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Path-integral derivations are presented for two recently developed complex trajectory techniques for the
propagation of wave packets: complex WKB and Bohmian mechanics with complex action (BOMCA). The
complex WKB technique is derived using a standard saddle-point approximation of the path integral, but taking
into account the h̄ dependence of both the amplitude and the phase of the initial wave function, thus giving rise
to the need for complex classical trajectories. The BOMCA technique is derived using a modification of the
saddle-point technique, in which the path integral is approximated by expanding around a near-classical path,
chosen so that up to some predetermined order there is no need to add any correction terms to the leading-order
approximation. Both complex WKB and BOMCA techniques give the same leading-order approximation; in
the complex WKB technique higher accuracy is achieved by adding correction terms, while in the BOMCA
technique no additional terms are ever added: higher accuracy is achieved by changing the path along which the
original approximation is computed. The path-integral derivation of the methods explains the need to incorporate
contributions from more than one trajectory, as observed in previous numerical work. On the other hand, it
emerges that the methods provide efficient schemes for computing the higher-order terms in the asymptotic
evaluation of path integrals. The understanding we develop of the BOMCA technique suggests that there should
exist near-classical trajectories that give exact quantum dynamical results when used in the computation of the
path integral keeping just the leading-order term. We also apply our path-integral techniques to give a compact
derivation of the semiclassical approximation to the coherent-state propagator.
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I. INTRODUCTION

In a recent series of papers [1–3] we have considered two
complex trajectory techniques for solving the time-dependent
Schrödinger equation (TDSE). By a “trajectory technique”
we mean that we solve the TDSE for the wave function
by integrating a system of ordinary differential equations
(ODEs) along certain trajectories in configuration space. By
a “complex trajectory technique” we mean that the relevant
trajectories evolve in complex configuration space; i.e., we
analytically continue the wave function and consider it as
a function of complex space variables. (Note that the time
variable remains real, so the trajectories are real curves in
complex space.) The motivation for using complex trajectories
comes from the substitution

ψ = exp

(
iS

h̄

)
, S ∈ C, (1)

in the TDSE

ih̄ψt = − h̄2

2m
∇2ψ + V (x)ψ. (2)

This yields the complex quantum Hamilton Jacobi equation
(CQHJE) [4,5]:

St + 1

2m
(∇S)2 + V (x) = ih̄

2m
∇2S. (3)

Taking h̄ as small, the CQHJE can be considered as a
perturbation of the classical Hamilton Jacobi equation (HJE):

St + 1

2m
(∇S)2 + V (x) = 0. (4)

Since the classical HJE can be solved exactly by integration
along trajectories in space defined by

dx
dt

= ∇S

m
, (5)

it is natural to try a similar technique (at least as an
approximation) for its perturbation, the CQHJE. Complex
trajectories arise since S in Eq. (1), and hence ∇S in Eq. (5),
are complex, leading to complex initial conditions for the
evolution; furthermore the perturbation in Eq. (3) is complex.

In our earlier papers we observed that a reasonable
approximation to the wave function may require taking into
account contributions from more than one trajectory reaching
a particular point in space. We gave no theoretical justification
for this, and one of the purposes of the current paper is to
fill this gap. More generally the aim of the current paper is
to strengthen the theoretical basis of the techniques of our
previous papers by showing how they can be derived by saddle-
point evaluation of the wave function in the path-integral
representation. In this approach the need to (potentially) add
the contributions of several trajectories emerges naturally.

In Sec. II we give a detailed presentation of the two
techniques under study here. In the first method, the complex
WKB technique [3], the trajectories are solutions of the
classical equations of motion. In the second method, which we
call the Bohmian mechanics with complex action (BOMCA)
technique [1,2], the trajectories are order h̄ perturbations of
solutions of the classical equations. Indeed, in the BOMCA
method the trajectories depend on the order in h̄, while in the
complex WKB method they remain the same; to increase the
order in h̄ in the complex WKB method we have to integrate a
further system of ODEs along the trajectories.
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The distinction between the standard WKB and complex
WKB methods lies in the assumptions made about the h̄

dependence of the wave function, and in particular of the
initial wave function. In standard WKB theory we write
ψ(x) = A(x)eiS(x)/h̄ [6] and assume that the amplitude and
phase A(x) and S(x) each have power-series expansions in h̄.
In the complex WKB theory we write ψ(x) = eiS(x)/h̄ where S

is complex and assume that both the real and imaginary parts
of S(x) have power-series expansions in h̄. This apparently
slight modification has significant effects: it modifies the
leading-order equations of the approximation scheme (as well
as all higher orders). The two approaches are applicable
in different circumstances. In particular, the complex WKB
theory described in this paper is appropriate for studying the
dynamics of Gaussian wave packets or coherent states (though
note an interesting recent paper of Maia et al. [7]). The entire
community working with coherent-state propagators (see, for
example, Refs. [8–18]) all tacitly assume h̄ dependence in
both the amplitude and phase of ψ as we do here. In greater
generality, it is straightforward to show that if a normalized
wave function takes the form ψ(x) = A(x)eiS(x)/h̄ where A(x)
and S(x) are real and both have well-defined, smooth, nonzero
limits as h̄ → 0, then both the RMS deviations of position and
momentum are O(1) (and thus describe states that are far from
minimal uncertainty states). The form assumed in the complex
WKB theory does not have this limitation.

In Sec. III we present a path-integral derivation of the
complex WKB method. The critical difference from the
conventional WKB method is that in the complex WKB
method we assume the initial wave function ψ0 takes the
form ψ0(x) = eiS(x)/h̄, where S is now complex. As a result,
the stationary-phase points move off the real axis into the
complex plane leading to complex classical trajectories, which
are essentially different from their counterparts in standard
WKB theory. The fact that the complex WKB method
describes the saddle-point approximation of the path integral
has two implications. First, it provides justification for the need
to include contributions from multiple (complex) classical
trajectories, as observed in our previous work. But in addition,
while it has long been recognized that certain factors involved
in the (leading-order) saddle-point approximation of path
integrals, specifically elements of the so-called stability matrix,
can be calculated efficiently by integrating certain ODEs
along classical trajectories [19], it turns out that the same is
true (at least in our situation) for all higher-order correction
terms. Within the path-integral formulation, the expressions
for higher-order correction terms involve complicated multiple
integrals; the complex WKB method reformulates these
expressions as solutions of a system of first-order ODEs, which
are much easier to handle computationally.

Before presenting the path-integral derivation of the
BOMCA method, in Sec. IV we present a slight modification
to the standard method of asymptotic analysis of integrals
with a large parameter. In Sec. V we apply this modification
to the path integral and are led to the BOMCA method. The
distinction between the BOMCA and complex WKB methods
becomes extremely clear. Complex WKB and BOMCA meth-
ods give the same leading-order approximation to the wave
function ψ(X,T ), determined as follows: First, find complex
classical trajectories x(t) satisfying appropriate initial and final

conditions; specifically, solve the problem

mẍ(t) + ∇V (x(t)) = 0, ẋ(0) = − ih̄

m
∇ ln ψ0(x(0)),

(6)
x(T ) = X.

Here ψ0 is the wave function at t = 0. Next, for each such
trajectory, compute the matrix U satisfying

mÜ + H (V )[x(t)]U = 0, U (0) = I,
(7)

U̇ (0) = − ih̄

m
H (ln ψ0)[x(0)].

Here H (V ) denotes the matrix of second derivatives of V and
H (ln ψ0) the matrix of second derivatives of ln ψ0. Then the
wave function is approximated by

ψ(X,T ) ≈
∑ eiS[x]/h̄ψ0(x(0))√

det U (T )
, (8)

where S[x] denotes the classical action associated with the
path x(t), i.e.,

S[x] =
∫ T

0

[
1

2
mẋ2 − V (x)

]
dt. (9)

The sum in (8) is over contributing trajectories (possibly not all
trajectories), as we will explain later. The distinction between
the complex WKB and BOMCA methods lies in the manner
in which higher-order corrections are made to (8). In the
complex WKB method higher-order corrections are made by
multiplying the leading-order contribution for each trajectory
in (8) by a suitable factor of the form 1 + O(h̄). In the BOMCA
method, the formula (8) is never modified, but the paths x(t)
and matrices U (t) are no longer required to be classical. More
explicitly, the differential equations in (6) and (7) are replaced
by equations of the form

mẍ + ∇V [x(t)] = O(h̄), (10)

mÜ + H (V )[x(t)]U = O(h̄). (11)

The BOMCA method gives explicit expressions for the terms
to introduce on the right-hand side of these equations, but, as
we shall explain, they are not unique choices.

We call the quantity appearing on the right-hand side
of (8), with the classical choice of x and U , the classical
wave function. Note that our use of the term “classical
wave function” differs from previous uses; see, for example,
Box 2.2 in Ref. [20]. We emphasize also that our classical
wave function differs from the usual approximations made in
time-dependent WKB theory; the difference can be traced to
different assumptions about the h̄ dependence of the initial
wave function, with our choice requiring the use of complex
trajectories.

As we have explained, the BOMCA method provides a
prescription for making the formula (8) more accurate, to any
order in h̄, by changing the equations that x and U satisfy.
We are led to conjecture that there may exist choices of x
and U , satisfying (10)–(11), such that formula (8) is exact.
Unfortunately, at this stage we know only how to describe the
right-hand sides of (10) and (11) perturbatively in h̄, and, as we
have indicated, there are many choices (one being associated
with the BOMCA method). If there exist choices of x and
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U for which (8) is exact, the relevant trajectories x would
be an interesting intermediate object between classical and
quantum trajectories. The usual notion of quantum trajectories
(in Bohmian mechanics) are the paths in (real) configuration
space satisfying ẋ = h̄

m
Im[∇ ln ψ(x,t)] (see Refs. [20] and

[21] for extensive discussion). One of the properties of these
trajectories is that the velocity diverges at a node of the wave
function, so near nodes quantum trajectories are qualitatively
different from classical trajectories. In distinction to this, the
nonclassical trajectories that arise in the BOMCA method
are always perturbations of classical trajectories. Certainly
it is possible to express the wave function ψ in the form
(8) only in certain regions of (X,T ) space (like any other
semiclassical formula, our formula suffers from problems
related to caustics and Stokes’s lines), but in these regions
we conjecture that there exist nonclassical trajectories that
are perturbations of classical trajectories, which make the
formula (8) exact.

After our derivation of the BOMCA method from the path
integral, in Sec. VI we discuss the application of our ideas
to the evaluation of other quantities in quantum mechanics.
There is an extensive literature on the use of complex classical
trajectories to compute the coherent-state propagator (see, for
example, Refs. [8–18]), and we show how some relevant
formulas can be derived using our techniques. Section VII
contains concluding comments. An Appendix provides the
multidimensional derivation of the classical wave function (8);
in most of the main text we present the path-integral derivations
just in the one-dimensional case.

We conclude this introduction with a discussion of some
relevant literature that has not yet been mentioned. The use
of complex classical trajectories in semiclassical quantum
mechanics goes back to Stine and Marcus [22] and George
and Miller [23–25], and numerous different applications have
been subsequently presented (see, for example, Refs. [26,27]).
As far as we know, the first attempt to use complex classical
trajectories to propagate wave packets is in the works of
Huber, Heller, and Littlejohn [28,29] (the superposition of
contributions from more than one trajectory also appears in
this work). Our work, however, is closer to the rather different
viewpoint of Boiron and Lombardi [30]. Other developments
in this area include the extensive work of de Aguiar and
collaborators [31–33] and very recent contributions of Chou
and Wyatt [34] and Sanz and Miret-Artés [35]. There are
a number of papers on the time-dependent WKB method
that we also found illuminating; see Refs. [36–39]. Recent
numerical work of Bender, Brody, and Hook [40], suggesting
strong connections between complex classical dynamics and
quantum dynamics, is very encouraging; such connections also
provided the motivation for the detailed studies of complex
classical dynamics of Kay and Shnerb [41,42]. Likewise, there
are interesting connections between our current work and a
series of papers by Poirier and collaborators [43–48]. Poirier
considers a decomposition of the wave function as a sum of
(nodeless) terms; we suspect this decomposition is strongly
linked with, if not identical to, the decomposition implied by
(8) (at least in the time-dependent case [47]). Finally, we note
that the hierarchy of ODEs in the BOMCA method can be
viewed as a complex version of the DPM of Trahan, Hughes,
and Wyatt [49], which was originally developed for real

trajectories (see the exposition in Ref. [20] and the comparison
of the BOMCA and DPM methods in Ref. [50]).

II. THE COMPLEX WKB AND BOMCA METHODS

As explained in Sec. I, the starting point for both the
methods we consider in this paper is the substitution of
ψ = eiS/h̄ in the time-dependent Schrödinger equation to
obtain the CQHJE (3). Here S(x,t) is complex. Both of our
methods consist of approximating the CQHJE by a system of
equations that can be solved by integrating along trajectories
in complex configuration space. Both of our methods allow us
to systematically improve the order of approximation in such
a way that we might reasonably expect, in a suitable limit, to
obtain exact results.

The first method, complex WKB, proceeds by an expansion
of S in powers of h̄. The relevant trajectories, irrespective of the
order of approximation, are solutions of the complex classical
equations of motion. The complex WKB method is described
in detail in Sec. II A. The second method, BOMCA, involves
a different approximation scheme that will be described in
detail in Sec. II B The relevant trajectories depend on the
order of approximation. The question arises as to whether
these trajectories have a well-defined limit as the order of
approximation is increased, and what this limit is. We will
discuss this matter more in Sec. V.

In Sec. II C we summarize some of the findings of our
previous work on complex WKB and BOMCA methods that
are relevant for understanding the rest of this paper.

A. Complex WKB Method

Writing

S(x,t) =
∞∑

n=0

Sn(x,t) h̄n (12)

and substituting in the CQHJE, we obtain the following PDEs
for the component functions Sn(x,t):

S0t + 1

2m
(∇S0)2 + V (x) = 0, (13)

Snt + ∇S0

m
· ∇Sn = − 1

2m

n−1∑
m=1

∇Sm · ∇Sn−m + i

2m
∇2Sn−1,

n = 1,2, . . . . (14)

Along with the TDSE we assume we are provided with
an initial wave function ψ0(x) = ψ(x,0), and this provides
us with an initial condition S(x,0) = −ih̄ ln ψ0(x) for the
CQHJE. How are we to choose appropriate initial conditions
for the component functions Sn? The archetypal form of the
initial wave function we wish to consider is a nonnormalized
Gaussian wave packet, which in one spatial dimension takes
the form

ψ0(x) = exp

[
− (a0 + ia1)(x − x0)2

h̄
+ ip0(x − x0)

h̄

]
. (15)
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Here a0,a1,x0,x1 are real constants, with a0 > 0, related to the
expectations and variance of position and momentum via

〈x〉 = x0, 〈p〉 = p0, (16)

〈(x − x0)2〉 = h̄

2a0
, 〈(p − p0)2〉 = h̄

(
a2

0 + a2
1

)
2a0

. (17)

For this choice of ψ0 we have

S(x,0) = − ih̄ ln ψ0(x) = i(a0 + ia1)(x − x0)2 + p0(x − x0),

(18)

so it is natural to choose

S0(x,0) = i(a0 + ia1)(x − x0)2 + p0(x − x0), (19)

Sn(x,0) = 0, n = 1,2, . . . . (20)

In greater generality, throughout this paper we will assume
that we can write the initial wave function as ψ0(x) =
exp[iS init(x)/h̄] where S init(x) is independent of h̄, and take
S0(x,0) = S init(x) and Sn(x,0) = 0 for n � 1. It is possible
to generalize to the case that ψ0(x) = exp[iS init(x)/h̄] where
S init(x) can be expanded in a Taylor series in h̄, with nonzero
constant term, but this substantially complicates the formulas,
so we restrict to the simplest case.

In the complex WKB method we opt to solve the system of
Eqs. (13)–(14) by integrating along trajectories defined by

dx
dt

= ∇S0

m
. (21)

Writing v = ∇S0
m

and taking the gradient of (13) gives

∂vi

∂t
+ (v · ∇) vi + 1

m

∂V

∂xi

= 0. (22)

Thus along the trajectories we have

dv
dt

= − 1

m
∇V (x). (23)

(Here d
dt

denotes the Lagrangian derivative along the trajec-
tories d

dt
= ∂

∂t
+ v · ∇). We see the trajectories are simply

classical trajectories. Note, however, that they are trajectories
in complexified space. The initial condition for the TDSE
gives the initial condition S init(x) as a complex function of x,
and thus

v(0) = 1

m
∇S init(x(0)) (24)

is in general complex.
To summarize to this stage: In the complex WKB method

we choose to integrate along trajectories given by (21),
and from (13) we deduce that these are actually classical
trajectories, i.e., solutions of

dx
dt

= v,
dv
dt

= − 1

m
∇V (x), (25)

with the complex initial condition (24). Also from (13) we
deduce that the evolution of S0 down these trajectories is
given by

dS0

dt
= 1

2
mv2 − V (x). (26)

To compute the evolution of S1,S2, . . . along the trajectories
we need to use Eq. (14). We have written these equations with
precisely the Lagrangian derivative of Sn along the trajectories
on the left-hand side. Writing the first few equations out more
explicitly we have

dS1

dt
= i

2m
∇2S0, (27)

dS2

dt
= − 1

2m
(∇S1)2 + i

2m
∇2S1, (28)

dS3

dt
= − 1

m
∇S1 · ∇S2 + i

2m
∇2S2. (29)

We see that to find S1 we need to follow the evolution of ∇2S0

along the trajectory, which may be found by calculating the
second spatial derivatives of (13). To find S2, we see from (28)
that we need to follow the evolution of first and second spatial
derivatives of S1 along the trajectories. These are obtained
by taking two spatial derivatives of (27), but to integrate the
resulting equations we also need third and fourth derivatives
of S0, obtained by further differentiation of (13).

Proceeding in this manner we see that to obtain
S0,S1, . . . ,Sn we need to follow up to the 2nth derivatives
of S0, up to the 2(n − 1)th derivatives of S1, etc., along the
trajectory. The total number of derivatives of order up to i of
a scalar function is

1 + d + d(d + 1)

2
+ d(d + 1)(d + 2)

6

+ · · · + d(d + 1) · · · (d + i − 1)

i!
= (d + i)!

d!i!
, (30)

where d denotes the number of spatial dimensions. Thus
the total number of functions we need to follow along the
trajectories is given by

D(n,d) =
2n∑
i=0

i even

(d + i)!

d!i!
. (31)

We are not aware of a closed-form expression for this sum
but tabulate it in Table I for some low values of d and n. For
fixed n and large d we note that D(n,d) ∼ d2n/(2n)!; i.e., the
number of functions we need to follow increases polynomially
with the dimension.

At this juncture we write out in full the equations that
we must integrate to obtain S0,S1,S2: To find the trajectories
we solve Newton’s equations (25) with the required initial
condition (24). The gradient of S0 along the trajectories can
be identified with mv, and we do not need to recompute it.
Higher derivatives of S0 along the trajectories are determined
by integrating the following equations:

dS0,ik

dt
= −Vik − 1

m

∑
j

S0,ij S0,jk, (32)

dS0,ikl

dt

= −Vikl − 1

m

∑
j

(S0,ij S0,jkl + S0,kj S0,j li + S0,lj S0,j ik),

(33)
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TABLE I. Total number of functions to be evolved along the trajectories as a function of dimensionality d and order n. The full expressions in
the cases n = 2 and n = 3 with general d are 1

24 (d4 + 10d3 + 47d2 + 86d + 72) and 1
720 (d6 + 21d5 + 205d4 + 1035d3 + 3034d2 + 4344d +

2880), respectively. Note the numbers listed include a contribution of d for finding ∇S0 = mv, which in practice is already determined when
finding the trajectories.

D(n,d) n = 1 n = 2 n = 3 General n

d = 1 4 9 16 (n + 1)2

d = 2 7 22 50 1
6 (n + 1)(n + 2)(4n + 3)

d = 3 11 46 130 1
6 (n + 1)(n + 2)(2n2 + 6n + 3)

General d 1
2 (d2 + 3d + 4) 1

24 (d4 + · · ·) 1
720 (d6 + · · ·) See Eq. (31)

dS0,iklm

dt
= −Viklm − 1

m

∑
j

(S0,ij S0,jklm + S0,kj S0,j lmi

+ S0,lj S0,jmik + S0,mjS0,j ikl) − 1

m

∑
j

(S0,jklS0,j im

+ S0,jkmS0,j il + S0,j lmS0,j ik). (34)

Here Vik denotes ∂2V
∂xi∂xk

, etc., and S0,ik denotes ∂2S0
∂xi∂xk

, etc.
Derivatives of S1 are determined by integrating the following
equations:

dS1,i

dt
= i

2m

∑
j

S0,jj i − 1

m

∑
j

S0,ij S1,j , (35)

dS1,ik

dt
= i

2m

∑
j

S0,jj ik − 1

m

∑
j

S0,ikj S1,j

− 1

m

∑
j

(S0,kj S1,ij + S0,ij S1,kj ). (36)

Finally S0,S1,S2 are obtained by integrating Eqs. (26),
(27), and (28), respectively. The initial conditions for
all these equations are obtained from the initial condi-
tion for the TDSE via the function S init(x). Explicitly,
we have

S0(0) = S init(x(0)) S0,i(0) = S init
i (x(0)) S0,ij (0) = S init

ij (x(0)) · · ·
S1(0) = 0 S1,i(0) = 0 S1,ij (0) = 0 · · ·
S2(0) = 0 S2,i(0) = 0 S2,ij (0) = 0 · · ·

...
...

...

. (37)

Note that for an initial Gaussian wave packet [of the form (15)
in one dimension] the function S init is quadratic in the spatial
variable, so only its first two derivatives will be nonzero.

A few final notes before leaving our description of the
complex WKB method: First, observe that when computing to
order n in the complex WKB method we use the derivatives
of the potential up to order 2n. We will see later how this
emerges from the path-integral approach. Second, observe that
Eq. (32) is an example of a matrix Riccati equation [51], and
in particular, it has solutions that become infinite in finite time.
These singularities are a manifestation of the phenomenon of
caustics, which appear in almost every application of the WKB
method. We note, however, that the singularities in the matrix
Riccati equation are pole-type singularities, and it is possible,
in a suitable sense, to integrate through them [52]. This is
reminiscent of the fact that it is often possible to “regularize”
caustics [53–56]. We are currently investigating the singularity
structure of the full system of Eqs. (27)–(28), (32)–(34), and
(35)–(36). Finally, we mention that although in this paper we
work with the multidimensional Schrödinger equation in the
form (2), assuming the mass matrix to be a multiple of the

identity, there is no problem extending our formalism to work
with a general positive definite mass matrix.

B. BOMCA Method

The BOMCA method is an alternate trajectory-based
approach for solving the CQHJE (3). Unlike the complex
WKB method it does not involve an expansion in powers of
h̄. Another distinction is that in the complex WKB method the
trajectories are classical paths, and in the BOMCA method they
are not. Furthermore, the trajectories in the BOMCA method
depend on the order of the approximation.

In the BOMCA method we aim to integrate the CQHJE (3)
by integrating along trajectories defined by

dx
dt

= v, where v = ∇S

m
. (38)

Differentiating the CQHJE we see that along these trajectories
the velocity field v satisfies

dv
dt

= − 1

m
∇V (x) + ih̄

2m2
∇2 (∇S) . (39)

012104-5



JEREMY SCHIFF, YAIR GOLDFARB, AND DAVID J. TANNOR PHYSICAL REVIEW A 83, 012104 (2011)

From the CQHJE we see that along such trajectories

dS

dt
= 1

2m
v2 − V (x) − ih̄

2m
∇2S. (40)

The problem integrating (39) and (40) is that we have no
information about the second and third derivatives of S that
appear on the right-hand sides. Borrowing an idea from the
complex WKB method, we differentiate the CQHJE to find
equations for the evolution of second and higher derivatives
of S along the trajectories. At this stage we just write the
equations for evolution of second, third, and fourth derivatives:

dSij

dt
= −Vij − 1

m

∑
p

SipSpj + ih̄

2m

∑
p

Sijpp, (41)

dSijk

dt
= −Vijk − 1

m

∑
p

(SipSpjk + SjpSpki + SkpSpij )

+ ih̄

2m

∑
p

Sijkpp, (42)

dSijkl

dt
= −Vijkl − 1

m

∑
p

(SipSpjkl + SjpSpkli + SkpSplij

+ SlpSpijk) − 1

m

∑
p

(SijpSpkl + SikpSpjl + SilpSpjk)

+ ih̄

2m

∑
p

Sijklpp. (43)

Apparently things have not improved: On the right-hand sides
of these equations fifth and sixth derivatives of S appear. Now
we can state the procedure of the BOMCA approximation:
In the nth-order BOMCA method ignore all terms involving
derivatives of S of order exceeding 2n. Thus, in the first-order
BOMCA method the nonclassical term in (39) is taken to
be zero, and the trajectories are simply classical trajectories.
The evolution (40) for S, however, involves a nonclassical
term with second derivatives; but these second derivatives
are computed by integrating (41) down the trajectories,
after ignoring the term with fourth-order derivatives in (41).
A comparison with the equations of the complex WKB
method establishes that the lowest-order BOMCA method is
equivalent to the lowest-order complex WKB method (i.e., the
complex WKB method where only the terms S0 and S1 are
retained).

Moving on to the second-order BOMCA method, a non-
classical term with third derivatives of S now remains in the
equation for the trajectories (39), and fourth derivatives of S

appear in (41). The evolution of the third and fourth derivatives
of S is given by (42)–(43) after ignoring the higher derivative
terms. We observe that the resulting equations are precisely
the same as Eqs. (33)–(34) that appeared in the complex
WKB method. The trajectories, however, are different—thus
the second-order BOMCA method is not equivalent to the
complex WKB method of any order. The same is true for
the higher-order BOMCA method. The complex WKB and
BOMCA methods, however, share the property that order n

calculations involves derivatives of the potential V of order up
to 2n.

Note that ignoring the fifth and sixth derivative terms in
(42)–(43) gives rise to order h̄ errors in the third and fourth

derivatives of S. Through Eqs. (39) and (41) this gives rise to
order h̄2 errors in the trajectory x and the second derivative
of S. At first glance it seems that the order h̄2 error in x
should give rise to an order h̄2 error in S, as calculated from
(40). But a careful calculation shows that the errors induced
in S by both the error in x and the error in Sij are of order
h̄3, and thus we have achieved second-order accuracy in S

(and first-order accuracy in S/h̄, which determines the wave
function). A similar calculation shows that in the nth-order
BOMCA method, as we have described, we achieve nth-order
accuracy in S. There is no evident benefit to truncating
the BOMCA equations, say, by ignoring fourth derivatives
but not third. This point was not adequately appreciated in
Refs. [1,2].

For clarity, we collect here the evolution equations for the
second-order BOMCA method in the one-dimensional case:

St = 1

2
mv2 − V (x) + ih̄

2m
S ′′, (44)

dx

dt
= v, (45)

dv

dt
= − 1

m
V ′(x) + ih̄

2m2
S ′′′, (46)

dS ′′

dt
= −V ′′(x) − 1

m
(S ′′)2 + ih̄

2m
S ′′′′, (47)

dS ′′′

dt
= −V ′′′(x) − 3

m
S ′′S ′′′, (48)

dS ′′′′

dt
= −V ′′′′(x) − 4

m
S ′′S ′′′′ − 3

m
(S ′′′)2. (49)

This system is a singular perturbation of the Newton’s equa-
tions. The system can be somewhat simplified. Introducing a
new variable f (t) defined (up to multiplication by a constant)
by S ′′ = m

f

df

dt
, we can solve the S ′′′ and S ′′′′ evolution equations

and find that the trajectories are determined by

m
d2x

dt2
= −V ′(x(t)) + ih̄

2m
S ′′′(t), (50)

m
d2f

dt2
= −V ′′(x(t))f (t) + ih̄

2mf (t)3

×
{
L −

∫ t

0
f (u)4

[
V ′′′′(x(u)) + 3

m
S ′′′(u)2

]
du

}
,

(51)

S ′′′(t) = 1

f (t)3

[
K −

∫ t

0
V ′′′(x(u))f (u)3 du

]
. (52)

Here K,L are constants of integration related to S ′′′(0),S ′′′′(0).
We have not yet dealt with the question of initial conditions

in the BOMCA method, but this is straightforward. Writing,
as before,

S init(x) = −ih̄ ln ψ(x,0), (53)

we take

S(0) = S init(x(0)), (54)

vi(0) = 1

m
S init

i (x(0)), (55)

Sij (0) = S init
ij (x(0)), (56)

012104-6



PATH-INTEGRAL DERIVATIONS OF COMPLEX . . . PHYSICAL REVIEW A 83, 012104 (2011)

etc. The number of equations is easier to discuss in the
BOMCA method than in the complex WKB method. In the
nth-order BOMCA method we retain derivatives of S up to
order 2n, i.e., a total of ( d + 2n

d ) functions. We also need to
integrate to find x; thus there are a total of

(
d + 2n

d

)
+ d (57)

functions. But this number cannot be directly compared with
the number in the complex WKB method. In the complex
WKB method, first, the trajectories are computed using
Newton’s equations. If the aim is to determine the wave
function at X at time T we solve (25), with boundary conditions
(24) and x(T ) = X. Once the trajectories are determined, the
evolution of all the other functions along the trajectories is
computed. In the BOMCA method it is necessary to solve for
all the functions (admittedly a rather smaller number) in order
to determine the trajectories; that is, we look for a solution of
the full BOMCA system satisfying initial conditions (54)–(56)
and the final condition x(T ) = X. At this stage we have not
made a complete study of the relative efficiencies of the two
approaches.

C. The need for multiple trajectories

We refer to our previous papers [1,2], and [3] for full details
of the implementation of the methods and explicit numerical
examples. In order to determine the wave function at position X
and time T , it is necessary to find trajectories x(t) satisfying all
the necessary initial conditions and the condition x(T ) = X.
The missing initial data are simply the starting point of the
trajectories, x(0). In every case we investigated we found
there were multiple trajectories satisfying all the necessary
conditions. That is, there are various possible choices of x(0),
and we refer to the different possible choices as different
“branches.” In certain cases, the wave function associated
with one branch gives an accurate result. In other cases, it is
necessary to add the wave functions associated with more than
one branch to get an accurate result. In still other cases, one
branch gives an overwhelmingly large contribution and has to
be discarded. For certain values of X and T there are transitions
between the different behaviors, and in the neighborhoods of
such transitions we could not get reasonable accuracy with our
methods.

The upshot of all this is that our derivation of the complex
WKB and BOMCA equations starting from the CQHJE (3)
is apparently not telling us the whole story. In the following
sections we will present derivations of the complex WKB and
BOMCA methods starting from the path-integral formulation
of quantum mechanics. In this approach the existence of
multiple branches, and the need to sometimes incorporate
one, sometimes more, is easily explained. We also find
a nontechnical explanation of what the trajectories in the
BOMCA method are. At the same time, we see that the
equations we have presented in detail for the complex WKB
and BOMCA methods actually provide an efficient way to
perform certain higher-order perturbative calculations with
path integrals.

III. A PATH-INTEGRAL DERIVATION OF THE COMPLEX
WKB METHOD

The aim of this section is to show how the complex
WKB method emerges from the path-integral formulation of
quantum mechanics. In Feynman’s path-integral formulation
the wave function (we work for now in one space dimension)
is written as

ψ(X,T ) =
∫ ∞

−∞
K(x0,X,T )ψ0(x0) dx0, (58)

where ψ0(x0) = ψ(x0,0) is the initial wave function and

K(x0,X,T ) =
∫

Dx exp

(
iS[x]

h̄

)
(59)

is the propagator. The propagator is represented as a sum over
all possible paths x(t), 0 � t � T , satisfying the boundary
conditions x(0) = x0 and x(T ) = X. S[x] denotes the classical
action of the path x, given by

S[x] =
∫ T

0

1

2
mẋ2(t) − V (x(t)) dt. (60)

Inserting (59) into (58), moving ψ0(x0) into the argument
of the exponent, and incorporating the integration over x0

into
∫
Dx yields an alternate version of the path-integral

formulation:

ψ(X,T ) =
∫

Dx exp

[
iS[x]

h̄
+ ln ψ0(x(0))

]

=
∫

Dx exp

{
i{S[x] + S init(x(0))}

h̄

}
, (61)

where
∫
Dx now represents a sum over all possible paths

satisfying the single boundary condition x(T ) = X, and we
have written, as before, S init(x) = −ih̄ ln ψ0(x).

We emphasize again that ψ0(x(0)), the initial wave function,
has explicit h̄ dependence. In fact, in standard WKB theory
there is also h̄ dependence in ψ0(x) but only in the phase, i.e.,
ψ0(x) = A0(x)eiS0(x)/h̄. Here we are including an h̄ dependence
also in the amplitude, i.e., ψ0(x) = eiSinit(x)/h̄ where S init is now
complex. This apparently minor change is very significant. The
sum of S[x] + S init(x(0)) is now complex, even if S[x] is real,
moving the stationary phase points off the real axis and leading
to complex classical trajectories.

We now proceed to evaluate ψ(X,T ) using a saddle-point
approximation. To this end we consider the variation of the
term in the exponential in the path integral, and in particular
identify paths for which the first-order variation vanishes.
Replacing x by x + ε in the term in the exponential we
have

S[x + ε] + S init(x(0) + ε(0))

=
∫ T

0

1

2
m(ẋ + ε̇)2 − V (x(t) + ε(t)) dt + S init(x(0) + ε(0))

= S[x] + S init(x(0)) +
∫ T

0
[mẋε̇ − V ′(x)ε] dt

+ S init′(x(0))ε(0) +
∫ T

0

[
1

2
mε̇2 − 1

2
V ′′(x)ε2

]
dt
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+ 1

2
S init′′(x(0))ε(0)2 +

∞∑
n=3

1

n!

×
[
S init(n)(x(0))ε(0)n −

∫ T

0
V (n)(x)εn dt

]
. (62)

After an integration by parts, and using the fact that ε(T ) = 0,
as all paths have the same fixed end point, the linear terms in
ε become

−
∫ T

0
[mẍ + V ′(x)] ε dt + [S init′(x(0)) − mẋ(0)] ε(0). (63)

Thus we deduce that in a saddle-point approximation of (61),
the approximation will be a sum of contributions from classical
paths satisfying the initial condition

ẋ(0) = 1

m
S init′(x(0)) = − ih̄

m

ψ ′
0(x(0))

ψ0(x(0))
. (64)

These are exactly the complex classical paths that appear in
the complex WKB method.

Proceeding to look at the quadratic terms in (62), we want
the variable over which we integrate in the path integral to be
dimensionless, so we rescale ε by writing

ε(t) =
√

h̄T

m
δ(t). (65)

After this change the quadratic terms in (62) become

h̄T

{∫ T

0

[
1

2
δ̇2 − 1

2m
V ′′(x(t))δ2

]
dt + 1

2m
S init′′(x(0))δ(0)2

}
.

(66)

We are now in a position to write the saddle-point approxima-
tion to (61):

ψ(X,T ) =
∑
x(t)

exp

{
i{S[x] + S init(x(0))}

h̄

}∫
Dδ exp

(
iT

{∫ T

0

[
1

2
δ̇2(t) − 1

2m
V ′′(x(t)) δ2(t)

]
dt + S init′′(x(0))

2m
δ(0)2

})

× exp

{
i

∞∑
n=3

h̄
n
2 −1

n!

(
T

m

) n
2

[
S init(n)(x(0))δ(0)n −

∫ T

0
V (n)(x) δn(t) dt

]}
. (67)

Here the sum is over complex WKB paths, that is, paths
x(t) obeying the classical equations of motion and the
initial condition (64). However, as is usual in saddle-point
approximations, more detailed calculations are necessary to
decide which of these paths should be included in the sum. We
will return to this point shortly.

A. The lowest-order approximation

To compute the lowest-order approximation we just need
to evaluate the Gaussian integral∫

Dδ exp

(
iT

{∫ T

0

[
1

2
δ̇2(t) − 1

2m
V ′′(x(t))δ2(t)

]
dt

+ S init′′(x(0))
2m

δ(0)2

})
. (68)

We recall that the integration here is over paths δ(t) obeying
the single condition δ(T ) = 0. As usual, we compute this

integral by dividing the interval [0,T ] into N subintervals
and discretizing. Appropriate (second-order) discretization
formulas for the various terms are∫ T

0
δ̇2(t) dt ≈ N

T

(
δ2

0 + 2
N−1∑
i=1

δ2
i − 2

N−1∑
i=0

δiδi+1

)
, (69)

∫ T

0
V ′′(x(t))δ2(t) dt

≈ T

N

{
1

2
V ′′(x(0))δ2

0 +
N−1∑
i=1

V ′′
(

x

(
iT

N

))
δ2
i

}
, (70)

where δi denotes δ(iT /N ). Using these, the discretized version
of the path integral is∫

dN� exp

(
iN

2
�A�T

)
, (71)

where � = (δ0 δ1 δ2 · · · δN−1), A denotes the tridiagonal N ×
N matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q −1 0 0 . . .

−1 2 − T 2

mN2 V
′′(x( T

N

)) −1 0 . . .

0 −1 2 − T 2

mN2 V
′′(x( 2T

N

)) −1 . . .

0 0 −1 2 − T 2

mN2 V
′′(x( 3T

N

))
. . .

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(72)
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and

q = 1 − T 2

2mN2
V ′′(x(0)) + T S init′′(x(0))

mN
. (73)

(At this point it is maybe worthwhile noting that for an
initial Gaussian wave function, S init′′(x(0)) has a positive
imaginary part.) The measure dN� here includes a nontrivial
N -dependent normalization; it turns out this should be chosen
so that ∫

dN� exp

(
iN

2
�A�T

)
= 1√

det A
. (74)

(For the standard rules for Gaussian integrals see, for example,
Ref. [57]; the correct choice of normalization is determined
by checking that we get the correct result for a free particle.)
The computation of the determinant det A proceeds as follows
[58]: For n = 1,2, . . . ,N , denote the determinant of the n × n

matrix in the top left corner of A by Dn. Then we have

D1 = q = 1 + T S init′′(x(0))
mN

+ O(N−2), (75)

D2 = q

{
2 − T 2

mN2
V ′′

(
x

(
T

N

))}
− 1

= 1 + 2T S init′′(x(0))
mN

+ O(N−2), (76)

and for 3 � n � N

Dn =
{

2 − T 2

mN2
V ′′

(
x

(
(n − 1)T

N

))}
Dn−1 − Dn−2.

(77)

The recursion can be written in the equivalent form:

Dn − 2Dn−1 + Dn−2

(T/N)2
= − 1

m
V ′′

{
x

(
(n − 1)T

N

)}
Dn−1.

(78)

We need to determine det A = DN . The recursion and the
initial conditions are such that as N → ∞, the Dn will tend
to samples of a function D(s), defined on the interval 0 � s �
T , obeying the differential equation D̈(s) = − 1

m
V ′′(x(s))D

and initial conditions D(0) = 1 and Ḋ(0) = 1
m

S init′′(x(0)). The
determinant we seek is simply det A = D(T ).

To summarize, we have arrived at the lowest-order approx-
imation for the contribution of the path x(t) in the sum (67): It
is given by

1√
D(T )

exp

{
i{S[x] + S init[x(0)]}

h̄

}
. (79)

Here S[x] denotes the classical action associated with the path
x(t), which is a solution of Newton’s equations obeying the
conditions x(T ) = X and ẋ(0) = 1

m
S init′(x(0)). The function

S init is determined by the initial wave function via S init(x) =
−ih̄ ln ψ(x,0). The function D(s) is the solution of the initial-
value problem

D̈(s) = − 1

m
V ′′(x(s))D, D(0) = 1, Ḋ(0) = 1

m
S init′′(x(0)).

(80)

We check that this gives an exact result in the case of the
free particle (V = 0) and initial Gaussian wave function:

ψ(x,0) = exp

[
−a(x − x0)2

h̄
+ ip0(x − x0)

h̄

]
. (81)

The initial wave function here has three parameters, x0 and
p0, which are real, and a, which is complex, with a positive
real part. Classical paths take the form x(t) = A + Bt . The
coefficients A,B should be determined by requiring

X = A + BT, B = 1

m
[p0 + 2ia(A − x0)]. (82)

The classical action along the path x(t) is then given by S[x] =
1
2mB2T and D(T ) = 1 + 1

m
S init′′(x(0))T = 1 + 2iaT

m
. Putting

everything together we obtain

ψ(X,T ) = 1√
1 + 2iaT

m

exp

[
−a(A − x0)2

h̄
+ ip0(A − x0)

h̄

]
exp

(
imB2T

2h̄

)

= 1√
1 + 2iaT

m

exp

[
− a

h̄
(
1 + 2iaT

m

) (X − x0 − p0T

m

)2

+ ip0

h̄

(
X − x0 − p0T

m

)
+ ip2

0T

2h̄m

]
. (83)

It is straightforward to check that this is the exact solution of
the Schrödinger equation for the given initial condition.

Having computed the lowest-order approximation to the
path integral in the one-dimensional case, we now state the
generalization to the multidimemsional case, leaving the proof
to the Appendix. Once again the saddle-point paths are exactly
the trajectories that appeared in the complex WKB method;
specifically, they are classical paths x(t) obeying the initial
condition

ẋ(0) = 1

m
∇S init(x(0)) (84)

[cf. (24)], as well as the final condition x(T ) = X. The
contribution from any such path to the wave function ψ(X,T )
takes the form

1√
D(T )

exp

{
i{S[x] + S init(x(0))}

h̄

}
. (85)

Here, as in the one-dimensional case, S[x] denotes the classical
action associated with the path x(t). The factor D(T ) is
determined as follows: Denote by U (s) the d × d matrix
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solution of the initial value problem

Ü (s) = − 1

m
H (V )[x(s)]U, U (0) = I,

(86)

U̇ (0) = 1

m
H (S init)[x(0)],

where H (V ) and H (S init) denote the d × d matrices of
second derivatives of V and S init, respectively. Then D(T ) =
det[U (T )].

We now wish to compare the lowest-order path-integral
results with the lowest-order approximation in the complex
WKB method in the previous section. The path-integral results
all appear in the preceding paragraph. For ease, we assemble
here all the necessary equations from the complex WKB
method. The trajectories are determined from

dx
dt

= v,
dv
dt

= − 1

m
∇V (x), (87)

with boundary conditions

v(0) = 1

m
∇S init

0 (x(0)), x(T ) = X. (88)

The wave function is given by

ψ(X,T ) = exp

[
iS0(T )

h̄
+ S1(T )

]
. (89)

The evolution equations of the necessary quantities along the
trajectories are

dS0

dt
= 1

2
mv2 − V (x), (90)

dS1

dt
= i

2m

d∑
i=1

S0,ii , (91)

dS0,ik

dt
= −Vik(x(t)) − 1

m

∑
j

S0,ij S0,jk, (92)

with initial conditions

S0(0) = S init(x(0)), S0,ij (0) = S init
ij (x(0)), S1(0) = 0.

(93)

The correspondence is almost immediate. All that is necessary
to do is to identify the matrix with entries S0,ij in the
complex WKB method with the matrix product mU̇U−1 in
the path-integral approach. With this identification, the evolu-
tion equation (92) coincides with the second-order evolution
equation (86) for U . Also after this identification, the evolution
equation for S1, (90) reads dS1

dt
= i

2 Tr(U̇U−1), with solution
(taking into account the appropriate initial conditions) S1(t) =
i
2 ln det U (t), so eiS1 = 1/

√
D(T ), giving the prefactor in (85).

Finally, S0 in the complex WKB method is identified with
S[x] + S init(x(0)) in the path-integral approach.

The path-integral approach has added one significant piece
of information over the direct complex WKB approach

presented in the previous section. In the path-integral approach
we use the saddle-point method for asymptotic evaluation
of an integral. As is well known, when there are multiple
saddle points, it is sometimes necessary to take more than
one into account to get an accurate approximation of the
integral being studied. Deciding which saddle points contribute
requires detailed analysis on a case-to-case basis. But at
least we have found an explanation for the observations
of our earlier work [2,3] that for certain values of X and
T it is necessary to include the contributions of multiple
trajectories. (It is interesting to compare this explanation
for the origin of multiple trajectories with that given by
Miller [59], based on the implicit nature of the equations
that generate dynamical canonical transformations. We suspect
that Miller’s explanation may correlate with the existence of
multiple solutions of the classical HJE, a connection that
would bring us full circle to an understanding of the need
for multiple trajectories in the complex WKB and BOMCA
methods.) In future work we hope to study the possible criteria
for demarking different regions in (X,T ) space in which
different (numbers of) trajectories contribute. This is strongly
interconnected with the existence of caustics. Caustics are
points (X,T ) at which the determinant D(T ) vanishes (on at
least one trajectory, in fact such points are associated with
coalescing trajectories). It is possible to study the dynamics of
such points, and from this to deduce certain information about
the dynamics of the regions in which different numbers of
trajectories contribute. Unfortunately, however, at the moment
deciding on which trajectories to include in a calculation is
more of an art than a science.

B. The first-order correction

We now consider the higher-order terms in (67). We restrict
ourselves in this section to the one-dimensional case. The
series in the exponential in the third line of (67) is an expansion
in half-integer and integer powers of the dimensionless
parameter h̄T

mL2 where L denotes a typical length scale of the
functions V (x) and S init(x). We are assuming this parameter is
small. All terms with half-integer powers multiply odd powers
of δ and thus do not contribute to the value of the integral.
The lowest-order correction terms arise when we replace the
exponential by

1 + ih̄T 2

24m2

[
S init′′′′(x(0))δ(0)4 −

∫ T

0
V ′′′′(x)δ4(t) dt

]

− h̄T 3

72m3

[
S init′′′(x(0))δ(0)3 −

∫ T

0
V ′′′(x)δ3(t) dt

]2

.

(94)

After discretizing, in this approximation the integral (71) is
replaced by an expression of the form

∫
dN� exp

(
iN

2
�A�T

)⎛
⎝1 +

N−1∑
i=0

δ4
i Ai+

N−1∑
i=0

N−1∑
j=0

δ3
i δ

3
jBij

⎞
⎠ ,

(95)
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where Ai and Bij , which do not depend on the components of δ, are

Ai =
{

ih̄T 2

24m2 S
init′′′′(x(0)) + O

(
1
N

)
i = 0

− ih̄T 3

24m2N
V ′′′′(x( iT

N

))
i > 0

(96)

Bij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− h̄T 3

72m3 [S init′′′(x(0))]2 + O
(

1
N

)
i = j = 0

h̄T 4

72m3N
S init′′′(x(0))V ′′′(x( iT

N

)) + O
(

1
N2

)
i > 0, j = 0

h̄T 4

72m3N
S init′′′(x(0))V ′′′(x( jT

N

)) + O
(

1
N2

)
i = 0, j > 0

− h̄T 5

72m3N2 V
′′′(x( iT

N

))
V ′′′(x( jT

N

))
, i,j > 0.

(97)

The Gaussian integrals in this expression are standard. Taking
into account our normalization of the measure dn� we
have∫

dN� exp

(
iN

2
�A�T

)
δ4
i = − 3

N2
√

det A

(
A−1

ii

)2
, (98)

∫
dN� exp

(
iN

2
�A�T

)
δ3
i δ

3
j

= − 3i

N3
√

det A

[
3A−1

ii A−1
jj A−1

ij + 2
(
A−1

ij

)3]
(99)

(cf. Ref. [57]). A calculation similar to the calculation of det A
in the previous subsection shows that as N → ∞

T

N
A−1

ij → D(ti)D(tj )
∫ T

max(ti ,tj )

du

D(u)2
, (100)

where D(s) is the solution of (86). [This calculation uses
the fact that a second, linearly independent, solution of the
differential equation in (86) is given by D(s)

∫ s

0
du

D(u)2 .] In this
manner we can write the first-order approximation to the path
integral. For simplicity we restrict ourselves here to the case
that S init′′′ and S init′′′′ vanish, as otherwise the relevant formulas
are lengthy. Combining these formulas we find that in this
case the first-order approximation is found by multiplying the

leading-order approximation by

1 + ih̄

8m2

∫ T

0
V ′′′′(x(t))D(t)4

[∫ T

t

du

D(u)2

]2

dt

+ ih̄

24m3

∫ T

0

∫ T

0
V ′′′(x(t1))V ′′′(x(t2))D(t1)3D(t2)3

×
{

3

[∫ T

max(t1,t2)

du

D(u)2

] [∫ T

t1

du

D(u)2

] [∫ T

t2

du

D(u)2

]

+ 2

[∫ T

max(t1,t2)

du

D(u)2

]3
}

dt1 dt2. (101)

We now need to compare this with a similar term arising
in the complex WKB method. The first-order approximation
in the complex WKB method is obtained by multiplying the
leading-order approximation by eih̄S2(T ). To find S2 it is neces-
sary to integrate five new differential equations along the tra-
jectories (in addition to those that have to be solved to find the
lowest-order approximation): the equations for S ′′′

0 ,S ′′′′
0 ,S ′

1,S
′′
1

and S2, Eqs. (33), (34), (35), (36), and (28), respectively. All
of these are linear equations, and an explicit formula can be
written for the answer. To simplify matters we assume the
initial conditions for all the five relevant quantities are zero,
which is consistent with the assumption made in writing (101).
In its most obvious form (without making any attempts to
simplify the integrals that appear) the solution takes the form:

S2(T ) = 1

4m2

∫ T

0

1

D2(t)

{∫ t

0

1

D2(u)

[ ∫ u

0
V ′′′′(x(v))D4(v) dv

]
du

}
dt

+ 1

8m3

∫ T

0

1

D2(t)

{∫ t

0

1

D2(u)

[ ∫ u

0
V ′′′(x(v))D3(v) dv

]
du

}2

dt

+ 3

4m3

∫ T

0

1

D2(t)

(∫ t

0

1

D2(u)

{∫ u

0

1

D2(v)

[ ∫ v

0
V ′′′(x(w))D3(w) dw

]2

dv

}
du

)
dt

+ 1

4m3

∫ T

0

1

D2(t)

(∫ t

0

1

D2(u)

[ ∫ u

0
V ′′′(x(v))D3(v) dv

]{∫ u

0

1

D2(v)

[ ∫ v

0
V ′′′(x(w))D3(w) dw

]
dv

}
du

)
dt.

(102)
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It is a straightforward but tedious matter to check that the
factor (101) is equal to 1 + ih̄S2 (the first-order approximation
to eih̄S2 ).

Thus we see explicitly the equivalence of the first-order
approximation to the path integral and results from the complex
WKB method retaining terms up to order S2. For consistency,
this equivalence must continue to higher orders. Note that
if we keep terms up to order h̄n in the path integral the
resulting formulas will involve derivatives of V (and S init)
up to order 2n + 2, and the same is true if we retain terms up
to Sn+1 in the complex WKB method. We note that in practice,
the complex WKB method is far easier to implement for
higher-order corrections. Although the number of differential
equations that need to be integrated along the trajectories grows
rapidly with the order, as described in the previous section,
it remains relatively easy to write the necessary differential
equations, and integrating the relevant first-order system along
the trajectories is easily handled using standard computer
packages. Direct application of path-integral methods involves
the calculation of iterated integrals, as in (102) or (101), which
is a less standard procedure. The coefficients of the different
iterated integrals (the number of which grows rapidly as order
increases) also involve tricky combinatoric factors.

IV. A MODIFICATION OF STANDARD
ASYMPTOTIC ANALYSIS

In the previous section we have explained the connection
of the complex WKB method as described in Sec. II and
the standard asymptotic evaluation of the path integral. We
would like to also understand the BOMCA method from
this viewpoint. But there is a clear problem—whereas the
trajectories in the complex WKB method are classical paths,
corresponding to minima of the classical action, the paths in
the BOMCA method are nonclassical. How can nonclassical
paths possibly arise in the context of an asymptotic evaluation
of the path integral? In this section we describe a modification
of standard asymptotic analysis for Laplace-type integrals.
In the next section we will apply what we have learnt here
to path integrals.

The usual approach to asymptotic evaluation of integrals
such as

∫ ∞
−∞ g(x)e−λf (x) dx, where λ is a large positive

parameter, proceeds as follows: The integral is dominated by
contributions from regions close to the minima of f (x). Suffi-
ciently near a minimum x0 the function f (x) is approximated
by a quadratic Taylor polynomial f (x0) + 1

2f ′′(x0)(x − x0)2.
So we rewrite the integral in the form∫ ∞

−∞
g̃(x)e−λ[f (x0)+ 1

2 f ′′(x0)(x−x0)2] dx, (103)

where g̃(x) = g(x) exp{−λ[f (x) − f (x0) − 1
2f ′′(x0)(x −

x0)2]}, and evaluate the contribution from the region near x0

by expanding g̃(x) in a Taylor series in x − x0 and evaluating
the resulting integrals exactly. This gives a series in negative
powers of λ.

The modification to this procedure that we want to consider
is as follows: The Taylor polynomial approximation to f (x)
at its minimum is only one of many ways to approximate f (x)
in the appropriate region by a quadratic function. Suppose we

choose another quadratic approximant. How does this change
the resulting asymptotic expansion?

For definiteness, we consider a specific example, asymp-
totic approximation of the factorial function for large n using
the integral representation

n! =
∫ ∞

0
en ln x−x dx. (104)

The function in the exponent has a minimum at x = n, and the
usual asymptotic formula for n! is obtained by approximating
this function by the quadratic n ln n − n − 1

2n
(x − n)2 and

rewriting the integral

n! ∼ nne−n

∫ ∞

−∞
e−(x−n)2/2ng̃(x) dx, (105)

where

g̃(x) = exp

[
n ln x − x − (n ln n − n) + 1

2n
(x − n)2

]

= 1 + 1

3n2
(x − n)3 − 1

4n3
(x − n)4 + 1

5n4
(x − n)5

+ (n − 3)

18n5
(x − n)6 + · · · . (106)

Integrating gives the standard asymptotic series for n! :

n! ∼
√

2πnn+ 1
2 e−n

(
1 + 1

12n
+ 1

288n2
− 139

51840n3
+ · · ·

)
.

(107)

Note that to get the correct coefficient of n−r it is necessary to
keep certain terms of order up to 6r in the Taylor series (106).

Suppose now that instead of using the standard quadratic
approximant for the exponent we use the more general
approximant n ln N − N − 1

2S
(x − N )2. Here S and N are

currently undetermined, but for definiteness we assume that
N = n + O(1) and S = n + O(1). The integral now takes the
form

n! ∼ Nne−N

∫ ∞

−∞
exp

[
− 1

2S
(x − N )2

]
g̃(x) dx, (108)

where

g̃(x) = exp

[
n ln x − x − (n ln N − N ) + 1

2S
(x − N )2

]

= exp

[(
n

N
− 1

)
(x − N ) + 1

2

(
1

S
− n

N2

)
(x − N )2

+
∞∑

r=3

(−1)r−1 n

rNr
(x − N )r

]
. (109)

Making the substitution x − N = √
Sy this becomes

n! ∼ Nne−N
√

S

∫ ∞

−∞
e−y2/2 exp

[
(n − N )

√
S

N
y

+ N2 − nS

2N2
y2 +

∞∑
r=3

(−1)r−1 nSr/2

rNr
yr

]
dy. (110)

Note that in the second exponent here the coefficients of y

and y3 behave as n−1/2, the coefficients of y2 and y4 behave
as n−1, and in general for r � 3 the coefficient of yr behaves
as n1−r/2. We compute the integral by expanding the second
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exponential term in a power series in y and computing the
resulting integrals exactly. The leading-order approximation is√

2πSNne−N . The first-order correction arises from replacing
the second exponential by

1 +
(

N2 − nS

2N2
y2 − nS2

4N4
y4

)

+ 1

2

{[
(n − N )

√
S

N

]
y + nS3/2

3N3
y3

}2

(111)

and integrating, to obtain

n! ∼
√

2πSNne−N

[
1 + 1

12N6
(6N6 + 10n2S3 − 6N4nS

+ 6N4Sn2 − 12N5Sn + 6N6S − 9nS2N2

+ 12n2S2N2 − 12nS2N3)

]
. (112)

It can be verified directly that substituting N = n + c0 +
c1/n + · · · and S = n + d0 + d1/n + · · · into this formula and
expanding in negative powers of n gives the first-corrected Stir-
ling formula

√
2πnnne−n[1 + 1

12n
+ O(n−2)], irrespective of

the choice of the coefficients c0,c1,d0,d1, . . . , i.e., independent
of the choice of N,S to the desired order. Similarly, expanding
the second exponential in (110) to higher order gives higher-
correction terms, apparently depending on N and S, but in fact
independent of the choice of N,S to the desired order.

Essentially what we have shown is that Stirling’s formula
for n! can be made to depend on two variables N and S

while retaining all its properties. The obvious question that
needs to be asked at this stage is whether N and S can be
chosen usefully. A full investigation of this would take us
off on a tangent to the main topic of this paper, so we limit
ourselves here to the simple observation that will allow us to
give a path-integral derivation of the BOMCA method: It is
possible to choose N and S as functions of n in such a way
that all correction terms to the leading-order approximation

n! ∼ √
2πSNne−N vanish. Furthermore, at least in the case

of the factorial function that we are looking at now, this is
not simply a perturbative result; that is, we can find analytic
functions N and S of n, with the correct asymptotic behavior
for large |n| and such that �(n + 1) = √

2πSNne−N at least
in some region of the complex plane including the positive real
axis. We will see in the next section how the BOMCA method
is related to an analogous result for path integrals. Presumably
there should be some way to select N and S “well” on the basis
of properties of the integrand of (104), but we do not attempt
to study this here.

V. A DERIVATION OF THE BOMCA METHOD FROM THE
PATH-INTEGRAL METHOD

The path integral is

ψ(X,T ) =
∫

Dx exp

{
i

h̄
{S[x] + S init (x(0))}

}
, (113)

where as before the integration is over all paths with x(T ) = X.
Applying the idea presented in the previous section means

approximating S[x] + S init(x(0)) with a quadratic, which we
will take of the form

S[X] + S init(X(0)) +
∫ T

0

1

2
m[ẋ(t) − Ẋ(t)]2

− 1

2
[V ′′(X(t)) + q(t)][x(t) − X(t)]2 dt

+ 1

2
[S init′′(X(0)) + q(0)] [x(0) − X(0)]2. (114)

Here X(t) is the path around which we are expanding, still to
be fully determined, but assumed to be an order h̄ perturbation
of a classical path. Likewise the function q(t) (which plays the
role of S in the previous section) is currently undetermined,
assumed of order h̄. Using this quadratic as our leading-order
approximation in the path integral gives

ψ(X,T )= exp

[
i

h̄
{S[X] + S init(X(0))}

] ∫
Dε exp

(
i

2h̄

{∫ T

0
mε̇(t)2 − [V ′′(X(t)) + q(t)]ε(t)2 dt + [S init′′(X(0)) + q(0)]ε(0)2

})

× exp

{
i

h̄

[ ∫ T

0
mẊ(t)ε̇(t) − V ′(X(t))ε(t) + 1

2
q(t)ε(t)2 −

∞∑
r=3

V (r)(X(t))
r!

ε(t)r dt

+ S init′(X(0))ε(0) − q(0)ε(0)2 +
∞∑

r=3

S init(r)(X(0))
r!

ε(0)r
]}

. (115)

Here we have written ε(t) = x(t) − X(t). We can simplify the second exponential in the path integral in two ways. First, purely
for ease of presentation we will assume that S init(r) = 0 for r > 3, i.e., that the initial wave function is a Gaussian wave packet.
There is no difficulty to restore the extra terms, but the calculations become extremely lengthy. Second, we make choices on the
initial values of the currently unknown functions X(t) and q(t) to eliminate other terms in the second exponential as follows:
First, we assume q(0) = 0. Second, integrating the term

∫ T

0 mẊ(t)ε̇(t) gives a boundary contribution −mẊ(0)ε(0), and we can
cancel this by requiring mẊ(0) = S init′(X(0)). Implementing all these simplifications gives us

ψ(X,T ) = exp

[
i

h̄
{S[X] + S init(X(0))}

] ∫
Dε exp

(
i

2h̄

{∫ T

0
mε̇(t)2 − [V ′′(X(t)) + q(t)]ε(t)2 dt + S init′′(X(0))ε(0)2

})

× exp

(
i

h̄

{∫ T

0
[−mẌ(t) − V ′(X(t))]ε(t) + 1

2
q(t)ε(t)2 −

∞∑
r=3

V (r)(X(t))
r!

ε(t)r dt

})
. (116)
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Finally, we move to dimensionless quantities by substituting ε(t) =
√

hT
m

δ(t), giving

ψ(X,T ) = exp

{
i

h̄
{S[X] + S init(X(0))}

}∫
Dδ exp

(
iT

2

{∫ T

0
δ̇(t)2 − 1

m
[V ′′(X(t)) + q(t)]δ(t)2 dt + 1

m
S init′′(X(0))δ(0)2

})

× exp

(
i

{∫ T

0
−
√

mT

h̄

[
Ẍ(t) + 1

m
V ′(X(t))

]
δ(t) + T

2m
q(t)δ(t)2 −

∞∑
r=3

h̄r/2−1T r/2V (r)(X(t))
mr/2r!

δ(t)r dt

})
. (117)

Assuming that both Ẍ(t) + 1
m

V ′(X(t)) and q(t) are of order
h̄, we see that the coefficients of δ(t) and δ(t)3 in the second
exponential are of order h̄−1/2, the coefficients of δ(t)2 and
δ(t)4 are of order h̄1, and in general the coefficient of δ(t)r

is of order h̄r/2−1 for r � 3. (This is in direct analogy to
the calculations for the factorial function in Sec. IV.) The
leading-order approximation to the path integral is obtained by
simply discarding the second exponential term. The remaining
Gaussian integral is identical to one we have already computed
[but with V ′′(X(t)) replaced by V ′′(X(t)) + q(t)], and we
obtain the leading-order approximation

ψ(X,T ) = exp
{

i
h̄
{S[X] + S init(X(0))}}√

f (T )
, (118)

where f (s) is the solution of

f̈ (s) = − 1

m
[V ′′(X(s)) + q(s)]f (s), f (0) = 1

(119)

ḟ (0) = 1

m
S init′′(X(0)).

To obtain the first-order correction to this, we need
to replace the second exponential in the path integral

by

1 + ih̄T

2m

[∫ T

0

q(t)

h̄
δ(t)2 − T V ′′′′(X(t))

12m
δ(t)4 dt

]

− h̄mT

2

{∫ T

0

[
Ẍ(t) + 1

m
V ′(X(t))

]
h̄

δ(t)

+ T V ′′′(X(t))
6m2

δ(t)3 dt

}2

. (120)

There are five terms here that we need to consider, as opposed
to two in the derivation of the first correction term in the
complex WKB method. In addition to the integration formulas
(97)–(98) we need the formulas∫

dN� exp

(
iN

2
�A�T

)
δiδj = i

N
√

det A
A−1

ij , (121)∫
dN� exp

(
iN

2
�A�T

)
δ3
i δj = − 3

N2
√

det A
A−1

ii A−1
ij .

(122)

Computing all the necessary integrals gives the following
result for the first-order correction: The leading-order approx-
imation should be multiplied by

1 − 1

2m

∫ T

0
q(t)f (t)2

[∫ T

t

du

f (u)2

]
dt − im

2h̄

∫ T

0

∫ T

0
N (t1)N (t2)f (t1)f (t2)

[∫ T

max(t1,t2)

du

f (u)2

]
dt1 dt2

+ 1

2m

∫ T

0

∫ T

0
N (t1)V ′′′(X(t2))f (t1)f (t2)3

[∫ T

max(t1,t2)

du

f (u)2

] [∫ T

t2

du

f (u)2

]
dt1 dt2

+ ih̄

8m2

∫ T

0
V ′′′′(X(t))f (t)4

[∫ T

t

du

f (u)2

]2

dt + ih̄

24m3

∫ T

0

∫ T

0
V ′′′(X(t))V ′′′[X(t2)]f (t1)3f (t2)3

×
{

3

[∫ T

max(t1,t2)

du

f (u)2

] [∫ T

t1

du

f (u)2

] [∫ T

t2

du

f (u)2

]
+ 2

[∫ T

max(t1,t2)

du

f (u)2

]3
}

dt1 dt2. (123)

Here we have written N (t) = Ẍ(t) + 1
m

V ′(X(t)). We have left the integrals here in the form they arise using the relevant rules
for Gaussian integrals. To manipulate the integrals, though, it is more convenient to write them in terms of integrals in which all
the variables are all ordered. Doing this gives

1 − 1

2m

∫ T

0
dt1

∫ T

t1

dt2 q(t1)f (t1)2 1

f (t2)2
− im

h̄

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3 N (t1)f (t1)N (t2)f (t2)
1

f (t3)2

+ 1

m

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3

∫ T

t3

dt4 N (t1)f (t1)V ′′′(t2)f (t2)3 1

f (t3)2

1

f (t4)2

+ 1

2m

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3

∫ T

t3

dt4 V ′′′(t1)f (t1)3 1

f (t2)2
N (t3)f (t3)

1

f (t4)2
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+ 1

m

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3

∫ T

t3

dt4 V ′′′(t1)f (t1)3N (t2)f (t2)
1

f (t3)2

1

f (t4)2

+ ih̄

4m2

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3 V ′′′′(t1)f (t1)4 1

f (t2)2

1

f (t3)2

+ ih̄

2m3

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3

∫ T

t3

dt4

∫ T

t4

dt5 V ′′′(t1)f (t1)3 1

f (t2)2
V ′′′(t3)f (t3)3 1

f (t4)2

1

f (t5)2

+ 5ih̄

2m3

∫ T

0
dt1

∫ T

t1

dt2

∫ T

t2

dt3

∫ T

t3

dt4

∫ T

t4

dt5 V ′′′(t1)f (t1)3V ′′′(t2)f (t2)3 1

f (t3)2

1

f (t4)2

1

f (t5)2
. (124)

Our intention now is to choose the functions N (t) and q(t)
(both assumed to be of order h̄) in such a way that there is no
first-order correction, i.e., so that the sum of the integrals in this
expression vanishes. We see immediately that for any choice
of N (t) it is possible to choose q(t) such that the first-order
correction terms vanish. One choice that suggests itself for
N (t) is simply to take N (t) = 0. Then the correct choice of
q(t) is

q(t) = ih̄

mf (t)4

[
1

2

∫ t

0
duf (u)4V ′′′′(X(u))

+ 1

m

∫ t

0
du

∫ u

0
dv

∫ v

0
dwV ′′′(X(u))f (u)3 1

f (v)2

×V ′′′(X(w))f (w)3 + 5

m

∫ t

0
du

∫ u

0
dv

∫ v

0
dw

× 1

f (u)2
V ′′′(X(v))f (v)3V ′′′(X(w))f (w)3

]
. (125)

The solution that is of main interest for us, however, is

N (t) = − ih̄

2m2f (t)3

∫ t

0
V ′′′(X(u))f (u)3 du, (126)

q(t) = ih̄

mf (t)4

[
1

2

∫ t

0
duf (u)4V ′′′′(X(u))

+ 3

m

∫ t

0
du

∫ u

0
dv

∫ v

0
dw

1

f (u)2
V ′′′(X(v))f (v)3

×V ′′′(X(w))f (w)3

]
. (127)

We summarize what we have shown up to this point. For
either of the choices of N (t) and q(t) that we have given [or for
any other choice of N (t) and the appropriate matching choice
of q(t)] we have demonstrated that the leading-order approxi-
mation to the path integral (118) requires no first-order correc-
tion. Here the path X and the function f are chosen to satisfy

Ẍ(t) + 1

m
V ′(X(t)) = N (t),

(128)
mẊ(0) = S init′(X(0)), X(T ) = X,

mf̈ (s) + V ′′(X(s))f (s) = −q(s)f (s), f (0) = 1,
(129)

ḟ (0) = 1

m
S init′′(X(0)).

It is straightforward to check that the choice (126)–(127)
describes the BOMCA method [compare Eqs. (118), (126)–
(129) with (44), (50)–(52); the constants K,L should be

chosen to be zero, and recall that in the discussion of the
BOMCA method we wrote S ′′ = m

f

df

dt
]. We have arrived at the

understanding of the BOMCA method set out in Sec. I—that
it corresponds to an evaluation of the path integral around a
near-classical path, chosen in such a way that the classical
wave function remains accurate to any desired order in h̄, with
the path x and U being modified appropriately. We have found
that in fact there are other ways to change x and U in such a way
as to “correct” the classical wave function. In particular, we
can continue to use classical paths, but replace the usual Jacobi
equation with (129), where q is given by (125). (The existence
of this option extends to higher dimensions.) In practice the
direct derivation of the BOMCA method, as given in Sec. II,
is clearly preferable over the path integral for determining
higher-order corrections. The path-integral approach, however,
is necessary to understand the need to add contributions from
different (near-)classical trajectories can be justified.

Both the direct approach to the BOMCA method and the
path-integral approach only allow us to construct the relevant
near-classical trajectories order by order in h̄. The question
arises as to whether it is possible to find pairs x and U for
which the classical wave function is exact. As we have already
explained in Sec. I, the relevant paths would be an intermediate
object between classical paths and the quantum trajectories of
Bohmian mechanics—on the one hand the new paths would be
order h̄ perturbations of classical paths, but on the other hand
they would enable permit the derivation of exact quantum
dynamical results, at least in regions of configuration space
where they exist. At this stage the existence of such paths
remains just a conjecture.

VI. THE COHERENT-STATE PROPAGATOR

This section is a slight digression from the main point
of this paper but provides another illustration of our path-
integral methods, as well as the need for complex classical
trajectories in “semiclassical” calculations. The so-called
coherent-state propagator has been studied extensively by
many authors [8–18]. By the coherent-state propagator we
mean the overlap between the wave function ψ(x,T) evolving
from an (initial) coherent state with another (final) coherent
state. In fact our methods allow us to write a rather more
general object; we write the leading-order approximation for
the overlap between the wave function ψ(x,T ) evolving from
an initial state of form exp[iSi(x)/h̄] with a final state of
the form exp[iSf (x)/h̄]. Using the Feynman path-integral
representation of the (standard) propagator, the overlap takes
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the form

P =
∫ ∞

−∞
dxf ψ∗

f (xf )
∫ ∞

−∞
dxiψi(xi)

∫
Dx exp

(
iS[x]

h̄

)
,

(130)

where the path integral is over all paths satisfying x(0) = xi ,
x(T ) = xf . We can absorb the integrations over the initial and
final position into the path integral to write this simply as

P =
∫

Dx exp

{
i{S[x] + Si(x(0)) − S∗

f (x(T ))}
h̄

}
, (131)

where now the path integration is over all paths x(t), 0 � t �
T , with no specified boundary conditions.

Note that S[x] is real but Si(x(0)) and S∗
f (x(T )) are

complex. Since both the amplitude and the phase of the initial
(final) wave function is contained in Si (Sf ), this implies that
both the amplitude and phase of the initial and final wave
functions have an h̄ dependence. This is tacitly assumed by
the entire community studying coherent-state propagators and
completely in keeping with the approach adopted in this paper,
but as noted previously this differs from the usual WKB
assumption where the initial wave function is taken to have
an h̄ dependence in the phase but not in the amplitude, i.e.,
ψ0(x) = A0(x)eiS0(x)/h̄.

To compute the semiclassical approximation to P we
replace x in the exponent in this expression by x + ε and

expand to second order in ε. We choose x so that the linear term
vanishes. Taking the action to be given by

∫ T

0
1
2mẋ2 − V (x) dt

we find that the appropriate paths must satisfy

mẍ + ∇V (x) = 0, (132)

mẋ(0) = ∇Si(x(0)), (133)

mẋ(T ) = ∇S∗
f (x(T )). (134)

The leading-order approximation is thus a sum over such paths
of the form

P ≈
∑

ψ∗
f (x(T )) exp(iS[x]/h̄)ψi(x(0))

∫
Dε exp(Q[ε]),

(135)

where

Q[ε] = i

2h̄

[ ∫ T

0
mε̇2 − ε(t)T H (V )[x(t)]ε(t) dt

+ ε(0)T H (Si)[x(0)]ε(0) − ε(T )T H (S∗
f )[x(T )]ε(T )

]
.

(136)

Following the method of the calculation in the Appendix,
the factor

∫
Dε exp(Q[ε]) can be replaced (modulo some

normalization factor) by the large N limit of 1/
√

det V ,
where

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I + G0 −I 0 0 0 . . .

−I 2I + G1 −I 0 0 . . .

0 −I 2I + G2 −I 0

0 0 −I 2I + G3 −I

...
...

. . .
. . .

−I 2I + GN−1 −I

−I I + GN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (137)

Here

G0 = T

mN
H (Si)[x(0)] − T 2

2mN2
H (V )[x(0)], (138)

Gr = − T 2

mN2
H (V )

[
x
(

rT

N

)]
, r = 1, . . . ,N − 1, (139)

GN = − T

mN
H (S∗

f )[x(T )] − T 2

2mN2
H (V )[x(T )]. (140)

The method for evaluating the determinant used in the Appendix (with a slight addition to understand the nontrivial normalization)
yields the final result:

P ≈
(

2πih̄

m

)d/2 ∑ ψ∗
f (x(T )) exp(iS[x]/h̄)ψi(x(0))√

det
{
U̇1(T ) + 1

m
U̇2(T )H (Si)[x(0)] − 1

m
H (S∗

f )[x(T )]U1(T ) − 1
m2 H (S∗

f )[x(T )]U2(T )H (Si)[x(0)]
} .

(141)
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Here U1 and U2 are two solutions of the equation

mÜ (t) = −H (V )U (t), (142)

satisfying initial conditions

U1(0) = I, U̇1(0) = 0, U2(0) = 0, U̇2(0) = I. (143)

From Eq. (143) it follows that the entries of U2 have
dimensions of time, whereas those of U1 are dimensionless.

Restricting to the case of Gaussian initial and final states,
taken in the form

ψi(x) = exp

(
−m(x − x0i)T 
i(x − x0i)

2h̄
+ ip0i · (x − x0i)

h̄

)
, (144)

ψf (x) = exp

(
−m(x − x0f )T 
f (x − x0f )

2h̄
+ ip0f · (x − x0f )

h̄

)
, (145)

this formula reduces to

P ≈
(

2πih̄

m

)d/2 ∑ ψ∗
f (x(T )) exp(iS[x]/h̄)ψi(x(0))√

det[U̇1(T ) + iU̇2(T )
i + i
∗
f U1(T ) + 
∗

f U2(T )
i]
. (146)

Here x0i ,p0i are real parameters giving the expectation values
of the position and momentum in the initial state, x0f ,p0f

are real parameters giving the expectation of the position
and momentum in the final state, and 
i,
f are symmetric,
complex matrices (with eigenvalues with positive real part).
The relevant paths in the case of Gaussian initial states are
those satisfying the boundary conditions

mẋ(0) = p0i + im
i[x(0) − x0i], (147)

mẋ(T ) = p0f − im
∗
f [x(T ) − x0f ] (148)

(cf. Refs. [8–18]). Note that the formula (146) is not di-
mensionless as for simplicity we have been working with
nonnormalized Gaussian states.

We give one further simplifcation, just as an illustration
of the use of this formula: In the scalar case for a free
particle [U1(t) = 1,U2(t) = t] the formula gives the exact
result:

P =
√

2πh̄

m(
i + 
∗
f + iT 
i


∗
f )

exp

[
− (pi − pf )2 +m2
i


∗
f (xi − xf )2 + iT

(
p2

i 

∗
f + p2

f 
i

)+ 2im(xi − xf )(pi

∗
f + pf 
i)

2h̄m(
i + 
∗
f + iT 
i


∗
f )

]
.

(149)

(Here we have slightly changed notation, dropping the “0”
suffices on the position and momentum parameters.) It can
be verified that the exponential is a pure phase if and only
pf = pi , xf = xi + pit/m, in which case it becomes simply
exp(itp2

i /2mh̄).
The initial and final conditions on the complex trajec-

tories (147)–(148) are familiar from the literature; see in
particular Ref. [17]. The semiclassical approximation (146) is
presented somewhat differently from formulas in the literature,
but it would seem to be equivalent. Our derivation, while
maybe not as careful as previous derivations, is a substantial
simplification.

VII. CONCLUDING REMARKS

The main results of this paper are as follows: After a detailed
presentation of the complex WKB and BOMCA methods we
showed how the complex WKB method can be derived from a
saddle-point approximation in the path-integral formulation
of quantum mechanics. The path-integral approach to the
method explains the need to incorporate the contributions
from multiple trajectories; the original formulation, however,

is much more useful for practical applications, avoiding the
cumbersome multiple integrals that arise when computing
higher-order correction terms from the path integral. In terms
of methodology, the novel aspect of our path-integral deriva-
tion was incorporation of the initial wave function into the
integrand. Since the initial wave function is written ψ0(x) =
eiS(x)/h̄ where S(x) is complex, this moves the stationary phase
points off the real axis and leads to complex trajectories.
Complex and real trajectory methods in quantum mechanics
are complementary, not contradictory—complex trajectories
are needed to propagate wave packet-type states as considered
in this paper, whereas real trajectories suffice for WKB-type
states.

We then moved on to the path-integral description of the
BOMCA method. This required a further methodological
innovation, the use of a general quadratic approximation
in asymptotic analysis, as opposed to the standard Taylor
approximation at the minimum. Using this more general
asymptotic method we showed how to obtain the BOMCA
method from the path integral (thus justifying the need
for multiple trajectories in the BOMCA method too). In
fact, from the path-integral point of view at this stage the

012104-17



JEREMY SCHIFF, YAIR GOLDFARB, AND DAVID J. TANNOR PHYSICAL REVIEW A 83, 012104 (2011)

BOMCA method seems to be just one of many possible
methods, a matter that merits further investigation. The overall
picture of the relationship between the complex WKB and
BOMCA methods became clear. Both methods give rise to the
same lowest-order approximation to the wave function, the
“classical wave function” (8). In the complex WKB method
this approximation is refined by multiplying the wave function
by suitable factors of the form 1 + O(h̄), while keeping the
same trajectories x and their variations U . In the BOMCA
method, it is the formula (8) that remains the same, while O(h̄)
corrections are made to the trajectories x and the matrices U ;
these are changed depending on the order of the approximation.

In Sec. VI we showed how our method of inserting the wave
function into the path integral prior to making a saddle-point
approximation could be used to derive the coherent-state prop-
agator, measuring the overlap between an evolved Gaussian
wave packet and another Gaussian state. Our derivation is a
substantial simplification over previous ones. In the case of
the coherent-state propagator there is no alternative derivation
to the path integral; for computations of the wave function,
however, we emphasize that the derivation of the equations
of the complex WKB and BOMCA methods presented in
Sec. II is simpler than the path-integral approach, which is
only necessary to explain the need for multiple trajectories.

There are a number of areas in which further work is
necessary. First and foremost, this paper was intended to
provide the theoretical backing for the numerical studies
in Refs. [1–3], and having done this, we hope that further
numerical studies will be undertaken, especially in multiple
dimensions. There are several areas in which more theoretical
developments would be welcome. First, we have almost
completely avoided in this paper any discussion of caustics
(points at which the denominator in (8) vanishes, rendering
the approximation meaningless) and the related phenomenon
of Stokes’ lines. In the case of wave function approximations,
the caustics and Stokes’ lines are dependent on the time, and
it is possible to write equations describing their motion. It
is widely appreciated that the phenomena of caustics and
Stokes’ lines are “coordinate dependent,” in the sense that
they can be avoided (or moved) by working in momentum or
phase space representations [53–56]. However, not enough has
been done yet to make these ideas into efficient techniques for
calculations. Strongly related to these questions is the more
mathematical question of the nature of the singularities in the
system of ODEs arising in the complex WKB method at a
caustic, which we are currently investigating.

Another matter requiring further investigation is a better
understanding of the (linear) decomposition of the wave
function implied in (8). Given an initial wave function is it
possible (either abstractly or operationally) to write it as a sum
of terms each of which evolves into one of the terms in the sum
(8)? Is the evolution by the Schrödinger equation or some other
equation? Many ideas in these directions have been discussed
by Poirier and collaborators [43–48].

Finally, we mention that we find the perturbed Newton’s
equations appearing in the BOMCA method to be fascinating.
As mentioned, from the path-integral approach it emerges that
the BOMCA equations are not unique, and we would like
a way to select the version that emerges directly from the
Schrödinger equation in Sec. II. We strongly suspect this

to be related to some symmetry structure (recall that the
underlying Newton’s equations are Hamiltonian), but have
not yet found this structure. Understanding this might give us
clues as to how to find nonperturbative BOMCA trajectories,
that is trajectories that when used in (8) give exact answers. In
addition to these challenging, long-term goals, there is much
to be done in seeking solutions of the first-order BOMCA
equations for specific systems and understanding, for example,
the difference between the behavior of the complex WKB and
BOMCA methods near caustics.
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APPENDIX: DERIVATION OF THE CLASSICAL WAVE
FUNCTION IN THE MULTIDIMENSIONAL CASE

In this Appendix we derive the multidimensional form of
the classical wave function as described in the introduction
and in Sec. III; see Eqs. (84)–(86) and the surrounding text.
The result differs slightly from standard results, specifically
in the initial conditions obeyed by the classical paths (84) and
the function U (86), and in any case the relevant calculations
in the multidimensional case do not seem to have made it into
most of the existing texts on path-integration techniques, so
we see fit to give at least the key details of the derivation.

We start from the path integral in the form

ψ(X,T ) =
∫

Dx exp

{
i

h̄
{S[x] + S init(x(0))}

}
,

where the integration is over all paths with x(T ) = X. We use,
in this appendix, an action of the form

S[x] =
∫ T

0

1

2

d∑
i=1

miẋi(t)
2 − V (x(t)) dt,

with a diagonal mass matrix; the case of a general mass matrix
can be treated similarly. In the main text we quote results
assuming all the masses mi to be equal. We start by replacing
x by x + ε in the exponent and expanding to second order.
Requiring the linear terms in ε to vanish gives the classical
equation of motion as well as the initial condition for x (84).
The remaining terms give the approximation

ψ(X,T ) ≈
∑

eiS[x]/h̄ψ0[x(0)]
∫

Dε eQ[ε],

where

Q[ε] = i

2h̄

[∫ T

0

d∑
i=1

miε̇i(t)
2

−
d∑

i=1

d∑
j=1

H (V )ij [x(t)]εi(t)εj (t) dt

+
d∑

i=1

d∑
j=1

H (S init)ij [x(0)]εi(0)εj (0)

]
.
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Here H (V ) and H (S init) denote the matrices of second deriva-
tives of V and S init, respectively. We proceed by discretizing
the integrals in Q[ε]. Bearing in mind that ε(T ) = 0 and using
the trapezium rule we have∫ T

0
H (V )ij [x(t)]εi(t)εj (t) dt

≈ T

2N
H (V )ij [x(0)]εi(0)εj (0)

+ T

N

N−1∑
r=1

H (V )ij

[
x
(

rT

N

)]
εi

(
rT

N

)
εj

(
rT

N

)
.

Using a forward difference approximation for the derivative
of ε(t) and a “leftbox”-type approximation for the relevant

integral gives the approximation∫ T

0
ε̇i(t)

2 dt ≈ N

T

{
εi(0)2 + 2

N−1∑
r=1

εi

(
rT

N

)2

− 2
N−2∑
r=0

εi

(
rT

N

)
εi

[
(r + 1)T

N

]}
.

(Although this would appear to be a first-order approxima-
tion, since both the methods for constructing the deriva-
tive and computing the integral are first order, it is ac-
tually second order; the first-order errors in the meth-
ods exactly cancel each other.) Putting this all together
gives

Q[ε] ≈ iN

2h̄T
�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M + F0 −M 0 0 0 . . .

−M 2M + F1 −M 0 0 . . .

0 −M 2M + F2 −M 0

0 0 −M 2M + F3 −M

...
...

. . .
. . .

−M 2M + FN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�T .

Here � = [ε(0) ε(T/N) ε(2T/N) · · · ]. Each entry in the matrix in previous equation is a d × d block matrix. M denotes the
diagonal matrix with entries mi , and the matrices Fr are defined by

(F0)ij = T

N
H (S init)ij [x(0)] − T 2

2N2
H (V )ij [x(0)], (Fr )ij = − T 2

N2
H (V )ij

[
x
(

rT

N

)]
, r = 1, . . . ,N − 1.

As a final step in the simplification of Q[ε], we factor out factors of
√

M on the right and the left from each block in this matrix.
In this way we obtain

Q[ε] ≈ iN

2h̄T
�

√
M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I + G0 −I 0 0 0 . . .

−I 2I + G1 −I 0 0 . . .

0 −I 2I + G2 −I 0

0 0 −I 2I + G3 −I

...
...

. . .
. . .

−I 2I + GN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√
M�T , (A1)

where the matrix M is a diagonal matrix with N copies of M

on its main diagonal, and the matrices Gr are defined by

(G0)ij = 1√
mimj

[
T

N
H (S init)ij [x(0)] − T 2

2N2
H (V )ij [x(0)]

]
,

(Gr )ij = − 1√
mimj

T 2

N2
H (V )ij

[
x
(

rT

N

)]
,

r = 1, . . . ,N − 1.

It remains to compute the determinant of the matrix in (A1).
To do this, we first apply block Gaussian elimination [60]

to eliminate the blocks under the leading block diagonal, a
process that does not affect the determinant. This gives a matrix
of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0 −I 0 0 0 . . .

0 P1 −I 0 0 . . .

0 0 P2 −I 0

0 0 0 P3 −I

...
...

. . .
. . .

0 PN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where

P0 = I + G0,

P1 = 2I + G1 − P −1
0 ,

P2 = 2I + G2 − P −1
1 ,

PN−1 = 2I + GN−1 − P −1
N−2.

We wish to find det(P0P1P2 · · · PN−1). Define the matrices Rr ,
r = 0, . . . ,N − 1, by Rr = P0P1P2 · · · Pr . Then we have

R0 = I + G0,

R1 = (I + G0)(2I + G1) − I = I + 2G0 + G1 + G0G1,

and for 2 � r � N − 1:

Rr = Rr−2Pr−1Pr = Rr−2(Pr−1(2I + Gr ) − I )

= Rr−1(2I + Gr ) − Rr−2.

Rewriting the last equation, for 2 � r � N − 1 we have

Rr − 2Rr−1 + Rr−2

(T/N)2
= Rr−1

N2

T 2
Gr.

Taking the limit now as N → ∞, we see that the sequence
of matrices R0,R1, . . . ,RN−1 is replaced by a function R(t),

defined by

R̈(t) =R(t)G(t), where Gij (t) =− 1√
mimj

H (V )ij [x(t)],

supplemented with the initial conditions

R(0) = I, Ṙij (0) = 1√
mimj

H (S init)ij [x(0)].

Finally, we write U (t) = R(t)T . Taking the transpose of all
these equations we see that U (t) satisfies

Ü (t) = G(t)U (t), U (0) = I,

U̇ij (0) = 1√
mimj

H (S init)ij [x(0)].

The determinant of the matrix in (A1) is simply det U (T ),
and (after checking the case of the free particle to fix the
normalization) we deduce that

ψ(X,T ) ≈
∑ eiS[x]/h̄ψ0(x(0))√

det U (T )
,

as required.
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