Cramér-Rao inequality

E
(N)
θ [[ϕN (xN ) − g(θ )][ϕN (xN ) − g(θ )]T ] � 1

N

∂g

∂θ

T

F−1
θ

∂g

∂θ

(6)

holds under some regularity conditions, where ( ∂g

∂θ
)αβ :=

∂gβ

∂θα
(α = 1, . . . ,k; β = 1, . . . ,l) is the Jacobian and F−1

θ is
the Moore-Penrose generalized inverse of the Fisher ma-
trix Fθ := ∑

x∈� pθ (x)[∇θ ln pθ (x)][∇θ ln pθ (x)]T . Asymp-
totically a maximum likelihood estimator achieves the equality
under some conditions [3].

The other is a method using error probabilities. We call

P (N)
ε (θ ) := P

(N)
θ (D(ϕN (xN ),g(θ )) > ε)

= P
(N)
θ ({xN ∈ �N ; D(ϕN (xN ),g(θ )) > ε}) (7)

an error probability with a threshold ε > 0. An estimator ϕ is
called (weakly) consistent in the loss function D if

P (N)
ε (θ ) → 0 as N → ∞ (8)

holds for any ε > 0. The conditions under which a maximum
likelihood estimator is consistent includes the identifiability
condition [35] on a statistical model P�: for any θ ∈ �o and
θ ′ ∈ �, if θ �= θ ′, then there exists at least one outcome x ∈ �

satisfying pθ (x) �= pθ ′ (x) [10,11]. Let us define

Rε(θ ) := inf
θ ′∈�

{K(pθ ′ ‖pθ ); D(g(θ ′),g(θ )) > ε}, (9)

where K(q‖p) = ∑
x∈� q(x) ln q(x)

p(x) is called the Kullback-
Leibler divergence (also known as the relative entropy). When
g is injective and D is a distance, for any weakly consistent
estimator in D,

lim
N→∞

1

N
ln P (N)

ε (θ ) � −Rε(θ ) (10)

holds [8]. It is known that in general the lower bound of Eq. (10)
is not attainable by any estimate [36]. If we consider the limit
ε → 0, under some conditions (including the identifiability
condition), a maximum likelihood estimator achieves the
equality, that is,

lim
ε→0

lim
N→∞

1

εuN
ln P (N)

ε (θ ) = −r(θ ), (11)

where u is a real number suitable for D and r(θ ) :=
limε→0

Rε (θ)
εu . The explicit forms of the rate are known for

two specific cases. The first is the case in which � = R and
D is the absolute value. In this case, the order u is 2 and the
explicit form of the lower bound is known to be [10,11]

r(θ ) = 1

2∇θg(θ )F−1
θ ∇θg(θ )

. (12)

The second is the case in which � = Rk , D is the Euclidean
distance on Rk , and the order u is again 2; the explicit form
is [13]

r(θ ) = 1
2 inf

a∈Rk ;‖a‖=1
a · Fθ a. (13)
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For more general � or D, however, the explicit form of
the lower bound is not known. Quantum state tomogra-
phy corresponds to the case in which � = Rd2−1, and the
standard loss function is the square of the fidelity distance
DF (ρ̂,ρ̂ ′) := 1 − Tr[

√√
ρ̂ρ̂ ′√ρ̂]2 or the square of the trace

distance DT (ρ̂,ρ̂ ′) := Tr[|ρ̂ − ρ̂ ′|]2. In this paper, we extend
the preceding results to multiparameter spaces and more
general loss functions such as these that are directly applicable
to quantum tomography, and we give the explicit form of
the lower bound. We apply our result to one-qubit-state
tomography and show that it makes it possible to evaluate
the performance of an experimental apparatus in greater
detail. We also give quantum tomography conditions equiv-
alent to the identifiability condition in classical estimation
theory.

IV. MAIN RESULT AND ANALYSIS

A. Main theorem

For simplicity, we consider quantum state tomography.
Suppose that we use a loss function D on S(H). Let us
define a loss function � on S as �(s,s′) := D(ρ̂(s),ρ̂(s′))
∀s,s′ ∈ S. Assume that � is sufficiently smooth. Let So denote
the interior of S. We define the same point Hesse matrix Hs for
a two-variable function f on S × S as ∇s′∇s′f (s′,s)|s′=s =
[∂s′α ∂s′β f (s′,s)|s′=s]. In the following theorem, we assume
the second-order approximatability on the loss function. We
choose the order of the error probability threshold ε to be 2, in
agreement with the Euclidean distance.

Theorem 1. Suppose that � is a pseudodistance on S with
a nonzero same point Hesse matrix Hs. If s ∈ So, for an
arbitrary consistent estimator sest, the following inequality
holds:

lim
ε→0

lim
N→∞

1

ε2N
ln P (N)

s

(
�

(
sest
N ,s

)
> ε2)

� −1/σ1
(√

HsF
−1
s

√
Hs

)
, (14)

where σ1(A) is the maximal eigenvalue of a Hermitian matrix
A. Furthermore, when the tester is informationally complete,
a maximum likelihood estimator sml is consistent and achieves
the equality in Eq. (14), that is,

lim
ε→0

lim
N→∞

1

ε2N
ln P (N)

s

(
�

(
sml
N ,s

)
> ε2)

= −1/σ1
(√

HsF
−1
s

√
Hs

)
(15)

holds.
The detailed proof of Theorem 1 appears in the appendix;

here, we give an outline. The proof is divided into six parts. For
parts one through five, we do not assume that the probability
distributions are quantum mechanical; we only assume that
they are sufficiently differentiable and that the parameter space
is compact. Only in the sixth part does quantum mechanics
arise. In Lemma 1, by using the same logic as the proof of
Eq. (10) in [8], we show that Eq. (10) holds for any estimator
consistent not only in distances but also in pseudodistances.
Lemma 2 is introduced to calculate the infimum in Eq. (9)
directly. We use this in Lemma 3, where we obtain the explicit
form of the bound on the rate, and obtain Eq. (14). Next
we introduce Sanov’s theorem, a large deviation theorem

that, roughly speaking, gives the rate of the probability of
observing a relative frequency that differs from the true
probability distribution. Lemma 4 uses the compactness of
the parameter space and Sanov’s theorem to prove that the
error probability of a maximum likelihood estimator decreases
exponentially if the identifiability condition is satisfied. Then,
the maximum likelihood estimator is consistent and satisfies
Eq. (14). In Lemma 5, we calculate the rate of decrease of
the maximum likelihood estimator directly by using Sanov’s
theorem and Lemma 3, and show that the rate coincides with
the lower bound in Eq. (14). Hence, we obtain Eq. (15),
subject to the identifiability condition. Finally, we prove that
in quantum state tomography the identifiability condition is
equivalent to the informational completeness of the tester,
which we present as Lemma 6. Together these lemmas prove
Theorem 1.

Note that in the proof, we assume the compactness of the
parameter space (in Lemmas 1 to 5) and the linear parametriz-
ability of probability distributions (in Lemma 6). These
assumptions hold for any quantum operator. Also, the concept
of identifiability applies to the tomographic completeness of
states equally well as it does to the informational completeness
of measurements, which can be shown using the same logic
as that of Lemma 6. Thus Theorem 1 holds for all types of
quantum tomography. The dimension of the parameter space
k depends on the type of quantum tomography: k = d2 − 1
and d4 − d2 for state and process tomography, respectively.
For POVM and instrument tomography, k = (M − 1)d2 and
Md4 − d2 respectively, where M denotes the number of
measurement outcomes.

B. Meaning of the lower bound

Theorem 1 indicates that in quantum tomography, if we
have a sufficiently large data set, the error probability of any
consistent estimator with a small threshold can decrease at
most exponentially, and the rate is bounded by an estimator-
independent function 1/σ1(

√
HsF

−1
s

√
Hs). Also, the bound

is achievable by a maximum likelihood estimator. Therefore,
from an error probability viewpoint, if we can perform a large
number of measurement trials, a maximum likelihood recon-
struction scheme is optimal. We can evaluate the performance
of a given tester by the size of the maximal eigenvalue of the
matrix

Gs :=
√

HsF
−1
s

√
Hs. (16)

Testers with smaller maximal eigenvalues are better. The
inverse Fisher matrix F−1

s alone characterizes the parameter
identifiability of the tester with respect to the Euclidean
distance because the Hesse matrix of the square of the
Euclidean distance �E(s,s′) := ‖s − s′‖2 is 2I , and we
obtain

1

σ1(Gs)
= 1

2σ1
(
F−1

s
) = 1

2
σk(Fs) = 1

2
inf

a∈Rk ;‖a‖=1
a · Fsa,

(17)

where σk(A) is the minimal eigenvalue of a Hermitian
matrix A. This result coincides with the known result of
Eq. (13). The loss function � characterizes the purpose of
the estimation (what we want to know), and the same point
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Hesse matrix Hs modifies the inverse Fisher matrix from the
Euclidean distance to the loss function � on S. Therefore,
the matrix Gs characterizes the parameter identifiability of the
tester with a modification according to our estimation purpose.

C. Relation to risk functions

If we assume sufficient smoothness of a loss function � on
S and informational completeness on the tester, a generalized
Cramér-Rao inequality can be derived, that is, for any unbiased
estimator, the following inequality holds:

�̄(N) �
tr
[
HsF

−1
s

]
2N

+ o

(
1

N

)
, (18)

where tr denotes the trace operation with respect to the
parameter space [4]. Equation (18) indicates that for suf-
ficiently large N , the risk function can decrease at most
inverse-proportionally to N , and the rate is characterized by
tr[HsF

−1
s ]. We can rewrite this as

tr
[
HsF

−1
s

] = tr
[√

HsF
−1
s

√
Hs

] =
k∑

α=1

σα(Gs), (19)

where σα(A) is the αth eigenvalue of a symmetric k × k matrix
A arranged in decreasing order. Therefore, the rates of decrease
of error probability and risk function are both characterized
by, respectively, the maximal eigenvalue and the sum of all
the eigenvalues of a common matrix Gs. The rates’ properties
depend on the choice of the loss function. For example, when

we choose the Kullback-Leibler divergence, that is, �(s,s′) =
K(ps‖ps′), we obtain Hs = Fs and therefore σ1(Gs) = 1 and∑k

a=1 σa(Gs) = k. In this case, the rates of decrease do not
depend on the true parameter or the tester, but in general the
rates depend on both.

The Cramér-Rao inequality holds only for unbiased esti-
mators, and the bound can be broken by biased estimators.
On the other hand, the error probability inequality holds for
any consistent estimator. A maximum likelihood estimator is
consistent under some conditions (including the identifiability
condition), and is not unbiased in general but achieves
the lower bound of Eq. (18) asymptotically. When we use
a maximum likelihood reconstruction scheme in quantum
tomography, the performance of the tester is evaluated by∑k

α=1 σα(Gs) from the risk function viewpoint. When we
have two testers with the same value of

∑k
α=1 σα(Gs) at a

s ∈ S, their performances are equivalent in the risk function
sense, but if the maximal eigenvalues σ1(Gs) are different,
their error probability performances are different. Thus we
can evaluate the performance of testers more discerningly by
considering error probabilities than we can by considering only
risk functions, using the same set of eigenvalues, namely that
of the matrix Gs.

D. Example

Here we analyze a simple example of a tester in one-qubit-
state tomography, namely a six-state POVM,

� = {
1
3 |↑x〉〈↑x |, 1

3 |↓x〉〈↓x |, 1
3 |↑y〉〈↑y |, 1

3 |↓y〉〈↓y |, 1
3 |↑z〉〈↑z|, 1

3 |↓z〉〈↓z|
}
. (20)

This is constructed by mixing the x-, y-, and z-projective
measurements randomly, as in Fig. 1. This example will
serve to illustrate how the performances of risk function and
error probability approaches can differ; see the discussion in
Sec. V A.

We choose a Bloch parametrization of the unknown state
ρ̂(s) = 1

2 (Î + s · σ̂ ). Then the inverse of the Fisher matrix is
found to be

F−1
s = 3

⎛
⎝1 − (s1)2 0 0

0 1 − (s2)2 0
0 0 1 − (s3)2

⎞
⎠ . (21)

As the first example, we choose the square of the Hilbert-
Schmidt distance �HS(s,s′)2 := Tr{[ρ̂(s) − ρ̂(s′)]2} and the
square of the trace distance �T (s,s′)2 := 1

4 Tr[|ρ̂(s) − ρ̂(s′)|]2

as the loss functions. Then we obtain that �HS(s,s′)2 =
�T (s,s′)2 = 1

4‖s − s′‖2. The Hesse matrix H HS
s (= HT

s ) is 1
2I ,

and the modified information matrix is GHS
s = GT

s = 1
2F−1

s .
We obtain

tr
[
GHS

s

] = tr
[
GT

s

] = 3
2 (3 − ‖s‖2), (22)

σ1
(
GHS

s

) = σ1
(
GT

s

) = 3
2 [1 − min{(s1)2,(s2)2,(s3)2}]. (23)

We can readily see that

3 � tr
[
GHS

s

] = tr
[
GT

s

]
� 9

2
, (24)

3

2
− ‖s‖2

2
� σ1

(
GHS

s

) = σ1
(
GT

s

)
� 3

2
, (25)

where the lower bound of the maximal eigenvalue is achieved
at the points satisfying |s1| = |s2| = |s3| = ‖s‖√

3
. Equation (22)

indicates that the rate of decrease of the risk function depends
only on the radius r = ‖s‖ of the Bloch vector and is
independent of the angles θ and φ. On the other hand, Eq. (23)
indicates that the rate of decrease of the error probability
depends on all parameters r, θ, φ [Figs. 2(a-1), 2(a-2), 2(b-1),
and 2(b-2)].

Next, we choose a squared fidelity distance �F (s,s′)2 :=
1 − f (s,s′)2 as the loss function, where f (s,s′) is the fidelity
between ρ̂(s) and ρ̂(s′). In the one-qubit case, the square of
the fidelity is written as [37]

f (s,s′)2 = 1
2 [1 + s · s′ +

√
(1 − ‖s‖2)(1 − ‖s′‖2)]. (26)
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D

D

D

D

D

D

BS(1:2)

BS(1:1)

PBS

PBS

PBS

R

R

R0

X

Y

Z

FIG. 1. An experimental realization of a six-state POVM in a
photon polarization experiment, consisting of photodetectors (D),
beam splitters (BS), polarizing beam splitters (PBS), and rotators (R).
The rotator R0 defines the direction of the z-projective measurement,
and the angles of rotators in X and Y are suitably chosen.

We can calculate the Hesse matrix of �F and the root square
from Eq. (26) as

HF
s = 1

2

(
I + ssT

1 − ‖s‖2

)
, (27)

√
HF

s = 1√
2

{
I +

(
1√

1 − ‖s‖2
− 1

)
ssT

‖s‖2

}
. (28)

From Eqs. (21) and (27), we obtain

tr
[
GF

s

] = 9

2
+ 3

1 − ‖s‖2
{(s1s2)2 + (s2s3)2 + (s3s1)2}. (29)

and

σ1
(
GF

s

) = σ1
(√

HF
s F−1

s

√
HF

s

)
. (30)

Equation (29) indicates that the rate of decrease of the risk
function for the fidelity distance depends on all parameters
r, θ, φ, with plots given in Figs. 2(c-1) and 2(c-2). The cal-
culation of the largest eigenvalue σ1(GF

s ) is done numerically,
with results plotted in Figs. 2(d-1) and 2(d-2). The figures in
Fig. 2 indicate that the rates of decrease of risk function and
error probability change dramatically with the choice of the
loss function.

E. Extension to more general quantum estimation problem

A loss function used in quantum state tomography is usually
a distance on S [or S(H)]. This is because the purpose of
quantum state tomography is to identify the true parameter
(or true density operator). There are, however, cases in which
exact identifiability is not required, for example, estimations
of the average value of a Hermitian operator, the purity of
an unknown state, or the value of an entanglement measure.
These examples correspond to the case in which g is a map

from S to R. More generally, we can consider g : S → Rl , l �
k = d2 − 1. Theorem 1 can be generalized to this case by
modifying the identifiability condition (see the appendix) and
changing the meaning of the superscript −1 from the inverse
matrix to the Moore-Penrose generalized inverse. Specifically,
when l = 1 and the loss function � is the squared absolute
value, that is, g : S → R and �(s,s′) = |g(s) − g(s′)|2, we
can obtain

Hs = 2(∇sg)(∇sg)T , (31)
1

σ1(Gs)
= 1

2∇sg · F−1
s ∇sg

. (32)

This result coincides exactly with the known result of Eq. (12).
When the parameter space is one-dimensional, the rates of

decrease of the two evaluation methods are characterized by
the same function, but when the parameter space is more than
two-dimensional, the rates can be characterized differently.
The simplest tomographic object, a one-qubit state, has a three-
dimensional parameter space, therefore even in the simplest
type of quantum tomography, if two given testers have the
same rate of decrease of a risk function, their rates of decrease
of error probability can be different, that is, the testers can have
different quantum tomographic performance (see Sec. V A).

V. DISCUSSION

A. Evaluating tester performance

Our result shows that when the true parameter is s, the
rate of decrease of the error probability is characterized by
σ1(Gs). In real experiments, of course, we do not know the
true parameter, which is the reason we perform tomography
in the first place. We explain three approaches to evaluating
tester performance below.

The first approach is to use a parameter that we expect to
be the true parameter. In many experiments, quantum state
tomography is performed not for estimating a state but for
proving an experimental realization of a specific quantum
state, for example, a maximally entangled state. By using
the parameter corresponding to the quantum state we want to
realize, we can evaluate the tester’s performance in achieving
that state. Of course the disadvantage of this method is that this
evaluation result can be different from the true performance
in the experiment, because the true parameter can be different
from the parameter that we expect.

The second approach is to consider the average perfor-
mance. Let µ denote a measure on the parameter space S. We
define the average performance of the error probability with
respect to a measure µ as∫

s
dµ(s)σ1(Gs). (33)

In this approach, a tester with a smaller average rate of decrease
is better. The average performance can be calculated without
knowing the true parameter, but of course it is not guaranteed
that the average value is equivalent to the true performance
in the experiment. Since this evaluation result depends on the
choice of the measure µ, we need to ascertain the validity of
the choice.
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(a-1) (a-2) (b-1) (b-2)

(c-1) (c-2) (d-1) (d-2)

FIG. 2. (Color online) The dependency of the rates of decrease of risk function and error probability at ‖s‖ = 0.7 against θ and φ: tr[Gs] for
the Hilbert-Schmidt distance (a-1) and (a-2) corresponding to Eq. (22), and for the fidelity distance (c-1) and (c-2) corresponding to Eq. (29).
σ1(Gs) for the Hilbert-Schmidt distance (b-1) and (b-2) corresponding to Eq. (23), and for the fidelity distance (d-1) and (d-2) corresponding
to Eq. (30). These figures show that the bounds for risk function and error probability depend on the choice of the loss function. θ and φ are
measured in rad.

The third approach is to consider the worst-case perfor-
mance. We define the worst-case performance of a tester as

max
s∈S

σ1(Gs). (34)

This can be calculated without the true parameter, and it is
guaranteed that the true performance is necessarily better or
equal to the value. The disadvantage of this method is that we
might evaluate the tester’s performance much lower than the
true performance in the experiment.

As an example, we compare the performance of testers
according to the first approach. Let us consider a six-state
POVM explained in Sec. IV D and Fig. 1. Suppose that the
density operator that we try to realize is characterized by (r =
0.7, θ = 0, φ = 0). The rates of decrease of risk function and
error probability for �HS,�T ,�F are characterized by tr[Gs]
and σ1(Gs), given in Eqs. (22), (23), (29), (30), and Fig. 2.
Suppose we tune the angles θ0 and φ0 of the rotator R0 in
Fig. 1. Then the true Bloch vector is rotated to (r = 0.7, θ =
θ0, φ = φ0). Which angles θ0 and φ0 should we choose for
the state tomography? The true density operator may not be
what we want, but it is expected to be because we make an
effort to realize the state in the experiment. So, it is natural to
tune the angle θ0 and φ0 so that the statistical error becomes
as small as possible at the rotated objective density operator
(r = 0.7, θ = θ0, φ = φ0).

If we use the square of the Hilbert-Schmidt distance as
the loss function, the rate of decrease of the risk function is
independent of the angle of the rotator [Figs. 2(a-1) and 2(a-2)].
Experimental setups with any angle of R0 have equivalent
performance from the risk function viewpoint. On the other
hand, the rate of decrease of the error probability depends on

those angles [Figs. 2(b-1) and 2(b-2)]. We should tune the
angle to the point where (r = 0.7, θ = θ0, φ = φ0) is at one of
the minima in Fig. 2(b-2). Our error probability approach,
therefore, allows us to evaluate the statistical performance
of these testers (experiments with varying the angles of R0)
while a risk function approach would not. If we use the
fidelity distance, the minima of the risk function and the
error probability are the same (although the curves are not,
as the figures show), and we should choose the angle such
that (r = 0.7, θ = θ0, φ = φ0) is at one of the minima in
Figs. 2(c-2) and 2(d-2). This illustrates that the difference
between the approaches hinges upon the choice of loss function
we use in our analysis.

B. Extension to infinite sample space

Theorem 1 holds for a finite sample space. For a specific
case (g : S → R and � is the squared absolute value), it is
known that Eq. (10) also holds for infinite sample space under
some regularity conditions [10,11]. We can prove that Theo-
rem 1 holds for infinite sample space under some conditions
by combining the proof in [10,11] with Sanov’s theorem and
using the linear parametrizability of probability distributions
in quantum mechanics. Therefore, Theorem 1 holds not only
for finite, but also infinite sample spaces. However, any real
experiments will have finite detector resolution, and so finite
sample spaces suffice.

C. Effect of parameter space boundary

In Theorem 1, the true parameter is limited to the inte-
rior So. Hence it cannot be applied to parameters on the
boundary ∂S := S \ So, which corresponds to the set of all
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non-full-rank density operators, including all pure states. This
limitation can be overlooked by invoking decoherence: in real
experiments, the system of interest is uncontrollably affected
by the environment, leading to full-rank states parametrized
in the interior. The reason behind the limitation is very
technical, stemming from the fact that in our proof we
assume the invariance of the support of probability distribution,
differentiability, and openness at each point of the parameter
space. Such regularity conditions are assumed in standard
classical statistical estimation theory. Statistical models that
do not satisfy the regularity conditions are called nonregular,
and it is known that they can behave very differently from
regular statistical models [38]. The analysis of risk functions
and error probabilities at ∂S is an open problem.

D. Relation to the quantum Fisher matrix

There is an approach to statistical estimation in quantum
systems using a quantity called the quantum Fisher matrix.
In this subsection, we briefly explain the relationship between
quantum and classical Fisher matrix approaches.

The quantum Fisher matrix approach is an attempt to
derive the maximal value of the information extractable from
a quantum system. The quantum Fisher matrix is defined as
the matrix satisfying

FQ
s � Fs(�) (35)

for all POVM’s � and s ∈ S, where Fs(�) is the usual Fisher
matrix, as well as a monotonicity condition under quantum
operations [39–41]. We put (�) in order to emphasize the
dependency on the POVM. By combining Eqs. (18) and (35),
we can obtain the quantum Cramér-Rao inequality,

�̄(N) �
tr
[
HsF

Q−1
s

]
2N

+ o

(
1

N

)
. (36)

By definition, the quantum Fisher matrix depends only on the
true density operator and is independent of POVM’s. So from
the risk function viewpoint, the quantum Fisher matrix can be
interpreted as the principal bound of the rate of decrease for a
fixed true density operator. By combining our result, Eqs. (14),
and (35), we can obtain

lim
ε→0

lim
N→∞

1

ε2N
ln P (N)

s

(
�

(
sest
N ,s

)
> ε2)

� −1/σ1
(√

HsF
Q−1
s

√
Hs

)
. (37)

In general, however, there are no POVM’s achieving the
equality in Eq. (35), except for specific cases that include
one-dimensional parameter space [41]. So the bound is not
tight in a general multiparameter estimation, such as quantum
tomography. We use the classical Fisher matrix here because
we are interested in evaluating the performance of a fixed
experimental apparatus (tester), and we therefore require
POVM dependence. One could evaluate the performance of
a POVM by comparing the value of σ1(

√
HsF

−1
s

√
Hs) with

σ1(
√

HsF
Q−1
s

√
Hs), but the compared bound is not achievable

in general. The derivation of the optimal POVM is an open
problem.

VI. SUMMARY

In this paper, we proved a large deviation inequality for con-
sistent estimators in quantum tomography by using classical
statistical estimation techniques. The inequality shows that,
under some conditions, the error probability of any consistent
estimator can decrease at most exponentially with respect to
the total number of measurement trials, and there is a bound of
the rate of decrease that is achievable by a maximum likelihood
estimator under the informational completeness of the tester.
We also derived the explicit form of the bound and proved that
known quantum tomography conditions are equivalent to the
identifiability condition in classical estimation theory.

From our results, it is shown that a risk function and error
probability measured by the same loss function are character-
ized by a common matrix, the inverse Fisher matrix modified
by the loss function. The rate of decrease (with respect to
the number of trials) of the risk function is characterized by
the sum of the eigenvalues of this matrix, and that of the
error probability by the maximal eigenvalue. The Cramér-Rao
inequality, which is a known risk function inequality, holds
only for unbiased estimators, and the bound can be broken
by biased estimators. On the other hand, the error probability
inequality holds for any consistent estimator, which gives us
the true object in the limit of infinite trials. Therefore, the lower
bound of the error probability characterizes the performance of
the given apparatus, independently of the choice of estimator.
The explicit form of the bound makes it possible to quantify
the performance of the apparatus for estimation purposes in
the error probability sense. We showed, by using a six-state
POVM in one-qubit-state tomography as an example, that by
combining our error probability approach with a risk function
approach, we can evaluate the performance more discerningly
than we can by considering only risk functions.
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APPENDIX: PROOF OF MAIN THEOREM

We give a detailed proof of Theorem 1, using classical
statistical estimation theory. We divide the proof into six parts
to clarify the role of each condition, as well as to isolate the
role of quantum mechanics in the main result.

1. Six lemmas

We first consider the setup described in Sec. III, that is, we
do not assume the statistical model given by Eq. (1). Suppose
that the parameter space � is a closed compact subset of Rk .
Let ∂� denote the boundary of �, that is, ∂� := � \ �o, and
assume that �o is open and nonempty. We also assume that
pθ (x) is a thrice differentiable function with respect to θ ∈ �

for any x ∈ �. Note that these assumptions are satisfied in
quantum mechanics for finite dimensional systems.
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First, we prove that Eq. (10) holds for any estimator
consistent not only in distances, but also in pseudodistances.

Lemma 1. Suppose that � is a pseudodistance on �. If
θ ∈ �o, for an arbitrary consistent estimator θ est in �, the
following inequality holds:

lim
N→∞

1

N
ln P

(N)
θ

(
�

(
θ est
N ,θ

)
> ε2)

� − inf
θ ′∈�

{K(pθ ′ ‖pθ ); �(θ ′,θ ) > ε2}. (A1)

Proof. This is a straightforward generalizations of the proof
in [8], so we omit it here. �

From Lemma 1, we obtain

lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ

(
�

(
θ est
N ,θ

)
> ε2)

� −lim
ε→0

1

ε2
inf
θ ′∈�

{K(pθ ′ ‖pθ ); �(θ ′,θ ) > ε2}. (A2)

Second, we introduce a lemma for calculating the right-
hand side of Eq. (A2).

Lemma 2. Let A and B be k × k real, positive-semidefinite
matrices. If suppA ⊇ suppB holds, then

inf
a/∈kerB

{
a · Aa
a · Ba

}
= 1

σ1(
√

BA−1
√

B)
(A3)

holds, where A−1 is the Moore-Penrose generalized inverse
of A.

Proof. Let us define b := √
Aa/‖√Aa‖. Then,

inf
a/∈kerB

{
a · Aa
a · Ba

}
= inf

b/∈ker
√

A
−1

B
√

A
−1

;‖b‖=1

1

b · √
A

−1
B

√
A

−1
b

= 1/σ1(
√

A
−1

B
√

A
−1

). (A4)

Let us consider the singular value decomposition of
√

A
−1√

B,

that is,
√

A
−1√

B = U1�U2, where U1 and U2 are k × k

unitary matrices and � is a diagonalized matrix. We obtain
√

A
−1

B
√

A
−1 = (

√
A

−1√
B)(

√
A

−1√
B)T

= U1�
2UT

1 , (A5)

√
BA−1

√
B = (

√
A

−1√
B)T (

√
A

−1√
B)

= UT
2 �2U2. (A6)

Therefore, σ1(
√

A
−1

B
√

A
−1

) = σ1(
√

BA−1
√

B). �
Note that when A is full rank, the Moore-Penrose generalized
inverse coincides with the (usual) inverse.

Third, we calculate the infimum on the right-hand side of
Eq. (A2).

Lemma 3. Suppose that � is a sufficient smooth pseudodis-
tance with a nonzero same point Hesse matrix Hθ . Then

lim
ε→0

1

ε2
inf
θ ′∈�

{K(pθ ′ ‖pθ ); �(θ ′,θ ) > ε2} = 1

σ1
(√

HθF
−1
θ

√
Hθ

)
(A7)

holds.
Proof. Let us define B(θ ′,θ ) := 2 �(θ ′,θ)

‖θ ′−θ‖2 . Then

B(θ ′,θ ) = (θ ′ − θ )

‖θ ′ − θ‖Hθ

(θ ′ − θ )

‖θ ′ − θ‖ + O(‖θ ′ − θ‖), (A8)

and the first term is independent of ‖θ ′ − θ‖. Then, for
sufficiently small ε,

1

ε2
inf
θ ′∈�

{K(pθ ′ ‖pθ ); �(θ ′,θ ) > ε2}

= 1

ε2
inf
θ ′∈�

{
K(pθ ′ ‖pθ ); ‖θ ′ − θ‖ > ε

√
2

B(θ ′,θ )

}

= 1

ε2
inf
θ ′∈�

{
1

2
(θ ′ − θ )Fθ (θ ′ − θ ) + O(‖θ ′ − θ‖3);

‖θ ′ − θ‖ > ε

√
2

B(θ ′,θ )

}

= inf
a/∈kerHθ

{
a · Fθ a
a · Hθ a

; ‖a‖ = 1

}

= 1

σ1
(√

HθF
−1
θ

√
Hθ

) , (A9)

where we used Lemma 2 in the last line. Note that Eq. (A7)
holds not only for the limit superior limε→0, but also for the
limit inferior limε→0. �

From Lemma 1 and Lemma 3, we obtain the following
inequality for any estimator consistent in a sufficiently smooth
pseudodistance with the Hesse matrix Hθ :

lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ

(
�

(
θ est
N ,θ

)
> ε2)

� − 1

σ1
(√

HθF
−1
θ

√
Hθ

) . (A10)

Fourth, we prove that if the identifiability condition is
satisfied, then a maximum likelihood estimator is consistent in
the pseudodistance �. In preparation, we introduce empirical
measures. Given a finite sequence xN = {x1, . . . ,xN } and
Y ∈ B, the empirical measure LxN

N induced by the sequence
is defined as

LxN

N (Y ) :=
∑
y∈Y

1

N

N∑
i=1

δy,xi
, (A11)

where δy,x is Kronecker’s delta. Then the value of the empirical
measure on an elemental set {x} ∈ B is equivalent to the
relative frequency of x for the data xN , that is, fN (x) =
LxN

N ({x}). We identify LxN

N and fN later.
Now we introduce Sanov’s theorem for empirical measures.

Let Pp denote a probability measure on B with a probability
distribution p. When p ∈ P�, we have Pp = Pθ . We use a no-
tation P (N)

p (LXN

N ∈ A) := P (N)
p ({xN ∈ �N ; LxN

N ∈ A}), where
A is a given set of probability distributions.

Theorem (Sanov). For every set A of probability distribu-
tions in P(�),

− inf
p′∈Ao

K(p′‖p) � lim
N→∞

1

N
ln P (N)

p

(
LXN

N ∈ A
)

� lim
N→∞

1

N
ln P (N)

p

(
LXN

N ∈ A
)

� − inf
p′∈A

K(p′‖p), (A12)

where Ao is the interior of A considered as a subset of P(�)
and K is the Kullback-Leibler divergence [14,15].
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We are now in a position to prove the following lemma.
Lemma 4. If the identifiability condition is satisfied, then

lim
N→∞

P
(N)
θ

(
�

(
θml
N ,θ

)
> ε2) = 0 (A13)

holds for any ε > 0. That is, a maximum likelihood estimator
is consistent in a pseudodistance � on �.

Proof. A maximum likelihood estimate θml
N can be redefined

by using the Kullback-Leibler divergence and the relative
frequency as follows:

θml
N := argmax

θ∈�

∏N

i=1
pθ (xi)

= argmin
θ∈�

K(fN‖pθ ). (A14)

Let us define

θp := argmin
θ∈�

K(p‖pθ ). (A15)

Then θml
N = θfN

. When analyzing a maximum likelihood
estimate θml

N , we need to be careful to check whether θml
N is

included in �o or ∂�. Let us introduce four sets of probability
distributions A1, A2, A3, and Dθ,ε as

A1 := {p ∈ P�; θp ∈ �o}, (A16)

A2 := {p ∈ P�; θp ∈ ∂�}, (A17)

A3 := P(�) \ P�, (A18)

Dθ,ε := {p ∈ P(�); �(θp,θ ) > ε2}. (A19)

If fN ∈ A1 ∪ A2(=P�), then pθml
N

= fN . If fN ∈ A3, then
pθml

N
∈ A2 and pθml

N
�= fN . Since P(�) = A1 ∪ A2 ∪ A3 and

these sets are disjoint, we can rewrite the error probability as

P
(N)
θ

(
�

(
θml
N ,θ

)
> ε2)

= P
(N)
θ (fN ∈ Dθ,ε)

= P
(N)
θ (fN ∈ A1 ∩ Dθ,ε) + P

(N)
θ (fN ∈ A2 ∩ Dθ,ε)

+P
(N)
θ (fN ∈ A3 ∩ Dθ,ε). (A20)

Because � is compact and �o is not empty, from Sanov’s
theorem, we can obtain

lim
n→∞

1

N
ln P

(N)
θ (fN ∈ Aj ∩ Dθ,ε) = − inf

p∈Aj ∩Dθ,ε

K(p‖pθ ),

(A21)
j = 1,2,3.

From the identifiability condition,

inf
p∈Aj ∩Dθ,ε

K(p‖pθ ) > 0, j = 1,2,3. (A22)

Therefore, for sufficiently large N , there exists ν, 0 < ν < 1,
such that

P
(N)
θ

(
�

(
θml
N ,θ

)
> ε2) < νN (A23)

holds for any ε > 0. So, a maximum likelihood estimator is
consistent in � under the identifiability condition. �

Fifth, we prove that if the identifiability condition is satis-
fied, a maximum likelihood estimator achieves the equality in
Eq. (A10).

Lemma 5. Suppose that � is a sufficiently smooth pseu-
dodistance on � with a nonzero same point Hesse matrix Hθ .

If the identifiability condition is satisfied, then

lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ

(
�

(
θml
N ,θ

)
> ε2)

= − 1

σ1
(√

HθF
−1
θ

√
Hθ

) (A24)

holds.
Proof. From the continuity of K and the openness of So,

for arbitrary θ ∈ �o, there exists ε0 > 0 such that

inf
p∈A1∩Dθ,ε

K(p‖pθ ) < inf
p∈Aj ∩Dθ,ε

K(p‖pθ ) (A25)

hold for j = 2,3 and for any ε satisfying 0 < ε < ε0.3 Hence,
for sufficiently large N and sufficiently small ε,

P
(N)
θ (fN ∈ A1 ∩ Dθ,ε) > P

(N)
θ (fN ∈ Aj ∩ Dθ,ε) (A26)

hold for j = 2,3, and we have

lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ

(
�

(
θml
N ,θ

)
> ε2)

= lim
ε→0

lim
N→∞

1

ε2N
ln

(
P

(N)
θ (fN ∈ A1 ∩ Dθ,ε)

+P
(N)
θ (fN ∈ A2 ∩ Dθ,ε) + P

(N)
θ (fN ∈ A3 ∩ Dθ,ε)

)

= lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ (fN ∈ A1 ∩ Dθ,ε)

= lim
ε→0

1

ε2

(− inf
p∈A1∩Dθ,ε

K(p‖pθ )
)

= − lim
ε→0

1

ε2
inf

θ ′∈�o
{K(pθ ′ ‖pθ ); �(θ ′,θ ) > ε2}

= − 1

σ1
(√

HθF
−1
θ

√
Hθ

) , (A27)

where we used Lemma 3 in the last line. Because a maximum
likelihood estimator satisfies both Eqs. (A10) and (A28), it
achieves the equality in Eqs. (A10) and (A24) holds. �

The final lemma relates the identifiability condition in
classical statistical estimation theory to informational com-
pleteness in quantum tomography. We assume now that the
probability distributions are given by quantum mechanics,
Eq. (1), for finite-dimensional systems.

Lemma 6. Let ρ̂ = ρ̂(s) denote a density operator
parametrized by a vector s ∈ S. We assume that the
parametrization is one-to-one. Suppose that we perform
quantum state tomography with a POVM � = {�̂x}x∈�. Then
the following statements are equivalent.

(i) The probability distribution describing the tomographic
experiment satisfies the identifiability condition.

(ii) The Fisher matrix Fs is full rank for any s ∈ So.
(iii) The POVM is informationally complete.

Proof. First we show that it is sufficient to prove the
equivalence of the three conditions in Lemma 6 for a

3The upper bound of ε0 depends on the true parameter θ , and if ε

is in (0,ε0), a maximum likelihood estimator achieves the equality in
Eq. (10) as pointed out in [42]. This is because the sample space is
finite. If the sample space is infinite, the equality for arbitrary finite ε

is not achievable by any estimate [36].
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linear parametrization. In quantum mechanics, for a finite-
dimensional system, any probability distribution is linearly
one-to-one parametrizable, and we can assume that the
probability distribution has the form

ps(x) = v(x) + s · w(x), (A28)

where v(x) ∈ R and w(x) ∈ Rd2−1 satisfy
∑

x∈� ps(x) = 1
for any s ∈ S. If the probability distribution is one-to-one (but
not necessarily linearly) parametrized by a different parameter
t ∈ Rd2−1, then we have

p̃t (x) = ps(t)(x), (A29)

∇̃ t p̃t (x) = ∂s
∂ t

∇sps(x). (A30)

Condition (i) for s and condition (i) for t are equivalent because
both parametrizations are one-to-one. Condition (ii) for s and
condition (ii) for t are equivalent because the Fisher matrices
satisfy the equation

F̃t = ∂s
∂ t

Fs
∂s
∂ t

T

, (A31)

and the Jacobian ∂s
∂ t is full rank. Condition (iii) is independent

of state parametrization. Therefore, if conditions (i), (ii), and
(iii) are equivalent for a linear parametrization, then they are
also equivalent for a general parametrization.

Next we prove the equivalence of conditions (i) and (ii).
As in the previous discussion, without loss of generality,
we can assume that s is the fixed parameter such that Fs is
diagonalized because this is a linear transformation of a general
parameter. Under this assumption, condition (i) is equivalent to
the condition that for any s ∈ So and for all α = 1, . . . ,d2 − 1,
there exists at least one x ∈ � such that

∂αps(x) �= 0, (A32)

where ∂α := ∂
∂sα . On the other hand, the diagonal elements of

the Fisher matrix are

Fs,αα =
∑
x∈�

(∂αps(x))2

ps(x)
, α = 1, . . . ,d2 − 1. (A33)

Therefore, the full rankness of the Fisher matrix is equivalent
to Eq. (A32), and conditions (i) and (ii) are equivalent.

Third, we prove the equivalence between conditions (ii)
and (iii). We choose the generalized Bloch parametrization
of density operators [27,28]; any density operator ρ̂ can be
represented as

ρ̂(s) = 1

d
Î + 1

2
s · σ̂ , (A34)

where Î is the identity operator on H and σ̂α are generators
of SU(d) satisfying σ̂α = σ̂ †

α , Tr[σ̂α] = 0, and Tr[σ̂ασ̂β] =
2δα,β (α,β = 1, . . . ,d2 − 1). To determine the representation
uniquely, we need additional conditions on σ̂ , but the addi-
tional conditions are not used in the following discussion.
Each element of the tester POVM can be represented as

�̂x = v(x)Î + w(x) · σ̂ , x ∈ �, (A35)

where v(x) and w(x) should satisfy
∑

x∈� v(x) = 1,∑
x∈� w(x) = 0, and �̂x � 0 for any x ∈ �. Then, the prob-

ability distribution describing the tomographic experiment is
represented as Eq. (A28), and the Fisher matrix is

Fs =
∑
x∈�

ps(x)∇s ln ps(x)∇s ln ps(x)T

=
∑
x∈�

w(x)w(x)T

ps(x)
. (A36)

Therefore, the full rankness of the Fisher matrix is equivalent
to the condition that {w(x)}x∈� spans Rd2−1, and this implies
that the tester POVM � is informationally complete. �

2. A more general theorem

From Eqs. (A10) and (A24), we obtain the following
theorem.

Theorem 2. Suppose that � on � is a sufficiently smooth
pseudodistance with a nonzero same point Hesse matrix Hθ . If
θ ∈ �o, for an arbitrary consistent estimator θ est, the following
inequality holds:

lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ

(
�

(
θ est
N ,θ

)
> ε2)

� −1/σ1
(√

HθF
−1
θ

√
Hθ

)
. (A37)

Furthermore, when the identifiability condition is satisfied, a
maximum likelihood estimator θml is consistent and achieves
the equality in Eq. (A37), that is,

lim
ε→0

lim
N→∞

1

ε2N
ln P

(N)
θ

(
�

(
θml
N ,θ

)
> ε2)

= −1/σ1
(√

HθF
−1
θ

√
Hθ

)
(A38)

holds.
Theorem 2 is in fact more general than Theorem 1, since

identifiability is more general than informational complete-
ness. Hence, the properties that the error probabilities of
consistent estimators can decrease at most exponentially,
the rate of decrease is bounded by the maximal eigenvalue
of a matrix, and the bound is achievable by a maximum
likelihood estimator are common to a larger class of probability
distributions than those of quantum mechanics.

By applying Theorem 2 to quantum state tomography
and using Lemma 6, we can obtain Theorem 1. Theorem 2
is applicable to the other types of quantum tomography.
The conditions corresponding to the identifiability condition
are different, and can be derived in the same way as
in the proof of Lemma 6. For example, let us consider
ancilla-unassisted quantum process tomography. To identify
an unknown quantum process described by a linear, completely
positive, and trace-preserving map κ on S(H), we prepare a
set of input states ρ = {ρ̂n}Ns

n=1, where ρ̂n ∈ S(H) and a mea-
surement described by a POVM � = {�̂x}x∈� on H. The set
{ρ,�} is the tester for ancilla-unassisted process tomography.
When ρ spans S(H), it is called tomographically complete.
In ancilla-unassisted process tomography, the informational
completeness of � and the tomographical completeness of
ρ are both required. We can prove that these conditions are
equivalent to the identifiability condition in the same way as
in Lemma 6.
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For the case in which the same point Hesse matrix of the loss
function is positive semidefinite, as mentioned in Sec. IV E, the
identifiability condition is modified as follows: for any θ ∈ �o

and θ ′ ∈ �, if g(θ ) �= g(θ ′), then there exists at least one single
outcome x ∈ � satisfying pθ (x) �= pθ ′(x). Theorem 2 holds
for this modification.
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