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Stimulated Raman adiabatic passage in a � system in the presence of quantum noise
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We exploit a microscopically derived master equation for the study of stimulated Raman adiabatic passage in
the presence of spontaneous decay from the intermediate state toward the initial and final states and compare
our results with the predictions obtained from a phenomenological model used previously [P. A. Ivanov, N. V.
Vitanov, and K. Bergmann, Phys. Rev. A 72, 053412 (2005)]. It is shown that our approach predicts a much higher
efficiency for counterintuitively ordered pulses, while no significant difference between the two approaches is
found for intuitively ordered pulses. These features are readily explained in the dressed-state picture.
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I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) [1,2] is a
fruitful application of the adiabatic theorem [3] that allows
the transfer of a population from a quantum state of a physical
system toward another state, through an auxiliary intermediate
state [4]. The passage occurs via a dark state, which aligns
with the initial state in the beginning of the process and then
gradually changes its structure until complete alignment with
the target state occurs. The process ends when the dark and
the target states coincide. Because for such an alignment it is
necessary first to couple the final state with the intermediate
one and then to couple the intermediate state with the initial
one, this sequence of pulses is named counterintuitive.

With the intuitive sequence, corresponding to the opposite
delay of the two couplings between the three states, and for
nonzero single-photon detuning, it is possible to realize the
bright-STIRAP (or simply b-STIRAP) process, which instead
exploits the adiabatic change of a bright eigenstate of the
Hamiltonian [5]. The main difference between STIRAP and
b-STIRAP is that in the latter case the auxiliary state is
effectively involved in the dynamics, because a certain amount
of population is temporarily transferred to it during the process.
This circumstance makes the b-STIRAP more sensitive than
STIRAP to the presence of decay from the auxiliary level. In
fact, while in the absence of environmental interaction and
classical noise, the transfer from the initial state to the target
state is predicted to be perfect, in the presence of dissipative
dynamics the efficiency of the process is negatively affected.

Many models have been considered to study the effect of
dephasing [6] and spontaneous emission from the auxiliary
level, either toward external states [7] or toward internal
states [8], that is, toward the initial or the target state. In
all these models, the incoherent dynamics has been taken
into account phenomenologically. Recently, in the case
of time-independent Hamiltonian operators, discrepancies
between phenomenological and microscopic models have
been brought to light [9]. The term “microscopic” here means
that the master equation is derived starting from the system
Hamiltonian. Very recently, a microscopic model to describe
the STIRAP and b-STIRAP processes under dissipation from
the auxiliary state toward external states was presented [10].
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The solution of the master equation derived from a model
of interaction between the three-state system and a bosonic
environment shows some interesting deviations from the
predictions related to the phenomenological counterpart. In
particular, the microscopic model predicts a much higher
efficiency in the STIRAP scheme.

In this paper, by using a microscopic model in the spirit of
Ref. [10], we investigate the effect of spontaneous decay from
the intermediate state inside the � system. Because the initial
and final states in STIRAP are usually ground or metastable,
the intermediate state is necessarily an excited state, which
may decay both inside and outside the system [11–15].
The loss of efficiency caused by external decay is more
detrimental, for it leads to irreversible population loss from
the system; it is also easier to describe and understand [7,10].
The effect of internal decay on STIRAP is a much more
subtle effect because the loss of efficiency is compensated
by the concomitant optical pumping [8]. Here we develop a
rigorous microscopic theory of internal decay in STIRAP and
b-STIRAP, which reveals some unexpected features compared
to the phenomenological model [8].

Starting from a microscopic model of system-environment
interaction, we derive a time-dependent master equation that
describes the dynamics of our system. Then, after considering
the resolution of the master equation, we compare the predic-
tions coming from our model with the results coming from the
phenomenological description of an analogous decay scheme
[8]. We find that the efficiency of the STIRAP process is
higher than predicted before. Exploiting the master equation at
nonzero temperature, we also study the effects of temperature,
showing that the thermal pumping dramatically and negatively
affects the efficiency of the population transfer in the STIRAP
process, while it has a slightly positive effect in b-STIRAP.

The paper is organized as follows. In Sec. II we present
the derivation of the Markovian master equation of a system
with a time-independent Hamiltonian and a time-dependent
system-environment interaction term. In Sec. III we apply the
result from the previous section and the general theory of
Davies and Spohn [16,17] to derive the master equation of
the three-state system. Then, in Sec. IV we present the results
obtained at zero temperature and compare them with the results
coming from the phenomenological model. In Sec. V we show
the effects of temperature, and finally, in Sec. VI we make some
concluding remarks.
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II. GENERAL FORMALISM

In this section we consider the general problem of the
derivation of the master equation for a system whose Hamilto-
nian Hs is constant, while the system-environment interaction
Hamiltonian contains oscillation terms. This is useful in
the next section, where we deal with a system described
(in a rotating frame) by a slowly varying Hamiltonian and
interacting with a thermal bath through oscillating terms.
According to the general theory of Davies and Spohn [16,17],
under the hypothesis that the environmental correlation time
is much smaller than the time scale of the Hamiltonian
change, we can treat this system by assuming that the system
Hamiltonian is time independent during the derivation of the
master equation and putting the time dependence of the jump
operators only after the derivation.

Therefore we start by considering a time-independent
system Hamiltonian Hs and the following time-dependent
system-bath interaction Hamiltonian:

HI =
∑

α

(A+
α eiωα t + A−

α e−iωα t ) ⊗ Bα. (1)

Following the approach presented in [19], let us introduce,
for each Bohr frequency ω,

A±
α (ω) =

∑
ε′−ε=ω

�(ε)A±
α �(ε′), (2)

where �(ε) is the projector on the subspace of the system
Hilbert space corresponding to the energy eigenvalue ε and the
sum is extended over all the couples of energies ε and ε′ such
that ε′ − ε = ω. The operators defined in this way satisfy both

[Hs,A
±
α (ω)] = −ωαA±

α (ω) (3)

and

[A±
α (ω)]† = A∓

α (−ω), (4)

giving

ei Hs t A±
α (ω) e−i Hs t = e−i ω t A±

α (ω), (5)

ei Hs t [A±
α (ω)]† e−i Hs t = ei ω t [A±

α (ω)]†. (6)

Another important property is that summing over all the
Bohr frequencies (both positive and negative), one reobtains
the initial operators:

A±
α =

∑
ω

A±
α (ω). (7)

In the Schrödinger picture we thus have

HI =
∑
α,ω

[A+
α (ω) eiωα t + A−

α (ω) e−iωα t ] ⊗ Bα, (8)

which, in the interaction picture with respect to Hs + HB ,
becomes

HI =
∑
α,ω

e−i ω t [A+
α (ω) eiωα t + A−

α (ω) e−iωα t ] ⊗ Bα(t) (9)

or, taking the Hermitian conjugate,

HI =
∑
α,ω

ei ω t {[A+
α (ω)]i† e−iωα t + [A−

α (ω)]† eiωα t }

⊗ B†
α(t). (10)

The formal resolution of the Liouville equation gives

ρ̇ =
∫ ∞

0
ds trB{HI (t − s)ρ(t)ρBHI (t)

−HI (t)HI (t − s)ρ(t)ρB} + H.c., (11)

from which, substituting the expansions of HI , one gets the
following master equation:

ρ̇ =
∑
ω,ω′

∑
α,β

ei(ω−ω′+ωβ−ωα)t �++
αβ (ω)(A+

β (ω)ρ(A+
α (ω′))†

− (A+
α (ω′))†A+

β (ω)ρ) +
∑
ω,ω′

∑
α,β

ei(ω−ω′+ωβ+ωα )t �−+
αβ (ω)

× (A+
β (ω)ρ(A−

α (ω′))† − (A−
α (ω′))†A+

β (ω)ρ)

+
∑
ω,ω′

∑
α,β

ei(ω−ω′−ωβ−ωα )t �+−
αβ (ω)(A−

β (ω)ρ(A+
α (ω′))†

− (A+
α (ω′))†A−

β (ω)ρ) +
∑
ω,ω′

∑
α,β

ei(ω−ω′−ωβ+ωα )t �−−
αβ (ω)

× (A−
β (ω)ρ(A−

α (ω′))† − (A−
α (ω′))†A−

β (ω)ρ) + H.c.,

(12)

with
�++

αβ (ω) = �−+
αβ (ω)

=
∫ ∞

0
dsei(ω−ωβ )s〈B†

α(t)Bβ(t − s)〉 (13)

and
�+−

αβ (ω) = �−−
αβ (ω)

=
∫ ∞

0
ds ei(ω+ωβ ) s〈B†

α(t) Bβ(t − s)〉. (14)

This is the most general form of the Born-Markov master
equation before a rotating wave approximation (RWA) is
performed. Under the hypothesis that ωα,ωβ � ω,ω′, one can
single out very clear conditions for RWA. The only terms
that survive are those for which ωα and ωβ appear in the
combination ωα − ωβ , with α = β, and ω = ω′:

ρ̇ =
∑

ω

∑
α

�++
αα (ω)(A+

α (ω)ρ(A+
α (ω))† − (A+

α (ω))†A+
α (ω)ρ)

+
∑

ω

∑
α

�−−
αα (ω)(A−

α (ω)ρ(A−
α (ω))†

− (A−
α (ω))†A−

α (ω)ρ) + H.c., (15)

which, neglecting the Lamb shifts and coming back to the
Schrödinger picture, becomes

ρ̇ = −i[Hs,ρ] +
∑

ω

∑
α

γ ++
αα (ω)(A+

α (ω)ρ(A+
α (ω))†

− 1

2
{(A+

α (ω))†A+
α (ω),ρ})

+
∑

ω

∑
α

γ −−
αα (ω)(A−

α (ω)ρ(A−
α (ω))†

− 1

2
{(A−

α (ω))†A−
α (ω),ρ}), (16)

where γ ++
αα (ω) = 2Re{�++

αα (ω)} and γ −−
αα (ω) = 2Re{�−−

αα (ω)}.
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FIG. 1. (Color online) States |1〉 and |3〉 are coherently coupled
to level |2〉 [solid (red) arrows]. State |2〉 is coupled to the other two
states by a dipolar system-environment interaction [dashed (green)
arrows].

III. OUR MODEL

A. The system

We consider a three-level system in the � configuration
(shown in Fig. 1) whose Hamiltonian is

Hsys(t)

=

⎡
⎢⎣

ω1 
p(t)ei(ω21−�)t 0


p(t)e−i(ω21−�)t ω2 
s(t)e−i(ω23−�)t

0 
s(t)ei(ω23−�)t ω3

⎤
⎥⎦ .

(17)

The system interacts with a bosonic bath. The free bath is
described by

HB =
∑

k

ωk b
†
kbk, (18)

while the system-bath interaction Hamiltonian is

Hint =
∑

k

g
(12)
k (|1〉〈2| + |2〉〈1|)(bk + b

†
k)

+
∑

k

g
(32)
k (|3〉〈2| + |2〉〈3|)(bk + b

†
k). (19)

In the rotating frame associated with the transforma-
tion T (t) = eiω1t |1〉〈1| + ei(ω2−�)t |2〉〈2| + eiω3t |3〉〈3|, the to-
tal Hamiltonian,

H = Hs(t) + HB + HI (t) , (20)

with

Hs(t) =

⎡
⎢⎣

0 
p(t) 0


p(t) � 
s(t)

0 
s(t) 0

⎤
⎥⎦ , (21)

and

HI (t) =
∑

k

g
(12)
k (ei(ω1−ω2+�) t |1〉〈2|

+ e−i(ω1−ω2+�) t |2〉〈1|)(bk + b
†
k)

+
∑

k

g
(32)
k (ei(ω3−ω2+�) t |3〉〈2|

+ e−i(ω3−ω2+�) t |2〉〈3|)(bk + b
†
k). (22)

The eigenstates and eigenvalues of Hs(t) are

ω+ = 
0 cot ϕ, ω0 = 0, ω− = −
0 tan ϕ, (23a)

|+〉 = sin ϕ sin θ |1〉 + cos ϕ|2〉 + sin ϕ cos θ |3〉, (23b)

|0〉 = cos θ |1〉 − sin θ |3〉, (23c)

|−〉 = cos ϕ sin θ |1〉 − sin ϕ|2〉 + cos ϕ cos θ |3〉, (23d)

where

tan θ (t) = 
p(t)


s(t)
, (24a)

tan 2ϕ(t) = 2
(t)

�(t)
, (24b)


(t) =
√


2
p(t) + 
2

s (t). (24c)

It is well known [5] that, for the intuitive sequence of
pulses, in which the probe pulse 
p(t) precedes the Stokes
pulse 
s(t), and for any nonvanishing detuning � �= 0, one has
|−〉 = |1〉 for t → −∞ and |−〉 = |3〉 for t → ∞. Therefore,
if all the pulses vary adiabatically, the population of state |1〉
can be transferred to state |3〉: this process is called b-STIRAP.
In contrast, if 
s(t) precedes 
p(t), independently of the
detuning, one has |0〉 = |1〉 for t → −∞ and |0〉 = |3〉 for
t → ∞: in this counterintuitive sequence the population from
|1〉 to |3〉 is adiabatically transferred through state |0〉 and the
process is called STIRAP.

B. Master equation

Since in the rotating frame we have a slowly varying system
Hamiltonian and a time-dependent system-environment inter-
action term, we can use the general formalism presented before
to derive the master equation that describes the dynamics of our
system. We obtain the following master equation (for details,
see Appendix A):

ρ̇ = −i[Hs,ρ] + [γ ++
aa (ω+0) cos2 θ cos2 ϕ + γ ++

bb (ω+0) sin2 θ cos2 ϕ]
(|0〉〈+|ρ|+〉 〈0| − 1

2 {|+〉〈+|,ρ} )
+ [γ −−

aa (ω0−) cos2 θ sin2 ϕ + γ −−
bb (ω0−) sin2 θ sin2 ϕ]

(|−〉 〈0| ρ|0〉 〈−| − 1
2 {|0〉 〈0| ,ρ})

+ [γ ++
aa (ω+−) sin2 θ cos4 ϕ + γ −−

aa (ω+−) sin2 θ sin4 ϕ + γ ++
bb (ω+−) cos2 θ cos4 ϕ + γ −−

bb (ω+−) cos2 θ sin4 ϕ]

× (|−〉〈+|ρ|+〉 〈−| − 1
2 {|+〉〈+|,ρ})

+ [(γ ++
aa (0) + γ −−

aa (0)) sin2 θ sin2 ϕ cos2 ϕ + (γ ++
bb (0) + γ −−

bb (0)) cos2 θ sin2 ϕ cos2 ϕ]

× [
(|+〉〈+| − |−〉 〈−|) ρ (|+〉〈+| − |−〉 〈−|) − 1

2 {|+〉〈+| + |−〉 〈−| ,ρ}]
+ [γ −−

aa (ω0+) cos2 θ cos2 ϕ + γ −−
bb (ω0+) sin2 θ cos2 ϕ]

(|+〉 〈0| ρ|0〉〈+| − 1
2 {|0〉 〈0| ,ρ})
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+ [γ ++
aa (ω−0) cos2 θ sin2 ϕ + γ ++

bb (ω−0) sin2 θ sin2 ϕ]
(|0〉 〈−| ρ|−〉 〈0| − 1

2 {|−〉 〈−| ,ρ})
+ [γ −−

aa (ω−+) sin2 θ cos4 ϕ + γ ++
aa (ω−+) sin2 θ sin4 ϕ + γ −−

bb (ω−+) cos2 θ cos4 ϕ + γ ++
bb (ω−+) cos2 θ sin4 ϕ]

× (|+〉 〈−| ρ|−〉〈+| − 1
2 {|−〉 〈−| ,ρ}) , (25)

where ωnm = ωn − ωm.
From (13) and (14) one gets that the decay rates are given

by a spectral density Jj (ω) multiplied by a factor depending on
the photon population N (ω) of the bath modes at the relevant
frequency corrected with ±ωa or ±ωb depending on the case;
that is,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ ++
jj (ω) = Jj (ω − ωj ) (1 + N (ω − ωj )), ω − ωj > 0,

γ −−
jj (ω) = Jj (ω + ωj ) (1 + N (ω + ωj )), ω + ωj > 0,

γ ++
jj (ω) = Jj (|ω − ωj |) N (|ω − ωj |), ω − ωj < 0,

γ −−
jj (ω) = Jj (|ω + ωj |) N (|ω + ωj |), ω + ωj < 0,

(26)

with j = a,b and

ωa = ω1 − ω2 + �, (27a)

ωb = ω3 − ω2 + �. (27b)

The zero-temperature spectral density Jj (ω) for a general
bosonic reservoir is given by [18,19]

Jj (ω) = d(ω) |gj (ω)|2, (28)

where ga(ω) [gb(ω)] is the system-reservoir coupling constant
g

(12)
k [g(32)

k ] in the continuum limit, and d(ω) is the reservoir
density of states at frequency ω.

It is important to note that, under the hypothesis that ωj �
ω for any Bohr frequency ω between the dressed states in the
rotating frame (which is the usual case since ωj ’s are optical
frequencies associated with the atomic transitions, while ω’s
are of the order of magnitude of the coupling terms 
’s), and
taking into account that the frequencies in (27a) are negative,
the only conditions satisfied are ω − ωj > 0 and ω + ωj < 0.
Therefore, in (26), only the rates of the first and fourth classes
are possible. Moreover, at zero temperature, only the rates
of the first class survive, since the number of photons in the
reservoir is 0. In such a case the master equation becomes

ρ̇ = −i[Hs,ρ] + [γ ++
aa (ω+0) cos2 θ cos2 ϕ + γ ++

bb (ω+0) sin2 θ cos2 ϕ]
(|0〉〈+|ρ|+〉 〈0| − 1

2 {|+〉〈+|,ρ})
+ [γ ++

aa (ω−0) cos2 θ sin2 ϕ + γ ++
bb (ω−0) sin2 θ sin2 ϕ]

(|0〉 〈−| ρ|−〉 〈0| − 1
2 {|−〉 〈−| ,ρ})

+ [γ ++
aa (ω+−) sin2 θ cos4 ϕ + γ ++

bb (ω+−) cos2 θ cos4 ϕ] × (|−〉〈+|ρ|+〉 〈−| − 1
2 {|+〉〈+|,ρ})

+ [γ ++
aa (ω−+) sin2 θ sin4 ϕ + γ ++

bb (ω−+) cos2 θ sin4 ϕ] × (|+〉 〈−| ρ|−〉〈+| − 1
2 {|−〉 〈−| ,ρ})

+ [γ ++
aa (0) sin2 θ sin2 ϕ cos2 ϕ + γ ++

bb (0) cos2 θ sin2 ϕ cos2 ϕ]

×[
(|+〉〈+| − |−〉〈−|)ρ(|+〉〈+| − |−〉〈−|) − 1

2 {|+〉〈+| + |−〉〈−|,ρ}]. (29)

This equation shows that at zero temperature there are
the following processes: transitions from |+〉 to |−〉, and
vice versa, transitions from |+〉 to |0〉 and from |−〉 to |0〉,
and a dephasing process involving levels |+〉 and |−〉 (see

FIG. 2. (Color online) Scheme of the decays for the dressed states.
There are transitions from |+〉 to |−〉, and vice versa. Both |+〉 and
|−〉 decay toward |0〉. The dephasing between state |+〉 and state |−〉
is not represented.

Fig. 2). This suggests the idea that the damping can help to
transfer the population to level |0〉, so that the efficiency of the
counterintuitive sequence should be positively affected by the
dissipation.

IV. ANALYSIS OF THE EFFICIENCY
AT ZERO TEMPERATURE

In this section we analyze the efficiency of both the STIRAP
and the b-STIRAP processes, by numerically studying the
postpulse population of the target state |3〉 and compare the
prediction of our model with the predictions of a phenomeno-
logical model introduced in Ref. [8].

We consider Gaussian edges for the laser pulses,


1 = 
0

2
e−(t−τ/2)2/T 2

, (30a)


2 = 
0

2
e−(t+τ/2)2/T 2

, (30b)

taking into account that we have the so-called intuitive
sequence (which corresponds to b-STIRAP) when 
p = 
2
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and 
s = 
1, while we get the counterintuitive sequence
(which corresponds to STIRAP) when 
p = 
1 and 
s = 
2.
The adiabatic condition is fulfilled when the amplitude and the
characteristic duration of the pulses are such that 
0 T � 1
(see Appendix B).

The phenomenological model which we compare with
our microscopic model corresponds to the following master
equation:

ρ̇ = −i[H,ρ] − 1
2D, (31)

with

D =

⎛
⎜⎝

−2�1ρ22 (�1 + �3)ρ12 0

(�1 + �3)ρ21 2(�1 + �3)ρ22 (�1 + �3)ρ23

0 (�1 + �3)ρ32 −2�3ρ22

⎞
⎟⎠ ,

(32)

which describes spontaneous emission from level 2 to levels 1
and 3 at rates �1 and �3, respectively. Such a master equation
is related to the bare states and then turns out to be time
independent.

Concerning the microscopic model, we assume a flat
spectrum for both the transition 2 → 1, corresponding to
Ja(ω), and the transition 2 → 3, corresponding to Jb(ω).
In particular, we assume Ja(ω) ≡ � and Jb(ω) ≡ α�. This
may come, for instance, from the assumption that the dipole
moments between state |1〉 and state |2〉 and between state |3〉
and state |2〉 are proportional, so that g

(12)
k = αg

(32)
k for any k

in Eq. (19).

A. The counterintuitive sequence

We first analyze the counterintuitive sequence, where
the population is carried by the dark state |0〉. Figure 3
shows the comparison between the microscopic and the
phenomenological models, with α = 1 and �1 = �2 = �.
It is evident that the microscopic model predicts a very
high efficiency (essentially 1) for a wider range of �.
This can be explained on the basis of the decay scheme

0.2

0.4

0.6

0.8

1

4321-2-

Γ
101010101010 1

P3( )

FIG. 3. (Color online) Counterintuitive sequence. Final popula-
tion of the target state vs � (in units of T −1 and on a logarithmic
scale) according to the microscopic [dashed (blue) line] and phe-
nomenological [solid (red) line] models. The relevant parameters are

0 = 25 T −1, τ = 1.5 T −1, T � = 1, and α = 1.

in Fig. 2: all the decay processes describe jumps either
toward |0〉 or toward states that, in turn, decay toward |0〉,
so that the dark state is robust against zero-temperature
dissipation.

The robustness of the counterintuitive scheme according
to the microscopic model is not related to the special choice
α = 1. Indeed, we have evaluated the efficiency of the transfer
for � and α spanning the ranges 10−2 � � � 104 and 10−2 �
α � 104 and have always found the maximum of population
transmission. Therefore, we can assert that the efficiency of
the scheme is not affected by a discrepancy in the decay
rates.

It is interesting to compare the parameter range of high
decay rates, where the difference between the phenomeno-
logical and the master equation approaches appears, to the
existing experiments. In the implementation of STIRAP with
continuous-wave (cw) lasers, the atomic beam crosses two
spatially displaced and partially overlapping cw laser beams
at right angles [1,15]. The time it takes for the atoms or
molecules to cross the laser beams is 1 to 2 orders of magnitude
longer than the lifetime of the excited state, which implies
�T = 10 to 100. These values are on the edge of the regime
(�T >∼ 100) where the difference between the two approaches
emerges. Therefore, although the foregoing experiments do
not allow discrimination between the phenomenological and
the microscopic models, this effect can easily be demonstrated
in a dedicated experiment.

B. The intuitive sequence

Concerning the b-STIRAP process (i.e., in the intuitive
sequence), we find that the two models predict very similar
results. In particular, Fig. 4 shows perfect coincidence of
the predictions of the two models in the case α = 1 and
�1 = �2 = �. Moreover, from Fig. 4 one can see that (for
both models) the efficiency is very sensitive to the presence
of decays, so that it drops to almost 0 at �T = 1. The

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

P
3(

)

Γ

δP

Γ
0.5 1 1.5 2

    0

0.004

0.008

0

FIG. 4. (Color online) Intuitive sequence. Final population of the
target state vs � (in units of T −1) according to microscopic [dashed
(blue) line] and phenomenological [solid (red) line] model. The
relevant parameters are 
0 = 25 T −1, τ = 1.5 T −1, T � = 1, and
α = 1. The two curves are essentially coincident. Inset: Difference δP

of the postpulse populations related to the phenomenological model
and the microscopic one vs. � (in units of T −1). This difference is
always smaller than 8 × 10−3.
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reason for the fragility of the efficiency in this scheme
is that, while all the populations are guided by the decay
toward state |0〉, population transfer is instead carried on by
state |−〉.

It is worth noting that the result of the comparison is
qualitatively quite similar to the result of the comparison we
made in connection with the scheme with external decay [10].
Indeed, in both cases the predictions from the microscopic and
the phenomenological models are almost coincident for the
intuitive sequence, while for the counterintuitive sequence we
find that the microscopic model predicts a higher efficiency.
Nevertheless, we stress here the fact that the enhancement of
efficiency in STIRAP in the strong damping limit is due to very
different mechanisms in the two cases of external and internal
decay. In fact, while for external decay a very strong damping is
responsible for a dynamical decoupling of the dark state, which
then is protected against losses, in the case of internal decay
the dissipation is instead responsible for transitions toward
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FIG. 5. (Color online) Intuitive sequence. (a) Final population of
the target state vs � (in units of T −1) and the number of photons N .
(b) Final population vs the number of photons N (on a logarithmic
scale) for � = 1. In both cases, the relevant parameters are 
0 =
25 T −1, τ = 1.5 T −1, T � = 1, and α = 1.

the state that carries the population, therefore protecting the
process of population transfer.

V. ANALYSIS OF THE EFFICIENCY
AT NONZERO TEMPERATURE

In this section we consider the effects of nonzero tempera-
ture. Looking at (26), we see that the N (ω)’s are evaluated at
very close frequencies, which are essentially ω ≈ ω21 ≈ ω23.
For this reason, we described temperature by a single number
N , which is the number of photons in the reservoir modes of
frequencies close to the bare atomic transitions.

We have seen that at zero temperature, for increasing
� (and even for quite small values of the decay constant),
the efficiency falls to 0 when the intuitive sequence is
applied. When temperature is nonvanishing all the transi-
tions included in (25) but not present in (29) must be
considered. In particular, transitions from |0〉 to |−〉 should
increase the efficiency of the b-STIRAP process, since in
this scheme the population is transferred through state |−〉.
In contrast, in the counterintuitive sequence we should get a
lower transfer efficiency, since thermal terms are responsible
for loss of population from state |0〉 during the STIRAP
process.

Figure 5(a) shows the dependence of the postpulse popula-
tion of state |3〉 on � and temperature (through the number of
photons N in the relevant reservoir modes), for the intuitive
sequence. It is easily seen that the efficiency, which goes to 0
for large � in the zero-temperature regime, reaches nonzero
values for nonvanishing temperature. This efficiency reaches
a maximum value for intermediate values of temperature. As
an example, Fig. 5(b) shows the temperature dependence (in
a wider range) of the efficiency for � = 1: in this case the
optimal point is reached at N  10. The asymptotic value,
corresponding to a very high temperature, is essentially 1/3,
which is traceable back to an equipartition of the population
in the three levels, irrespective of the interactions.

Figure 6 shows the postpulse population of state |3〉 as a
function of both � and temperature, for the counterintuitive
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FIG. 6. (Color online) Counterintuitive sequence. Final popula-
tion of the target state vs � (in units of T −1 and on a logarithmic scale)
and the number of photons N (on a logarithmic scale). The relevant
parameters are 
0 = 25 T −1, τ = 1.5 T −1, T � = 1, and α = 1.

012101-6



STIMULATED RAMAN ADIABATIC PASSAGE IN A . . . PHYSICAL REVIEW A 83, 012101 (2011)

sequence. In this case it is clearly shown that the temperature
negatively affects the efficiency of the population transfer.
Indeed, even a very small number of thermal photons is
responsible for a significant diminishing of the postpulse
population, which instead approaches unity at rigorously zero
temperature.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper we have analyzed the effects on a STIRAP
scheme of the losses of the auxiliary level to the two metastable
states, examined by means of the numerical resolution of a
master equation which has been microscopically derived. It
is worth noting that, to remove the rapid oscillations in the
system Hamiltonian, we are forced to describe the system
in a rotating frame, where the system-bath interaction term
turns out to be time dependent. Therefore, when deriving the
master equation, we have to deal both with a slowly varying
system Hamiltonian, which can be treated following the
general theory of Davies and Spohn, and a rapidly oscillating
system-environment interaction term. The latter point makes
the final master equation different from what one usually
gets. Indeed, the zero-temperature transitions are guiding the
system not toward the dressed (rotating) ground state |−〉 but,
instead, toward state |0〉. In this sense, the oscillating terms
in the system-environment interaction act like a pumping that
makes the counterintuitive sequence much more robust than
the intuitive sequence.

The inclusion of the nonzero temperature terms in the
master equation partially modifies these conclusions. In
fact, thermal photons switch on different transitions, which
make the postpulse population of state |−〉 different from
0. As a consequence the efficiency of the counterintuitive
sequence is reduced, while, in contrast, the efficiency of the
intuitive sequence increases, due to the fact that at very high
temperatures the three states are equally populated. However,
this increase is not great enough to make the intuitive sequence
preferable to the counterintuitive one.

Though the analysis of this STIRAP scheme (with the
same decay channels), performed in previous papers by means

of phenomenological dissipative terms, has shown a great
robustness of the counterintuitive sequence with respect to
losses, our analysis shows that the scheme at zero temperature
is much more robust for very high decay rates. We conclude
by noting that the difference between the values of the
postpulse population in the two models is traceable back
to different phenomena occurring in the two models: in the
phenomenological model strong dissipation causes dynamical
decoupling, which forbids the transition from level 1 to level 3
(according to the analysis in [8]), while in the microscopic
model the dissipation assists the population transfer, since all
the zero-temperature jumps guide the system toward the dark
state.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

In this appendix we give some more details about the
derivation of the master equation in our model. In our case
we consider

A+
a = |1〉〈2|, (A1a)

A−
a = |2〉〈1|, (A1b)

A+
b = |3〉〈2|, (A1c)

A−
b = |2〉〈3|, (A1d)

Ba =
∑

k

g
(12)
k (bk + b

†
k), (A2a)

Bb =
∑

k

g
(32)
k (bk + b

†
k), (A2b)

from which we obtain the following jump operators:

A+
a (ω+0) = cos θ cos ϕ|0〉〈+|, A−

a (ω+0) = 0,

A+
b (ω+0) = − sin θ cos ϕ|0〉〈+|, A−

b (ω+0) = 0,

A+
a (ω0−) = 0, A−

a (ω0−) = − cos θ sin ϕ|−〉 〈0| ,
A+

b (ω0−) = 0, A−
b (ω0−) = sin θ sin ϕ|−〉 〈0| ,

A+
a (ω+−) = sin θ cos2 ϕ|−〉〈+|, A−

a (ω+−) = − sin θ sin2 ϕ|−〉〈+|,
A+

b (ω+−) = cos θ cos2 ϕ|−〉〈+|, A−
b (ω+−) = − cos θ sin2 ϕ|−〉〈+|,

(A3)

A+
a (0) = A−

a (0) = sin θ sin ϕ cos ϕ (|+〉〈+| − |−〉 〈−|) ,

A+
b (0) = A−

b (0) = cos θ sin ϕ cos ϕ (|+〉〈+| − |−〉 〈−|) .

Putting all the jump operators inside the Lindblad form in
(16), we get the master equation in (25).

APPENDIX B: ADIABATIC APPROXIMATION

In this appendix we prove that with the pulses in (30a) and
(30b), the adiabatic approximation holds, provided 
0 T � 1.
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The condition that guarantees the validity of the adiabatic
approximation is

|〈m|Ḣ |n〉|
(Em(t) − En(t))2

� 1, ∀m,n, (B1)

where Ek(t) is the kth instantaneous eigenvalue of the
Hamiltonian H , while |k〉 is the corresponding instantaneous
eigenstate. In passing, we mention that recently the efficacy of
this condition has been criticized [20] and that, more recently,
its sufficiency has been proven, provided that the Hamiltonian
contains only real and nonoscillating terms [21]. The necessity
always holds [22].

The numerator is a linear combination of the derivatives of
the two pulse edges: 〈m| Ḣ |n〉 = αs
̇s(t) + αp
̇p(t). Now,
for � = 0 one has that the three eigenvalues of H are
ω− = −
, 0, and ω+ = 
, with 
 = √


2
s (t) + 
2

s (t), so

that the absolute values of all three Bohr frequencies are
either 
 or 2
. Therefore, the left-hand side of Eq. (B1)
is of the order t/
0T

2, and since in a real experiment t

spans values in a range whose amplitude is of the order of
T , one has t/
0T

2 <∼ (
0 T )−1 � 1, and the condition is
fulfilled.

Let us now consider the case � �= 0. The numerator
is again a linear combination of 
̇s(t) and 
̇p(t), hence
keeping its order of magnitude. Concerning the denomina-
tor, the three eigenvalues are ω− = (� − √

�2 + 4
2)/2, 0,
and ω+ = (� + √

�2 + 4
2)/2 > 
, so that the only Bohr
frequency that has possibly changed its order of magnitude
(still nonvanishing, anyway) is that related to the transitions
|−〉 ↔ |0〉. Now, since it is easy to verify that Ḣ |0〉 = 0, which
implies 〈−| Ḣ |0〉 = 0, the condition in Eq. (B1) is also fulfilled
in this case.
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