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We propose a protocol to generate a stream of mobile qubits in a graph state through a single stationary parent
qubit and discuss two types of its physical implementation, namely, the generation of photonic graph states through
an atomlike qubit and the generation of flying atoms through a cavity-mode photonic qubit. The generated graph
states fall into an important class that can hugely reduce the resource requirement of fault-tolerant linear optics
quantum computation, which was previously known to be far from realistic. In regard to the flying atoms, we also
propose a heralded generation scheme, which allows for high-fidelity graph states even under the photon loss.
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The graph state, marked by having peculiar correlations [1]
and being a universal resource for quantum computation [2],
has been recognized as one of the most important classes
of many-body entangled states. In the last decade, numerous
studies have been conducted to generate graph states in
various systems [3–13] and the proof-of-principle experiments
have been performed with realizing measurement-based logic
operations using graph states [10–13].

An important feature of the graph state is that it can be rep-
resented by a graph with each vertex representing a qubit. For a
given graph (specifically, a simple graph [14]), the correspond-
ing graph state is defined as the state generated by preparing
every qubit in state |+〉 = 1√

2
(|0〉 + |1〉), where |0〉 and |1〉 are

the computational basis states, and subsequently performing
a controlled-PHASE (CPHASE) operation between every pair of
qubits connected by an edge. This definition is very suggestive
in that one can essentially build up graph states in a systematic
way, that is, by adding qubits one by one, connecting two
graph states, and so forth. This building-up procedure can
be performed even with nondeterministic CPHASE gates [15],
leaving us a problem of finding an optimal strategy [16].

In most physical situations, however, such graph-state
generations are largely restricted both spatially and temporally.
In particular, when mobile qubits, for example, photons or
flying atoms, are of major concern, such restrictions are more
crucial unless massive reroutings and clever spatial allocations
are permitted even though the mobile-qubit graph states can be
useful for various quantum information and communication
protocols. It would thus be crucial toward useful quantum
information processing to identify the capabilities of individual
systems as a source of graph states.

In this paper, we propose a protocol to generate graph states
of mobile qubits in a highly restricted but commonly faced
situation wherein mobile qubits come out sequentially in a
linear stream from a place containing a single stationary qubit,
which we will call a parent qubit. In particular, we consider two
types of systems: first, a stream of single photons generated
recurrently by an atomic (or atomlike [17]) qubit trapped
in a cavity, and second, a stream of flying atoms passing
sequentially through a cavity containing a single photon [18].
For convenience, let us call the former System I and the latter
System II.

Experimentally, only pairwise entanglement generation in
Systems I and II using a parent qubit has been realized [18,19].
While photonic graph-state generation in System I has been
considered theoretically [3,8], the same for the atoms in
System II has not been thoroughly studied. Our protocol offers
a versatile and structured way of generating a rich variety
of graph states and further envisions the possibility of the
generation in System II. It turns out that the graph states
corresponding to a linear chain of arbitrary star graphs [14],
as shown in Fig. 1(a), can be generated. The graph states
and variations considered in Ref. [8] for System I fall into
the same class up to local unitary transformations, albeit
not explicit therein. This type of graph state is indeed of
significant importance in fault-tolerant linear optics quantum
computation (LOQC) [20,21]. Although one can obtain fault-
tolerance thresholds for LOQC, its requirement of resources—
the number of two-photon entangled pairs, time steps, and
parallel operations—is unrealistically high as it heavily relies
on off-line preparation of particular graph states that is done
with an extremely low success rate, spending a huge amount of
the resources. Those graph states that the off-line preparation is
aimed at are, in fact, of the same shape as that in Fig. 1(a). Our
scheme would thus hugely reduce the resource requirement
of fault-tolerant LOQC. In regard to System II, experimental
errors may be due to the loss of the photon that should be kept
in the cavity throughout the whole process as a parent qubit.
In order to circumvent this problem, we propose a heralding
scheme that can single out successful events when the atoms
are in high-fidelity graph states. The schemes considered in
this paper are within current technology.

Our protocol makes use of two unit operations to generate
graph states. The first one is what we call a branching
operation, which adds a vertex stemming from the parent
qubit, as in Fig. 1(b). This operation brings the parent qubit
p into a combination of the parent and a mobile qubit and
maps the state of the parent qubit into the combined state
as follows: |0〉p → |0〉p|+〉i and |1〉p → |1〉p|−〉i , where
|−〉 = 1√

2
(|0〉 − |1〉) and the subscript i denotes the ith mobile

qubit. This resembles a CPHASE operation between the parent
and ith mobile qubits prepared in the |+〉 state. The other
operation is what we call a pulling-out operation, which adds
a vertex taken by the parent qubit while a new mobile qubit
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(a) Linear chain of star graphs

(b) Branching (c) pulling-out

FIG. 1. (a) An example of a graph state that can be generated
by combining the two operations in (b) and (c). (b), (c) Two unit
operations for adding the ith qubit. The shaded vertex represents the
parent qubit.

takes the previous place of the parent qubit, as in Fig. 1(c).
This operation maps the state as |0〉p → |0〉i |+〉p and
|1〉p → |1〉i |−〉p, which is identical to a branching operation
followed by a SWAP operation. While the general SWAP

operation is a nonlocal operation, it is important to note that this
particular SWAP operation can be replaced by local Hadamard
operations. It is easily seen that by combining branching and
pulling-out operations, one can generate a state corresponding
to any linear chain of star graphs, as shown in Fig. 1(a).

In System I where photons are mobile qubits, single-qubit
operations are tractable for both the parent and the mobile
qubits. The essential part is thus the branching operation, as
local Hadamard operations transform the branching operation
into the pulling-out operation. For the branching operation,
one needs to generate a single photon in such a way that an
arbitrary superposition state of the parent qubit α|0〉p + β|1〉p
is transformed to α|0〉s |σ+〉 + β|1〉s |σ−〉, where |σ±〉 are two
orthogonal polarization states of a photon. This can be done
by using (or slightly modifying) well-studied existing schemes
for single-photon generation [22]. For example, one can realize
the branching operation using two ground hyperfine levels
|0〉 ≡ |mg = − 1

2 〉 and |1〉 ≡ |mg = 1
2 〉 with total spin F = 1

2 ,
as shown in Fig. 2(a), to represent a parent qubit. As the
transitions with �m = ±1 are coupled to the σ±-polarized
modes of a cavity, Raman transitions can occur for both the
ground levels by applying a π -polarized classical field, which
generates a single-cavity photon while flipping the atomic
qubit. The single photon leaking out of the cavity then has
a polarization depending on the atomic initial state, as we
desired. The spin flip of the atomic state is easily correctable
by a single-qubit operation, or this correction can be simply
put off to a later time by employing the Pauli frame [23].
The spontaneous emission can be suppressed by having a
sufficiently large detuning. As for the time scale, using this
conventional method of adiabatic transfer (see Ref. [22]), the
width of a single-photon pulse can be estimated as some large
constant (say, ∼10) divided by the cavity decay rate; hence,
the repetition rate can be typically as high as tens of kHz.

Differently from System I, realizing the branching and
pulling-out operations is not straightforward in System II as it
is hard to perform single-qubit operations on the parent qubit,
which is encoded in a cavity-mode photon. In this case, the
CPHASE and SWAP operations should be directly implemented.

)b()a(

FIG. 2. Involved atomic levels and transitions for System I
(a) and System II (b). Two ground hyperfine levels represent a qubit.

For this, we consider a �-type level structure as shown in
Fig. 2(b). The two transitions are coupled, respectively, to
the two orthogonally polarized modes of the cavity, but are
largely detuned from the resonance. Consequently, when the
atom just passes through, no atom-cavity interaction takes
place. In order to turn on the interaction, we control the
two detunings separately by means of an ac Stark shift. As
will be shown later, when only one transition is brought
into resonance, a CPHASE operation can be performed, and
when both transitions are brought into resonance, a SWAP

operation can be performed. We can thus perform these
operations selectively while the flying atom is passing through
the interaction region of the cavity by applying timely pulses
that induce the ac Stark shifts. Note that as the flying atoms
enter the cavity with a random timing in experiments, the
existence of an atom should be detected optically for a correct
timing of the pulses. Although this protocol would benefit
from the longer coherence time achievable in state-of-the-art
microwave cavity QED technologies [18], they still present
practical shortcomings that make our discussion for System II
more relevant to optical cavities [24,25] at the present time.
For example, while atoms with the required level structure are
readily available in the optical regime, this is not the case in
the microwave regime (i.e., Rydberg atoms).

Whereas the essential component of System I—coherent
generation of a single photon by a Raman transition—has
been well established [22], System II needs further analysis,
which we focus on in the remainder of this paper. As shown in
Fig. 2(b), the atom has two degenerate ground levels |l〉 and |r〉,
which represent a qubit, and an excited level |e〉. The transition
|l〉 ↔ |e〉 (|r〉 ↔ |e〉) is coupled to the L(R)-polarized mode
of the cavity with coupling strength gL (gR) and detuning �L

(�R). In case �L = �R = 0, the interaction Hamiltonian can
be written as

HI =
∑

µ=L,R

gµ(aµσ †
µ + a†

µσµ), (1)

where aµ denotes the annihilation operator for the µ-polarized
mode of the cavity, σ

†
L = |e〉〈l|, and σ

†
R = |e〉〈r|. We assume

gL = gR = g when the transitions are resonant. If the atomic
transition is largely detuned (�µ � gµ), the effective coupling
between the atom and the external field can be regarded as
being zero; that is, gL = gR = 0.

We first outline our scheme in an idealized situation where
both the atomic and the cavity decays are absent. At the

010302-2



RAPID COMMUNICATIONS

GENERATION OF GRAPH-STATE STREAMS PHYSICAL REVIEW A 83, 010302(R) (2011)

beginning, the cavity should be loaded with a single photon.
This can be done in combination with an entangling operation.
For this, the first atom is initially prepared in state |e〉 and a
classical pulse that induces the ac Stark shift is applied to adjust
the detunings to achieve �L = �R = 0. After straightforward
calculation based on the Hamiltonian HI, we can find that if
the pulse duration τ0 is chosen to be gτ0 = π/2

√
2, the state

is transformed to 1√
2
(|l〉|L〉 + |r〉|R〉), which is the two-qubit

graph state.
From the second atom, either a branching or a pulling-out

operation is performed as outlined before. In order to perform
a CPHASE operation, only �R is adjusted to be zero while
�L � gL during a period of time τ1 such that gRτ1 = π .
This operation transforms the state as |r〉|R〉 → −|r〉|R〉
while leaving |l〉|L〉, |l〉|R〉, and |r〉|L〉 unchanged, which
is identical to a CPHASE operation. In order to perform a
SWAP operation, we adjust both �L and �R to be zero
during a period of time τ2 such that gτ2 = π/

√
2. Solving

the Schrödinger equation for the Hamiltonian (1), it can be
shown that this operation transforms the state as follows:
|l〉|L〉 → −|r〉|R〉, |l〉|R〉 → |l〉|R〉, |r〉|L〉 → |r〉|L〉, and
|r〉|R〉 → −|l〉|L〉. This is identical to a SWAP operation
followed by a ZX operation acted on both qubits, where Z

and X are the Pauli operators. The correction of these Pauli
operations can be deferred by employing the Pauli frame [23].

In real experiments, the preceding idealized situation is not
possible to achieve due to the finite finesse of the resonator,
together with the finite lifetime for the excited state of the
three-level atoms. To model the evolution of the chain of atoms
as they cross the cavity, we can use a Lindblad equation under
the Markovian approximation for the density matrix of the
system [26]:

∂	

∂t
= −i[H,	] −

∑

µ=L,R

κµ(â†
µâµ	 + 	â†

µâµ − 2âµ	â†
µ)

−
∑

µ=L,R

γµ(σ̂ †
µσ̂µ	 + 	σ̂ †

µσ̂µ − 2σ̂µ	σ̂ †
µ). (2)

Here κµ and γµ stand for the cavity damping and the atomic
spontaneous emission rates for the µ-circularly polarized
mode, respectively. In writing the master equation (2) we
have assumed that the cavity field is coupled to a bosonic
environment at zero temperature.

Clearly, the performance of our protocol depends on the
ability of the resonator to keep the excitation for a time long
enough to perform all the operations needed. This means that
the fidelity of the state generated will be very much affected
by the damping and spontaneous emission rates. In spite of the
photon loss, however, the fidelity can be drastically improved
nearly as high as unity by adding to the original scheme
a heralding process based upon the detection of the photon
leaking out of the cavity. Note that the number of excitations∑

µ=L,R a†
µaµ + ∑

i |e〉i〈e| in an ideal case is always kept
to be one, while the environmental effect only decreases it.
Consequently, once a photon is detected, it is guaranteed that
all the preceded operations have been performed along with a
single excitation kept in the system, and hence the fidelity of
the final state should be high. We will take the state only when
the photodetector clicks (in the computational basis) after the
complete set of gates have been applied to the chain of atoms.
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FIG. 3. (Color online) (a) Fidelity and (b) probability of the
heralded generation of a three-qubit cluster state versus the cav-
ity damping and spontaneous emission rates. (c) Fidelity and
(d) probability of the heralded generation of the same state versus the
cavity damping (here γR = κR) in the protocol described (circles) and
assuming that there is up to a 10% uncertainty (uniformly sampled)
in the selection of the interaction time (squares). We take κL = κR

and γL = γR in all cases. Cavity damping and spontaneous emission
rates are measured in units of the coupling constant, g, which is set
equal to unity.

Another important advantage of employing the heralding
process is that we can deduce the fidelity and the success prob-
ability for an arbitrary number of atoms in a pseudoanalytic
way, avoiding having to calculate the whole evolution for all
the elements of the huge density matrix. For convenience, let
us change the notation to account explicitly for the number of
photons in the cavity for each polarization; that is, |10〉 ≡ |L〉,
|01〉 ≡ |R〉, while |00〉 will denote the absence of the photon

010302-3



RAPID COMMUNICATIONS

DANIEL BALLESTER, JAEYOON CHO, AND M. S. KIM PHYSICAL REVIEW A 83, 010302(R) (2011)

in any polarization. To calculate the evolution of one atom
together with the cavity field (within the one or zero-excitation
subspace), we can expand the density matrix using the basis
{|l10〉,|l01〉,|r10〉,|r01〉,|e00〉,|l00〉,|r00〉} to solve the master
equation (2). After the ideal evolution for a CPHASE and a
SWAP, only the 4 × 4 submatrix at the top left corner for those
states containing one photon will have nonzero elements. If
the heralding process is assumed, only these elements indeed
make contributions to the final state. It turns out that even with
the photon loss, this submatrix, when renormalized, remains as
a pure state, which can be written as α|10〉|φL〉 + β|01〉|φR〉,
where |φµ〉 is a normalized state representing another portion
of the state. For the ensuing step, this pure state can be taken
as the initial state, where the evolution can be calculated in the
same manner as if a state α|10〉 + β|01〉 was the initial state.
This is because the interaction exists only between the cavity
photon and the new atom, while all the earlier atoms that left
the cavity do not take part in the new evolution.

As a particular example, we have performed numerical
calculations for the generation of a three-qubit graph state.
In the ideal case this linear graph state |φid

3 〉 will be equivalent
to a three-qubit GHZ state. Figure 3(a) shows the fidelity
of the state obtained after heralding and the probability for
this to happen with respect to the cavity damping rate and
the atomic spontaneous emission rate. As we are comparing
pure states, |φ3〉 and |φid

3 〉, the fidelity can be calculated as
F = |〈φ3|φid

3 〉|2. Typical values of (g,γ,κ)/2π are around
(16,3,1.25) MHz for state-of-the-art experiments with Rb
atoms [27] or (34,2.6,4.1) MHz for Cs [24]. Taking these
parameters, the fidelities are F ≈ 0.886 and F ≈ 0.998,
respectively, while the probabilities of heralding are P ≈

0.84% and P ≈ 0.19%, respectively. This is relevant in order
to calculate the repetition rate which can be obtained with
this protocol. In the evolution we have also taken into account
an extra idle time of magnitude gτidle = π after every atom
crosses the cavity. This might be necessary to ensure the
right spacing between them. As a result, one three-qubit
graph state is yielded every 30.2 and 62.6 µs on average,
respectively. We have also studied the resilience of our protocol
versus a hypothetical fluctuation in the interaction time. This
also models experimental imperfections in selecting atomic
velocities and controlling the detunings. Figures 3(c) and 3(d)
show the decrease in fidelity and probability of heralding,
respectively, assuming that there is up to a 10% uncertainty
(uniformly sampled) in the selection of the interaction time.
The numerical results indicate that our scheme is robust against
this type of imperfection.

As a final remark, the most crucial aspect to judge if the
generation of the graph state has been successful after all
is to determine whether the state |φ3〉 is really entangled or
not. In spite of the lack of general criteria for multipartite
entanglement, we can still make use of the entanglement
witness derived in Refs. [28,29]. In our case, this particular
type of witness for graph states makes it possible to relate the
existence of entanglement in the state with its fidelity. More
precisely, the witness says that any state close to a graph state
with fidelity larger than 1/2 should be entangled.
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